SUPPORTING INFORMATION

Interconversion between Lewis and Brønsted-Lowry acid sites on vanadia-

based catalysts

Rob Jeremiah G. Nuguid^{1,2}, Lorenzo Ortino-Ghini^{1,3}, Vitaly L. Suskevich¹, Jie Yang^{1,4}, Luca Lietti³, Oliver Kröcher^{1,2}, Davide Ferri^{1,*}

¹Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

²Institute of Chemical Sciences and Engineering, École polytechnique fédérale de Lausanne (EPFL),

CH-1015 Lausanne, Switzerland

³Department of Chemistry, Politecnico di Milano, 20133, Milan, Italy

⁴College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China

* Corresponding author: <u>davide.ferri@psi.ch</u>

Fig. S1. Powder XRD of 2V5WT, 2V10WT, and 2V20WT.

Fig. S2. Raman spectra of 2V5WT, 2V10WT, and 2V20WT under 5 vol% O_2 balanced in Ar at 250 °C. The vibrations at 1031 and 1015 cm⁻¹ are the stretching modes of V=O and W=O groups, respectively, while the vibration at 806 cm⁻¹ belongs to bulk WO₃.

Fig. S3. Transmission IR spectrum of 2V10WT under 1000 ppm NH₃ and 5 vol% O₂ balanced in Ar at 400 °C. The vibrations are assigned in the main text.

Fig. S4. Linear fitting of the mass-normalized areas of (a) LAS and (b) BAS as a function of temperature.

Fig. S5. NO conversion of 2V5WT, 2V10WT, and 2V20WT in the spectroscopic cell. Experimental conditions: 1000 ppm NO, 1000 ppm NH₃, 5 vol% O₂ balanced in Ar.