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DFT Calculation For Oxygen Evolution Reaction (OER):

The atomic scale mechanisms of the OER are complicated and not fully established, insights into 

the thermodynamics of the reaction can be obtained using the scheme developed by Norskov et al 

[1]. In the scheme, the OER is assumed to involve four elementary reaction steps and each 

involves electron transfer of an electron to the electrode and a proton to water:

R1: 𝐻2𝑂 +  ∗  ⟶ ∗ 𝑂𝐻 +  𝐻 + + 𝑒 ‒

R2: ∗ 𝑂𝐻 ⟶ ∗ 𝑂 +  𝐻 + + 𝑒 ‒

R3: 𝐻2𝑂 +  ∗ 𝑂 ⟶ ∗ 𝑂𝑂𝐻 +  𝐻 + + 𝑒 ‒

R4: ∗ 𝑂𝑂𝐻 ⟶ ∗  +  𝑂2 +  𝐻 + + 𝑒 ‒

Where * and *X denotes an adsorption site and an adsorbed X species, respectively;  is a 𝐻2𝑂

water molecule in liquid phase. Therefore, the free energy of the OER is computed by the formula 
, where the  can be obtained by the computation of geometrical ∆𝐺 = ∆𝐸 + ∆𝑍𝑃𝐸 ‒ 𝑇∆𝑆 ∆𝐸

structures. The value of  and  were determined by computed vibrational frequencies and ∆𝑍𝑃𝐸 ∆𝑆

standard table for the reactants and products in the gas phase and the entropy of adsorbed atoms or 
molecules at surface active site were set as zero. Moreover, for the total reaction 

, the free energy change was fixed at experiment value of 2.46 eV per water 
𝐻2𝑂 ⟶ 1 2𝑂2 +  𝐻2

molecule. So the free energy change for reaction R1-R4 can be expressed as 
∆𝐺𝑅1 = ∆𝐺𝑂𝐻 ‒ 𝑈𝑒

∆𝐺𝑅2 = ∆𝐺𝑂 ‒ ∆𝐺𝑂𝐻 ‒ 𝑈𝑒

∆𝐺𝑅3 = ∆𝐺𝑂𝑂𝐻 ‒ ∆𝐺𝑂 ‒ 𝑈𝑒

∆𝐺𝑅4 = 4.92 ‒ ∆𝐺𝑂𝑂𝐻 ‒ 𝑈𝑒

Where U is the potential measured against normal hydrogen electrode at standard conditions.

The theoretical overpotential is defined as .𝜂 = max {Δ𝐺𝑅1, Δ𝐺𝑅2, Δ𝐺𝑅3, Δ𝐺𝑅4}/𝑒 ‒ 1.23 (𝑉)
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Table S1. Details of the reaction conditions for the synthesis of NiO nanobelts and nanoplates

Hydrothermal Reaction Calcination

Morphology NaOH

(g)

NiSO4

(g)

Ni(NO3)2

(g)

Temperature/Tim

e

(°C/h)

Temperature/Tim

e

(°C/h)

Nanobelts 0.1960 2.5759 ˗ 120°C/4h 500°C/4h

Nanoplates 0.3000 ˗ 2.9080 180°C/8h 300°C/2h
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Fig. S1 XRD patterns of (a) nanobelts precursors and (b) nanoplates precursors.
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Fig. S2 XRD patterns of NiO nanobelts and nanoplates (Intensity was presented in logarithmic 
plot).
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Table S2. Particle size, structural, surface area, porosity, and electrochemical performance of NiO 
nanobelts and nanoplates

Samples
Average

crystallite
size (nm)

Sizes of 
nanostructures

BET 
Surface

area 
(m2/g)

Total 
pore

volume
(mL/g)

Current density
(mA/cm2) at 

400 mV 
overpotential

Tafel 
slope

(mV/dec)

Specific
capacitance
(mF/cm2)

Nanobelts 5.4
Length: 60 nm, 
Thickness: 20 

nm
98.7 0.528 66.3 142.5 0.78

Nanoplates 5.5
Length: several 
micrometers,
Width: 16 nm

153.0 0.183 15.4 154.2 3.6
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Fig. S3 SEM images of (a) NiO nanobelts precursors and (b) NiO nanoplates precursors.
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Fig. S4 (a-c) TEM and HRTEM images of NiO nanobelts at spot 2 and 3, (d-f) TEM and HRTEM 
images of NiO nanplates at spot 2 and 3,
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Fig. S5 Nitrogen absorption/desorption curves of (a) NiO nanobelts and (b) NiO nanoplates. 
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Fig. S6 (a) CV curves of NiO nanobelts and nanoplates at different scan rates, (b) Plots of 

capacitive currents with respect to scan rate normalized by active mass.
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Table S3 OER performances comparison of reported representative Ni-based electrocatalysts

Catalysts Current density

(mA cm-2)

Overpotential

(mV)

Tafel slopes

(mV dec-1)

References

NiO/CeO2 

NW@CC

50 330 85       [2]

Mo‒Ni/C 10 470 93       [3]

Ni @ NiO/N-C 10 390 100       [4]

N doped NiO 100 750 136       [5]

NiCo2O4/NiO-rGO 10 350 66       [6]

Ni@NiO Nanowires 10 382 103       [7]

NiO@C 100 500 92       [8]

NiO nanobelts
50

100 

382

429

142.5
This work
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