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Inhibitors 

In this work we analysed three different PREP inhibitors:  

KYP 2047 (IUPAC name: 1-[1-(4-phenylbutanoyl)pyrrolidine-2-carbonyl]pyrrolidine-2-

carbonitrile) – covalent bound to PREP1, 2 

SUAM 1221 (IUPAC name:  4-phenyl-1-[(2S)-2-(pyrrolidine-1-carbonyl)pyrrolidin-1-yl]butan-1-one)  

S 17092(IUPAC name:  [(2S,3aS,7aS)-2-(1,3-thiazolidine-3-carbonyl)-2,3,3a,4,5,6,7,7a-

octahydroindol-1-yl]-[(1R,2R)-2-phenylcyclopropyl]methanone ) 

Molecular docking 

Three known PREP inhibitors were used in this study.  Potential binding sites for all ligands were 
determined using the Schrodinger/Glide docking package. For each ligand, we performed three 
dockings. The first, so-called blind docking, was performed without choosing the approximate 
binding site - the drug could dock anywhere within the protein. The second docking restricted the 
potential poses to the vicinity of the active centre of PREP. These two docking experiments were 
performed using PREP in open form (obtained after MD equilibration). The last docking, also 
restricting poses to the enzyme's active centre, uses PREP in the closed-form (PDB ID: 3DDU). All 
modelling was performed using flexible docking. 

The poses with the lowest docking energy from the third modelling were chosen as the starting point 
for the MD simulations. Table S1 lists the docking energies for the individual poses. In blind docking, 
for open PREP, the drug is more likely docked inside the β-propeller channel. For closed PREP, the 
most energetically favourable poses were around the active centre. The best pose obtained for KYP 
2047 agrees with the known crystal structure of KYP 2047 bound to porcine PREP 1 (PDB ID:4AN0, 
98% sequence similarity with human PREP). The calculated binding affinities of all inhibitors to PREP 
were comparable. 

 

Table S1 Docking values obtained from three docking experiments; binding energies from MM-PBSA 
modelling. 

Ligand Blind docking (open 
PREP) 

Active site docking (open 
PREP) 

Active site docking (closed 
PREP) 

KYP2047 -6.02 -4.47 -8.09 

SUAM1221 -4.73 -4.67 -8.37 

S17092 -5.23 -4.53 -7.54 
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Figure S1: Residues with the highest contribution to the energy of binding of ligands at the active site 
of PREP.  

The contribution of individual residues during docking of three ligands is shown in Figure S1. These 
computed interactions were found to be similar in all cases. Of particular interest were four residues 
R643, W595, H680 and F476, located in the active centre of PREP,  which gave the highest 
contribution to the energy of binding.  

Ligands force-field parameters validation 

The first attempt to experimentally verify the correctness of the ligand parameters was to compare 
the structure obtained after minimisation of the system for the given parameters with the structure 
obtained from the X-ray diffraction experiment. Due to the limited availability of experimental data, 
such comparison was possible only for KYP 2047, which perfectly agrees with the experimental 
structure. 

To further validate the parameters of the drugs, we calculated the octanol-water partitioning 
coefficients (log P), which were compared with available experimental data. The mean log P for the 
optimal brain penetration is 2.13. The octanol-water partitioning free energies were determined 
using the Bennett Acceptance Ratio (BAR) approach implemented in MDPOW- a python package that 
automates the calculation of solvation free energies via molecular dynamics (MD) simulations and 
facilitates the computation of partition coefficients (https://github.com/Becksteinlab/mdpow).  

First, optimised structures of KYP 2047, SUAM 1221, and S 17092 were solvated (in water or the 
water-octanol mix) in a periodic dodecahedron simulation cell with a minimal distance of 2 nm to the 
nearest box surface. Solvated systems were first energy minimized and relaxed with a short, five 
picoseconds NPT MD simulation. Then an initial NPT equilibrium simulation (  T=300  K,  P=1 bar) with 
time step 2 fs was carried out for 50 ns. After the equilibration phase, the 25 ns free energy 
calculations began, using the last frame of the equilibrium simulation as the starting point. The NPT 
ensemble MD simulations were performed at T=300 K, with all other parameters kept as MDPOW 
default (for CHARMM force-field simulation). Simulation parameters for water and octanol 
simulations were identical.  

The obtained values of log P for three ligands slightly differs from those determined experimentally 
(for KYP 2047 and SUAM 1221). Nevertheless the trend of increasing log P from experiment and 
XlogP3 calculations is maintained. 

 

 

 

 



 

 
Table S2: Experimental verification of parameters:  IC50-values against porcine PREP with references; 
logP - water-octanol partition coefficient from experiment; partition coefficient calculated with 
XlogP3 server (XlogP3) and obtained via MD simulations using MDPOW (MD logP). 

Ligand IC50 logP XlogP34 MD logP 

KYP2047 0.25 1.65 2.33 2.18 
(0.02) 

SUAM1221 1.56 1.85  2.51 2.35 
(0.03) 

S17092 2.07 - 3.5 3.028 
(0.03) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Summary of MD runs  

Table S3: Summary of MD simulations 

System lp RMSD Cα [Å] Simulation time [μs] Inter-domain opening 

APO 1 2.63 (1.17) 0.5  yes 

2 1.57 (0.27) 0.5  no 

3 1.57 (0.16) 0.5  no 

4 1.58 (0.2) 0.5  no 

5 3.43 (1.39) 0.5  yes 

6 1.58 (0.16) 1.0 no 

7 1.91 (0.41) 1.0 no 

8 5.58 (3.40) 1.0 yes 

9 1.79 (0.18) 1.0 no 

10 1.81 (0.48) 1.0 no 

KYP2047 1  1.46 (0.12) 0.5 no 

2  1.43 (0.13) 0.5 no 

3 1.31 (0.10) 0.5 no 

4 1.35 (0.13) 0.5 no 

5  1.52 (0.19) 0.5 no 

SUAM1221 1 1.45 (0.11) 0.5 no 

2 1.53 (0.18) 0.5 no 

3 1.44 (0.14) 0.5 no 

4 1.52 (0.15) 0.5 no 

5 1.38 (0.13) 0.5 no 

S17092 1 1.70 (0.20) 0.5 no 

2 1.39 (0.14) 0.5 no 

3 1.49 (0.14) 0.5 no 

4 1.36 (0.14) 0.5 no 

5 1.62 (0.15) 0.5 no 

 

 

 

 

 

 

 

 

 



 

Dynamics od PREP 

 
Figure S2: Comparison of the Root Mean Square Fluctuations of PREP in APO (top) and ligand-bound 
models. APO simulations with and without interdomain opening are shown in magenta and black 
curves, respectively. 

 



 

Figure S3: Correlation matrices calculated from 5x500 ns MD trajectories data for APO, KYP 2047, 
SUAM 1221, and S 17092 systems. Couplings among parts of PREP in each system were analysed 
using the dynamic cross-correlation matrices8. 

 

 

 
Figure S4: Differences in the dynamic cross-correlation matrices.  

 



 

Figure S5: Principle Components Analysis of all systems. APO (black) compared with KYP2047 (red), 
SUAM 1221 (yellow), and S 17092 (green). The dimensionality reduction was performed using mdtraj 
and scikit-learn Python packages. 

 

Figure S6: Normal modes analysis of all systems. The most prominent motion vectors are shown in 
colours. The normal modes was calculated using ProDy9 package and visualised using Normal Modes 
Wizard at VMD.  



 

Figure S7:  Time-series of the inter-domain angle change for four APO simulations. Three runs that 
capture the opening of the domains are shown in cyan, yellow, and magenta. The exemplary run of 
fully-closed run is shown in black. 

 

Figure S8: Time-series of Collective Variable, s, for each system: APO (black) and SUAM 1221 (yellow). 

 



 

Figure S9:  The dependence between the collective variable, s, used in the metadynamics simulations 
and the interdomain angle. 

 

 

Figure S10:  Number of H-bonds between the peptidase and β-propeller domains for each system.  

  



 

Dynamics of ligands in the PREP cavity 

 

Figure S11: Distribution of ligands position during  simulation. Centres of mass of ligands P1, P2, and 
P3 groups are shown by cyan, yellow, and magenta dots, respectively. Covalent binding of KYP 2047 
significantly reduced its mobility inside the cavity. 
 

 

Figure S12: Root Mean Square Fluctuations of residues within 6Å from the ligand. Cα RMSD 
calculations indicate a trend for decreased flexibility of such residues and this is apparent for all 
PREP-inhibitor systems. Comparison with the APO results for both open (magenta) and closed (black) 
state indicates that existence of inhibitor, apart keeping the protein in a closed form,  slightly 
decrease the overall flexibility of residues from the binding region. The most affected are residues in 
close contact with the ligand. 

 



 

Solvent accessible surface analysis 

We analysed the changes of the protein  surface upon binding of different ligands taking into account 
the differences in solvent accessible area (SASA). SASA of each residue across each frame in a MD 
trajectory was computed using MDTraj Python library10. The code implements the Shrake and Rupley 
algorithm11, with the Golden Section Spiral algorithm to generate the sphere points. 

In Figure S8 a we show the average value of SASA for four residues which show the biggest 
change.  Figure S8 b and c show the differences between KYP 2047 -- SUAM 1221 (b) and KYP 2047 -- 
S 17092 (c), blue colour denotes residues which are more solvent accessible in KYP, red colour shows 
residues which are more buried in KYP 2047 than in other cases. 

 

Figure S13: Solvent Accessible Surface analysis. Residues with the biggest differences in calculated 
SASA for different ligands. 
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