Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supporting Information

For

Pressure-induced structure, elasticity, intrinsic hardness and ideal strength of tetragonal C₄N

Zhijun Shi^{a,b}, Wei Shao^a, Lixiang Rao^a, Xiaolei Xing^c, Yefei Zhou^c, Xuejun Ren^d,

Qingxiang Yang^{a,*}

^a State Key Laboratory of Metastable Materials Science & Technology, Yanshan University,

Qinhuangdao 066004, PR China

^b State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, PR China

^c College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, PR China

^d School of Engineering, Liverpool John Moores University, Liverpool L3 3AF, UK

* Corresponding author. Tel: +86 18633515955. E-mail address: <u>qxyang@ysu.edu.cn</u> (Qingxiang

Yang)

The convergence tests results of pseudo-potential plane wave cutoff energy and k-points grids of tetragonal C₄N (t-C₄N) unit cell are shown in Fig. S1. In Fig. S1(a), structural energy of t-C₄N tends to a fixed value with E_{cut} over 800 eV, which indicates the test attains convergence and E_{cut} is set as 800 eV in following calculations. In Fig. S1(b), structural energy of t-C₄N tends to a fixed value when k-points grids are more than 8×8×8, which indicates k-points test attains convergence and 8×8×8 k-points grids are used in following calculations.

Fig. S1. Convergence tests of (a) cut-off energy and (b) Kpoints.

Fig. S2. Calculated spin-polarized density of states of t-C₄N. The red dotted line represents the Fermi level position.

Fig. S3. Theoretical XRD (X-ray diffraction) spectrum simulation.

Atom	Atomic	Symmetric	Wyckoff	Frac	tional coordin	ates
type	number	multiplicity	symbol	Х	У	Z
	C1			0.00000	0.00000	0.00000
	C2			0.00000	0.50000	0.50000
	C3 C4		0.50000	0.00000	0.50000	
C			0.50000	0.50000	0.00000	
C	C5	8	a	0.75000	0.25000	0.75000
	C6 C7		0.25000	0.25000	0.25000	
		0.25000	0.75000	0.75000		
	C8			0.75000	0.75000	0.25000

Table S1. Atomic coordinates and corresponding Wyckoff sites in Diamond ($^{Fd\overline{3}m}$).

Atom	Atomic	Symmetric	Symmetric Wyckoff		tional coordin	nates
type	number	multiplicity	nultiplicity symbol		У	Z
	C1	2	_	0.00000	0.00000	0.00000
	C2	2	а	0.50000	0.50000	0.00000
	C3	2		0.50000	0.00000	0.64076
C	C4	2	С	0.00000	0.50000	0.35924
C	C5	C5		0.24877	0.25123	0.81166
	C6	4		0.75123	0.74877	0.81166
	C7	4	e	0.74877	0.24877	0.18834
	C8			0.25123	0.75123	0.18834
N	N1	2	_	0.50000	0.00000	0.35759
IN	N2	2	с	0.00000	0.50000	0.64240

Table S2. Atomic coordinates and corresponding Wyckoff sites in t-C₄N ($^{P\bar{4}2}m$).

t-C ₄ N		Diamond				
Bond-type	Bond-length (Å)	Bond-type	Bond-length (Å)			
C3-N1; C4-N2	1.38					
C5-N2; C6-N2 C7-N1; C8-N1	1.48					
C3-C5; C3-C6 C4-C8; C4-C7	1.51	All C-C	1.54			
C1-C5; C1-C6; C1-C7 C1-C8; C2-C6; C2-C7 C2-C8; C2-C5	1.55					

Table S3. Bond length of $t-C_4N$ and diamond.

Fig. S4. The mark number of atoms in $t-C_4N$.

t-C ₄ N	-	Dia	amond
Bond-type	Bond-angle (°)	Bond-type	Bond-angle (°)
C1-C5-C2; C2-C6-C1 C2-C7-C1; C2-C8-C1	106.91		
C5-C1-C6; C7-C1-C8 C6-C2-C5; C7-C2-C8			
C1-C5-C3; C3-C5-C2 C2-C6-C3; C1-C6-C3 C2-C7-C4; C1-C7-C4 C2-C8-C4; C4-C8-C1	109.14		
C1-C5-N2; N2-C5-C2 C2-C6-N2; C1-C6-N2 C2-C7-N1; N1-C7-C1 C2-C8-N1; C1-C8-N1	109.56	All	109.47
C5-C1-C7; C5-C1-C8 C6-C1-C7; C6-C1-C8 C6-C2-C7; C6-C2-C8 C7-C2-C5; C8-C2-C5	110.77	C-C-C	109.47
C5-C3-C6; C8-C4-C7 C3-C5-N2; C3-C6-N2 N1-C7-C4; C4-C8-N1	112.34 112.38 112.38		
C7-N1-C8; C5-N2-C6	112.43		
C3-N1-C7; C3-N1-C8 C4-N2-C5: C4-N2-C6	123.78 123.78		
C5-C3-N1; N1-C3-C6	123.83		
C8-C4-N2; N2-C4-C7	123.83		

Table S4. Bond angle of t-C₄N and diamond.

t-C ₄ N			Diamond
Bond-type	Dihedral angle (°)	Bond-type	Dihedral-angle (°)
C6-C3-C5-C1; C7-C4-C8-C2	58 25		
C6-C3-C5-C2; C7-C4-C8-C1	56.25		
C2-C5-N2-C6; C1-C7-N1-C8	59.40		
C1-C5-N2-C6; C2-C7-N1-C8	58.49		
C8-C1-C5-C2; C6-C2-C7-C1	50 7		
C5-C2-C8-C1; C8-C2-C6-C1	58./		
C7-C1-C5-N2; C5-C2-C7-N1	59 90		
C6-C2-C8-N1; C7-C2-C6-N2	38.89		
C8-C2-C6-C3; C8-C1-C5-C3	50.22		
C6-C2-C7-C4; C5-C2-C8-C4	59.22		
C7-C2-C6-C1; C7-C1-C5-C2	50.76		
C5-C2-C7-C1; C6-C2-C8-C1	59.76		
C6-C1-C5-C3; C8-C2-C7-C4	(1.55		
C7-C2-C8-C4; C5-C2-C6-C3	61.55		
C5-C2-C6-N2; C6-C1-C5-N2	(1.00		
C8-C2-C7-N1; C7-C2-C8-N1	61.89		
C5-C3-N1-C8; C6-C3-N1-C7			All C-C-C-C
C8-C4-N2-C5; C7-C4-N2-C6	00		60/180
C5-C3-N1-C7; C6-C3-N1-C8	90		
C8-C4-N2-C6; C7-C4-N2-C5			
C1-C5-N2-C4; C2-C7-N1-C3	101 51		
C2-C5-N2-C4; C1-C7-N1-C3	121.51		
N1-C3-C5-C2; N2-C4-C8-C1	101.75		
N1-C3-C5-C1; N2-C4-C8-C2	121./5		
C8-C1-C5-N2; C6-C2-C7-N1	155.04		
C5-C2-C8-N1; C8-C2-C6-N2	177.34		
C7-C2-C6-C3; C7-C1-C5-C3			
C5-C2-C7-C4; C6-C2-C8-C4	177.67		
C6-C1-C5-C2; C8-C2-C7-C1	170 47		
C7-C2-C8-C1; C5-C2-C6-C1	1/9.4/		
C7-C4-C8-N1; C3-C5-N2-C6			
C4-C7-N1-C8; C6-C3-C5-N2	100		
N1-C3-C5-N2; N2-C4-C8-N1	180		
C3-C5-N2-C4; C4-C7-N1-C3			

	Space	Pressure	a = h(Å)	c (Å)	c/2	$V(\lambda^3)$	
	group	(GPa)	a-0 (A)	C (A)	C/a	$\mathbf{v}(\mathbf{A}^{*})$	
		0	3.47416	4.85415	1.397215442	58.588719	
		50	3.34556	4.74088	1.417066201	53.063515	
		100	3.25132	4.66058	1.433442417	49.267446	
CN	$\overline{D42}$ m	150	3.17679	4.5963	1.446837846	46.385773	
C ₄ IN	r42 ₁ m	200	3.11505	4.54251	1.458246256	44.078497	
		250	3.06093	4.50008	1.470167563	42.162482	
		300	3.01367	4.46088	1.480215153	40.514598	
		350	2.97962	4.43473	1.48835422	39.372091	

Table S6. Crystal structural parameters a, b, c, ratio c/a and volumes V under increasing pressure.

under appried pressure.							
Pressure	Bulk module (GPa)		Shear module (GPa)		Young's module (GPa)		
(GPa)	B_{\min}	B_{\max}	G_{\min}	G_{\max}	E_{\min}	E_{\max}	
0	368.85	582.38	215.02	478.29	599.98	1281.26	
50	473.81	779.03	228.83	564.05	665.72	1516.44	
100	570.48	944.16	235.59	633.91	709.09	1723.71	
150	656.43	1105.94	238.11	693.05	735.31	1903.96	
200	735.04	1272.11	238.87	753.50	752.89	2080.17	
250	808.12	1438.47	239.31	815.61	766.58	2245.76	
300	876.66	1615.12	238.80	937.01	775.17	2394.66	
350	929.74	1751.41	235.73	1033.97	773.50	2490.14	

Table S7. Minimum and maximum of bulk module B, shear module G and Young's module E under applied pressure.

Pressure (GPa)	Cauchy pressure $(C_{12}-C_{44})$ (GPa)	Pugh's modulus ratio (<i>G/B</i>) (GPa)
0	-99.47	0.87
50	-31.78	0.77
100	47.98	0.69
150	128.04	0.63
200	206.65	0.59
250	280.99	0.56
300	354.05	0.54
350	429.38	0.52

Table S8. Cauchy pressure $(C_{12}-C_{44})$ and Pugh's modulus ratio (G/B) under applied pressure.

350	300	250	200	150	100	50	0	(GPa)	Pressure	
1141.08	1053.97	964.07	870.99	773.78	670.81	559.57	435.07	DO	Bulk mod	
1123.1	1053.5	962.78	869.49	771.23	667.44	553.91	426.88	t-C ₄ N	ule (GPa)	Table S9.
909.98	874.67	835.35	791.51	741.44	683.32	612.19	520.28	DO	Shear moo	. Compariso
582.97	570.31	542.46	515.42	489.14	461.23	424.56	371.37	t-C ₄ N	tule (GPa)	n of mecha
2156.65	2055.42	1944.45	1822.47	1685.86	1530.34	1345.79	1115.99	DO	Young's (G)	nical prope
1490.9	1449.4	1370.1	1291.1	1211.3	1124.6	1014.5	863.66	t-C ₄ N	module Pa)	rties of t-C ₄
88.52	90.06	91.56	93.03	94.34	95.46	95.78	94.45	DO	Hardness (G)	_µ N and diar
39.64	40.93	41.35	42.25	43.96	46.49	49.32	51.81	t-C ₄ N	(Tian's) Pa)	nond under
0.80	0.83	0.87	0.91	0.96	1.02	1.09	1.19	DO	Pugh'	different p
0.52	0.54	0.56	0.59	0.63	0.69	0.77	0.87	t-C ₄ N	s ratio	ressures.
0.19	0.17	0.16	0.15	0.14	0.12	0.1	0.07	DO	Poisson	
0.28	0.27	0.26	0.25	0.24	0.22	0.19	0.16	t-C ₄ N	's ratio	

Fig. S5. ELF isosurface (ELF = 0.8) changes under applied pressure from 0 GPa to 350 GPa. (a) 0 GPa; (b) 50 GPa; (c) 100 GPa; (d) 150 GPa; (e) 200 GPa; (f) 250 GPa; (g) 300 GPa; (h) 350 GPa

Fig. S6. ELF projections in (100), (010) and (001) crystal faces of tensile t-C₄N.
(a) (001) orientation 0% strain; (b) (100) orientation 0% strain; (c) (110) orientation 0% strain; (d) (111) orientation 0% strain; (a*) (001) orientation 16.09% strain; (b*) (100) orientation 36.13% strain; (c*) (110) orientation 22.02% strain; (d*) (111) orientation 11.57% strain.

Fig. S7. ELF projections in (100), (010) and (001) crystal faces of shear t-C₄N.
(a) 0% strain; (b) (111)[011] orientation 23.13% strain; (c) (111)[10] orientation 34.52% strain;
(d) (111)[112] orientation 29.91% strain; (e) (111)[112] orientation 27.62% strain; (f) (111)[101] orientation 23.13% strain; (g) (111)[110] orientation 39.23% strain.

The POSCARS of t-C₄N and diamond structures in Figure 1

t-C₄N

1.000000000000000			
3.51300001140000	0.0000000000000000000000000000000000000	000000	0.0000000000000000000000000000000000000
0.000000000000000	3.5130000114	000000	0.0000000000000000000000000000000000000
0.000000000000000	0.0000000000000000000000000000000000000	000000	4.8892998695000003
C N			
8 2			
Direct			
0.000000000000000000	0.0000000000000000000000000000000000000	0 -0.00000	0000000000
0.500000000000000000	0.50000000000000000	0 -0.00000	0000000000
0.500000000000000000	0.0000000000000000000000000000000000000	0 0.6404	776886635993
-0.00000000000000000	0.5000000000000000	0 0.35952	223113364007
0.2484396071159711	0.251560392884028	0.8116	394231067676
0.7515604218840278	0.748439578115972	0.8116	394231067676
0.7484395781159722	0.248439607115971	1 0.1883	605618932347
0.2515603928840289	0.751560421884027	0.1883	605618932347
0.500000000000000000	0.0000000000000000000000000000000000000	0 0.35732	275417917833
0.000000000000000000	0.5000000000000000	0 0.6426	724282082142

Diamond

1.0		
3.5559999943	0.0000000000	0.0000000000
0.0000000000	3.5559999943	0.0000000000
0.0000000000	0.0000000000	3.5559999943
С		
8		
Direct		
0.000000000	0.000000000	0.000000000
0.000000000	0.500000000	0.500000000
0.500000000	0.500000000	0.000000000
0.500000000	0.000000000	0.500000000
0.750000017	0.250000000	0.750000017
0.250000000	0.250000000	0.250000000
0.250000000	0.750000017	0.750000017
0.750000017	0.750000017	0.250000000

The POSCARS of t-C₄N structures under different pressures

t-C ₄ N (50 GPa)			
1.000000000000000			
3.34555727995161	73 0.00000000000	0000 0.00000000000000000000000000000000	
0.0000000000000000000000000000000000000	00 3.345557279951	6173 0.0000000000000000	
0.0000000000000000000000000000000000000	00 0.00000000000	0000 4.7408813765841558	
C N			
8 2			
Direct			
0.000000000000000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	
0.50000000000000000	0.50000000000000000	0.0000000000000000000000000000000000000	
0.50000000000000000	0.0000000000000000000000000000000000000	0.6410808634470868	
0.00000000000000000000000000000000000	0.50000000000000000	0.3589191365529132	
0.2479810595170306	0.2520189404829694	0.8118651602049383	
0.7520189694829682	0.7479810305170318	0.8118651602049383	
0.7479810305170318	0.2479810595170306	0.1881348247950640	
0.2520189404829694	0.7520189694829682	0.1881348247950640	
0.500000000000000000	0.000000000000000000	0.3573834667796234	
0.000000000000000000	0.50000000000000000	0.6426165032203741	
t-C ₄ N (100 GPa)			
1.000000000000000			
3.28113152712420	59 -0.000000344688	0.000000019707171	
-0.00000034465276	3.2811315438409	0698 -0.000000012739228	
0.000000014536558 -0.0000000017250822 4.6889624505861160			
C N			
8 2			
Direct			
0.9999999993082227	0.99999999997179430	0.9999999856412956	
0.500000000884768	0.500000000093507	0.9999999861925986	
0.500000008659171	0.99999999991994670	0.6413252388405510	
0.9999999983969730	0.500000020898128	0.3586747465409701	
0.2479997146929591	0.2520002860337556	0.8118770822885537	
0.7520002844915936	0.7479997130801266	0.8118770827277828	
0.7479997315342075	0.2479997320912091	0.1881229255562076	
0.2520002695732799	0.7520002685671443	0.1881229235906758	
0.500000020373605	0.9999999993902193	0.3577243080508055	
0.99999999990110169	0.4999999998209645	0.6422756605705615	
t-C ₄ N (150 GPa)			
1.000000000000000			
3.20301810271777	62 0.00000209562	52970.000000037275832	

3.2030180983579810

-0.000000046890749

0.0000002095635420

0.000000039422891 -0.000000068089987 4.6223560585460746

C N

8 2

Direct

0.99999999970279987	0.000000005529088	0.0000000978710659
0.500000017639721	0.4999999997429043	0.0000000989624027
0.4999999984287768	0.9999999981760510	0.6413404474420332
0.000000023610909	0.5000000004601191	0.3586595546174323
0.2478326271329578	0.2521673727542293	0.8119783598948089
0.7521673761958567	0.7478326249993117	0.8119783592821008
0.7478326190755027	0.2478326219637808	0.1880214466939591
0.2521673795335673	0.7521673810245346	0.1880214464903815
0.4999999943571964	0.9999999997430606	0.3581319221805259
0.0000000041230734	0.500000005831211	0.6418682065653059

t-C₄N (200 GPa)

1.00000000000000		
3.1150532554549040	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000
0.00000000000000000	3.1150532554549040	0.0000000000000000000000000000000000000
0.000000000000000000	0.0000000000000000000000000000000000000	4.5425095376956106

C N

8 2

Direct

0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.000000000000000000
0.50000000000000000	0.50000000000000000	0.00000000000000000
0.50000000000000000	0.0000000000000000000000000000000000000	0.6413121992840374
0.0000000000000000000000000000000000000	0.50000000000000000	0.3586878007159626
0.2476199643001280	0.2523800356998720	0.8121929654786797
0.7523800646998708	0.7476199353001292	0.8121929654786797
0.7476199353001292	0.2476199643001280	0.1878070195213226
0.2523800356998720	0.7523800646998708	0.1878070195213226
0.50000000000000000	0.0000000000000000000000000000000000000	0.3585666529298805
0.0000000000000000000000000000000000000	0.50000000000000000	0.6414333170701170

t-C₄N (250 GPa)

1.00000000000000

3.0609269158268400	0.0000000000000000	0.00000000000000000
0.00000000000000000	3.0609269158268400	0.00000000000000000
0.0000000000000000	0.0000000000000000	4.5000800606079183

C N

8 2

Direct

0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.00000000000000000
0.50000000000000000	0.50000000000000000	0.000000000000000000

```
0.50000000000000000
                      0.00000000000000000
                                          0.6411712344304590
  0.00000000000000000
                      0.50000000000000000
                                          0.3588287655695410
  0.2474622518829506
                      0.2525377481170494
                                          0.8122486636918040
 0.7525377771170483
                      0.7474622228829517
                                          0.8122486636918040
 0.7474622228829517
                      0.2474622518829506
                                          0.1877513213082054
 0.2525377481170494
                      0.7525377771170483
                                          0.1877513213082054
                                          0.3591177609047023
                      0.50000000000000000
  0.00000000000000000
                      0.50000000000000000
                                          0.6408822090952953
t-C<sub>4</sub>N (300 GPa)
   3.0136698649734619
                          -0.0000012990584413
                                                 0.000000093541754
    -0.0000012990479598
                           3.0136698584805468
                                                -0.000000134838198
     0.000000161083811
                          -0.000000236319370
                                                 4.4608758938770912
   С
        Ν
     8
           2
Direct
  0.9999999983374863
                      0.000000031271057
                                          0.9999999567494129
  0.4999999952030265
                      0.4999999996911484
                                          0.9999999566950777
 0.500000024491840
                      0.000000046860080
                                          0.6411191584888485
  0.9999999968642399
                                          0.3588808742686496
                      0.500000031103369
                                          0.8122852939307492
 0.2473768080508307
                      0.2526231913927077
 0.7526231997974975
                      0.7473767976848791
                                          0.8122852968474561
  0.7473767869973429
                      0.2473767917122842
                                          0.1877147726256183
 0.2526232114431295
                      0.7526232134661299
                                          0.1877147707105777
 0.500000036325432
                      0.9999999958886150
                                          0.3595451780458916
  0.9999999972247267
                      0.4999999992407780
                                          0.6404546816377135
t-C<sub>4</sub>N (350 GPa)
   1.000000000000000
     2.9796195229131861
                           0.0000025583865974
                                                -0.000000002834292
                           2.9796195277915078
     0.0000025583860184
                                                -0.000000170267606
     0.000000037649978
                          -0.000000302614490
                                                 4.4347265402772935
   С
        Ν
     8
           2
Direct
  0.000000003625829
                      0.9999999999107771
                                          0.9999999723079966
  0.4999999958784400
                      0.500000034450025
                                          0.9999999706013796
  0.500000036840930
                      0.999999993415116
                                          0.6410059376032464
 0.000000023417286
                      0.500000038690970
                                          0.3589938605153975
  0.2473409459678777
                      0.2526590520499070
                                          0.8123588853387815
 0.7526590568619582
                      0.7473409369518365
                                          0.8123588859298252
  0.7473408359854261
                      0.2473408412604599
                                          0.1876413073705336
  0.2526591623650773
                      0.7526591718420974
                                          0.1876413125153746
```

```
21
```

0.5000000051329891	0.0000000052365721	0.3599378982304984
0.99999999914198199	0.4999999860927389	0.6400619095869757

CCDC number of the t-C₄N crystal structure

Data Block Name: data_C₄N-P42 Unit Cell Parameters: a 3.5130 b 3.5130 c 4.8893 P-421m Deposition Number: 2121547

Explanation to the A-alerts in checkCIF file

The A-alerts are all about experimental crystal descriptions. In this work, the t-C₄N crystal structure was predicted by CALYPSO code theoretically and has not been prepared experimentally at present. Therefore, the diffractometer model, parameters, experimental descriptions of atoms, bonds and angles are not provided, which leads to that the relevant tests cannot be performed (as A-alerts described in checkCIF file). The checkCIF report is for guidance only. If used as part of a review procedure for publication, it should not replace the expertise of an experienced crystallographic referee.