Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

All-Dielectric Magnetophotonic Gratings for Maximum TMOKE enhancement

William O. F. Carvalho and J. R. Mejía-Salazar

National Institute of Telecommunications (Inatel), Av. João de Camargo 510, Santa Rita do

Sapucaí, MG, 37540-000, Brazil.

Supplementary Material

Hypothetical transmittance curves are plotted using the equation

$$T(\pm \Delta T) = T(\pm \mathbf{M}) = A + B \frac{(x - x_{\text{res}})^2}{\left(\frac{\Gamma}{2}\right)^2 + (x - x_{\text{res}})^2},$$

where the minimum transmittance $T_{res} = A$ is varied in the range $0 \le T_{res} \le 0.3$. $\Gamma = 0.5$ is the shape factor parameter, giving the full width at half maximum (FWHM). x_{res} represents the resonant point along the *x*-axis, which can be used for the incident angle or wavelength.

Figure S1: (a)–(d) Hypothetical values for T(+**M**) and T(–**M**) and their (e)–(h) TMOKE curves. ΔT_{res} is considered constant to show the effect of T_{res} on the TMOKE amplitudes.

The effect of ΔT_{res} on the TMOKE amplitude is shown in Figure S2. In particular, for high T_{res} it becomes evident the enhancement of TMOKE amplitudes by increasing the ΔT_{res} value, see Figures S2(g)–(h).

Figure S2: (a)–(d) T(+**M**) and T(–**M**) Hypothetical transmittance and (e)–(h) TMOKE curves. Comparative results are shown for the transmittance (TMOKE) in (a)–(b) [(e)–(f)] and (c)–(d) [(g)–(h)] with $T_{res} = 0.0$ and 0.4, respectively. Results for the transmittance (TMOKE) using $\Delta T = 0.1$ are shown in (a) [(e)] and (c) [(g)], and for $\Delta T = 0.4$ in (b) [(f)] and (d) [(h)], as indicated in the insets.

Figure S3: Geometrical optimization of the (a)–(d) Transmittances T(+**M**) and (e)–(h) TMOKE curves for the system Bi:YIG-Si, the incident wavelength is λ =630 nm.