Electronic Supplementary Information

Deep-red to near-infrared luminescence from Eu^{2+} trapped exciton states in $YSiO_2N$

Yuuki Kitagawa,^a* Jumpei Ueda,^a Jian Xu,^b Takayuki Nakanishi,^c Takashi Takeda,^c Naoto Hirosaki,^c Setsuhisa Tanabe^a

^{*a*} Department of Interdisciplinary Environment, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan

^b International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan

^c Luminescent Materials Group, National Institute for Materials Science (NIMS), Tsukuba,
Ibaraki 305-0044, Japan

Fig. S1 XRD patterns of the as-made and annealed $YSiO_2N:Eu^{2+/3+}$ sample with the reference data of monoclinic $YSiO_2N$ (space group: C2/c).

Fig. S2 XANES spectra of the as-made sample, fitted with the spectra of the annealed $YSiO_2N:Eu^{3+}$ sample and $EuCl_2$ chemical to estimate the ratio between Eu^{2+} and Eu^{3+} ions.

Fig. S3 Diffuse reflectance spectra of the non-doped $YSiO_2N$, as-made $YSiO_2N:Eu^{2+/3+}$, and annealed $YSiO_2N:Eu^{3+}$ samples. The vertical axis is converted to the Kubelka-Munk function.

Fig. S4 Time-resolved PL spectra of the non-doped YSiO₂N sample at 4 and 300 K.

Fig. S5 (a) Gaussian profiles obtained by fitting of the PL spectra at low temperatures (T = 4-300 K). (b–c) Fitting outputs of FWHM and peak center for the Gaussian profiles of Eu²⁺-trapped exciton and intrinsic defects emission.

Fig. S6 PLE spectrum of the annealed $YSiO_2N:Eu^{3+}$ sample at 10 K. The broad excitation band was deconvoluted into two Gaussian profiles, assigned to the CT transition from N³⁻ and O²⁻ to Eu^{3+} ions.