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Supplementary information 

Inconsistency of Poisson-Boltzmann equation 

As shown in Refs. [1, 2] the results of Poisson-Boltzmann equation contradict the superposition 

principle of electrostatics (potentials due to individual ions can be linearly superimposed to yield 

the potential due to an assembly of ions) which originates from the linear Poisson equation. The 

problems are remedied in the Debye-Hückel approximation 𝑒±𝜓 ≈ 1 ± 𝜓, i.e. for small 𝜓. There 

is however no mathematical inconsistency in combining it with the non-linear Boltzmann equation 

as otherwise no sensible solution would be obtained1. 

The deeper reason of the inconsistency is the identification of the mean potential appearing in 

Poisson’s equation (potential not changed by a spy-particle) with the potential of mean force 

appearing in the electrochemical potential and thus in the Boltzmann expression (potential 

referring to the distribution that self-consistently includes the particle). The inconsistency is also 

revealed by the fact that the Debye and the Güntelberg charging processes lead to different results. 

The differences disappear at low potentials since here interactions are negligible. The differences 

between both types of potentials may also become less relevant at very high field as here the 

contribution of the particle is expected to be less relevant according to Ref. [9]. 

As the Taylor expansion of the Poisson-Boltzmann equation shows, the validity of the exponential 

solution extends to greater 𝜓 for symmetrical electrolytes as here the quadratic terms cancel. 

More accurate descriptions of concentrated electrolytes are given by Mayer et al.3, and Allnatt et 

al.4-6, but may become soon very intransparent and not manageable. For more details the reader is 

referred to literature1-11. 
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Figure S1. A few simple situations for centroid calculations. 
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Figure S2. Sketch of centroid in continuous model and discrete model. 

 

When various linear charge profiles are investigated, ℒ𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 + 
𝑎

2
= ℒ𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠  is exactly 

fulfilled for the horizontal curve, while the difference becomes slightly less for finite slopes. A 

deviation from 
𝑎

2
 means that the absolute position of the centroid deviate slightly. Obviously 

when ℒ → 0, the absolute centroid position will tend toward 
𝑎

2
 and the difference tend to zero. 

The horizontal example shows that the smearing out on the rhs is without influence. The deviations 

cannot be consistently investigated with linear solutions.  
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Figure S3. (a), (b) Calculated space charge capacitance of discrete model and Gouy Chapman model. (c), 

(d) Normalized Helmholtz corrections. (a), (c) potential on the metal surface is constant (𝜙𝑠 − 𝜙∞=-35 

mV); (b), (d) bulk concentration is constant (𝑐∞=1 ×10-5 mol/cm3). Helmholtz corrections are calculated 

by applying same total excess charge for both models. Simulation parameters: lattice spacing ∆x′=0.1 nm; 

dielectric constant 𝜀𝑟=10; 𝜇0 is constant; T=298 K. 
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Figure S4. The profiles of charge carrier concentrations with different 𝜙𝑠 in discrete model. Simulation 

parameters: lattice spacing ∆x′=0.1 nm; dielectric constant 𝜀𝑟=10; 𝑐∞=1 ×10-5 mol/cm3; T=298 K; (a) 

𝜙𝑠 − 𝜙∞=-200 mV; (b) 𝜙𝑠 − 𝜙∞=-10 mV. For large 𝜙𝑠  (a), only one carrier (positive charge in this 

example) is decisive. In the case of small 𝜙𝑠  (b), both positive and negative charge carriers are of 

importance. 

 

 

 

 

 

 



7 

 

 

 

Figure S5. The profiles of (a), (c) electric potential and (b), (d) charge carrier concentration shown as a 

function of number of lattice plane. The blue data shows the model with 𝜇0-variation in the first two layers 

adjacent to the interface by ∆𝜇1
0, ∆𝜇2

0 with respect to the bulk. From third layer on the bulk value is applied. 

The blue curve shows the continuous model from third layer on. The red data shows the discrete model without 

𝜇0-variation. Blue and red dashed lines in (b), (d) indicate the positions of centroid for both cases (with or 

without 𝜇0 -variation). Black dash-dotted lines refer to the positions of first two layers. Simulation 

parameters: lattice spacing ∆x′ =0.1 nm; dielectric constant 𝜀𝑟 =10; 𝜙𝑠 − 𝜙∞ =-1 mV; 𝑐∞ = 1 × 10-5 

mol/cm3; T=298 K; (a), (b) ∆𝜇1
0 = −0.05 eV; ∆𝜇2

0 = −0.02 eV. (c), (d) ∆𝜇1
0 = −0.2 eV; ∆𝜇2

0 =

−0.1 eV. 
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Figure S6 displays discrete 𝜙- and 𝑞- profiles for various conditions (constant surface potential or constant 

bulk concentration).  

 

Figure S6 Profiles of (a), (b) electric potential and (c), (d) charge density normalized to the value at the first 

plane in discrete model shown as a function of number of lattice plane. Simulation parameters: lattice 

spacing ∆x′=0.1 nm; dielectric constant 𝜀𝑟=10; T=298 K. (a), (c) potential on the metal surface is constant 

(𝜙𝑠 − 𝜙∞=-35 mV); (b), (d) bulk concentration is constant (𝑐∞=1 ×10-5 mol/cm3).  

 

 

 

 



9 

 

Table S1 (a)  
𝜆

𝑎
 = e 

𝑏

𝑎
 

𝜀

𝑏

1

𝐶
 

𝜀

𝑏

1

𝐶
−

𝜆

𝑏
 

𝑏 − 𝑎 2⁄

𝑏
 

2 2.1244 0.7653 0.7500 

3 1.7496 0.8435 0.8333 

4 1.5622 0.8826 0.8750 

8 1.2811 0.9413 0.9375 

16 1.1406 0.9707 0.9688 

 

Table S1 (b)  
𝜆

𝑎
 = 5e 

𝑏

𝑎
 

𝜀

𝑏

1

𝐶
 

𝜀

𝑏

1

𝐶
−

𝜆

𝑏
 

𝑏 − 𝑎 2⁄

𝑏
 

2 7.5488 0.7531 0.7500 

3 5.3658 0.8353 0.8333 

4 4.2744 0.8765 0.8750 

8 2.6372 0.9383 0.9375 

16 1.8186 0.9691 0.9688 
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Table S2 

𝜙𝑠 𝑄+

𝑄+ + 𝑄−
 

1 mV 0.50202 

10 mV 0.52027 

50 mV 0.6049 

100 mV 0.71953 

200 mV 0.88392 

500 mV 0.97345 

1000 mV 0.98935 

 

 

 

 

 

 

 

 

 


