Electronic Supplementary Information

Molecular Insight into the Role of Zeolite Lattice Constraints on Methane Activation over Cu–O–Cu Active Site

Muhammad Haris Mahyuddin,^{*,a,b} Adhitya Gandaryus Saputro,^{a,b} Reza Pamungkas Putra Sukanli,^a Fadjar Fathurrahman,^{a,b} Jenny Rizkiana,^c Ahmad Nuruddin,^a and Hermawan Kresno Dipojono^{a,b}

^a Research Group of Advanced Functional Materials, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia

^b Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia

^c Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia

* To whom all correspondences should be addressed

(e-mail: haris[at]tf.itb.ac.id).

Table of Contents:

- **Fig. S1** Small cluster model of $[Cu_2(\mu-0)]^{2+}$ -MOR.
- **Fig. S2** Plots of H–CH₃ activation barrier against \angle CuOCu and φ angles.
- **Table S1**Geometrical parameters along the CH4 activation in the 12-MR opening.
- **Fig. S3** Plot of relative E_{sta} against relative ΔE .
- **Fig. S4** Optimized structures of **AS**, **TS**, and **FS** for the CH₄ activation inside the 8-MR side pocket.
- **Table S2**Geometrical parameters along the CH4 activation in the 8-MR side pocket.
- **Table S3**Energetic results for the CH4 activation in the 12-MR opening and inside the 8-MR side pocketcalculated using GGA-PBE functional

Fig. S1 Small cluster model of $[Cu_2(\mu-O)]^{2+}$ -MOR for the molecular orbital calculations. Color legend: Si (blue), Al (green), Cu (cyan), O (red), H (white).

Fig. S2 Plots of H-CH₃ (a) activation barrier and (b) apparent activation barrier against the \angle CuOCu and ϕ angles.

Al-pair	React.	<i>i</i> (v)	d(Al…Al)	d(Cu…Cu)	d(Cu-0)	∠Cu0Cu	φ (°)	d(C-H)	d(0-H)	ρ(Cu1,	ρ(0, C)	<i>ρ</i> (H)
arr.	step	(cm ⁻¹)	(Å)	(Å)	(Å)	(°)		(Å)	(Å)	Cu2)		
T2/T4 _{1Si}	AS		6.07	3.04	1.75, 1.77	119.7	19/23	1.10	2.48	0.64, 0.57	0.50, 0.00	0.001
	TS	1296.7	6.02	2.97	1.81, 1.82	110.2	25/28	1.32	1.24	045, 0.35	0.52, 0.46	0.033
	FS		6.03	3.00	1.84, 1.84	109.6	26/28	1.95	1.00	0.42, 0.32	0.19, 087	0.036
T2 _{2Si}	AS		7.68	2.61	1.76, 1.76	96.0	30/30	1.10	2.34	0.56, 0.56	0.62, 0.00	0.001
	TS	1117.7	7.56	2.45	1.82, 1.82	84.5	27/27	1.30	1.26	0.39, 0.39	0.54, 0.45	0.030
	FS		7.57	2.46	1.84, 1.84	83.9	25/25	2.01	1.00	0.37, 0.37	0.17, 0.86	0.037
T4 _{2Si}	AS		7.75	3.30	1.77, 1.75	139.8	49/63	1.10	2.42	0.58, 0.63	0.52, 0.00	0.001
	TS	1410.1	7.64	3.28	1.82, 1.82	128.1	51/66	1.33	1.23	0.39, 0.40	0.53, 0.48	0.029
	FS		7.69	3.32	1.85, 1.85	128.0	52/64	2.01	1.00	0.36, 0.36	0.20, 0.87	0.034
T2/T4 _{2Si}	AS		7.68	2.85	1.76, 1.76	108.5	27/35	1.10	2.36	0.62, 0.60	0.53, 0.00	0.000
	TS	1187.2	7.55	2.56	1.82, 1.83	88.7	25/31	1.30	1.26	042, 0.38	0.53, 0.44	0.032
	FS		7.58	2.57	1.84, 1.85	88.3	22/28	1.96	1.00	0.39, 0.36	018, 0.86	0.035
T2 _{3Si}	AS		8.23	2.92	1.75, 1.75	113.6	53/58	1.10	2.34	0.61, 0.58	0.54, 0.00	0.000
	TS	1398.9	8.08	2.77	1.80, 1.81	100.1	43/43	1.33	1.23	0.42, 0.40	0.46, 0.47	0.035
	FS		8.12	2.82	1.82, 1.83	101.2	41/42	1.96	1.00	0.38, 0.37	0.16, 0.86	0.036
T4 _{3Si}	AS		8.34	3.30	1.77, 1.76	138.5	88/94	1.10	2.51	0.57, 0.61	0.57, 0.00	0.001
	TS	1495.2	8.29	3.35	1.83, 1.83	133.1	85/92	1.34	1.23	0.40, 0.40	0.51, 0.48	0.032
	FS		8.35	3.42	1.85, 1.85	134.9	86/91	2.01	1.00	0.36, 0.36	0.21, 0.87	0.033

Table S1. Geometrical parameters, imaginary frequency (*iv*), and atomic spin densities (ρ) along the H₃C–H activation in the 12-MR opening. All reaction steps are in the triplet state.

Fig. S3 Plot of E_{sta} relative to that for T2_{2Si} against ΔE relative to that for T2_{2Si}.

Fig. S4 Optimized structures of **AS**, **TS**, and **FS** for the CH₄ activation inside the 8-MR side pocket. T and CSS stand for the triplet and closed-shell singlet states, respectively.

Al-pair	Reaction	<i>i</i> (v)	d(Al…Al	d(Cu…Cu)	d(Cu-0)	∠CuOCu	φ (°)	d(C-H)	<i>d</i> (0–H)	ρ(Cu1,	ρ(0, C)	<i>ρ</i> (H)
arr.	step (spin	(cm ⁻¹))	(Å)	(Å)	(°)		(Å)	(Å)	Cu2)		
	state) ^a		(Å)									
T2/T4 _{1S}	AS (T)		6.07	3.04	1.75, 1.77	119.7	19/23	1.10	2.97	0.64, 0.57	0.50, 0.00	0.001
i												
	TS (T)	1591.6	6.06	3.05	1.80, 1.83	114.4	3/4	1.38	1.22	0.42, 0.37	0.51, 0.49	0.029
	FS (CSS)		5.96	2.40	1.84, 1.86	81.0	68/78	-	0.99	0.00, 0.00	0.00, 0.00	0.000
T2 _{2Si}	AS (T)		7.68	2.61	1.76, 1.76	96.0	30/30	1.10	2.98	0.56, 0.56	0.62, 0.00	0.001
	TS (T)	1412.7	7.64	2.46	1.82, 1.82	84.9	7/7	1.34	1.25	0.38, 0.38	0.57, 0.46	0.023
	FS (CSS)		7.62	2.36	1.88, 1.88	78.1	84/84	-	0.99	0.00, 0.00	0.00, 0.00	0.000
T4 _{2Si}	AS (T)		7.75	3.30	1.77, 1.75	139.8	49/63	1.10	2.93	0.58, 0.63	0.52, 0.00	0.001
	TS (T)	1209.5	7.65	2.69	1.81, 1.81	95.7	9/15	1.31	1.26	0.41, 0.40	0.53, 0.44	0.033
	FS (CSS)		7.62	2.42	1.86, 1.86	81.2	75/82	-	0.99	0.00, 0.00	0.00, 0.00	0.000
T2/T4 _{2S}	AS (T)		7.68	2.85	1.76, 1.76	108.5	27/35	1.10	3.28	0.62, 0.60	0.53, 0.00	0.000
i												
	TS (T)	1250.0	7.61	2.50	1.80, 1.82	87.0	6/7	1.32	1.24	0.38, 0.38	0.55, 0.46	0.033
	FS (CSS)		7.68	2.40	1.84, 1.90	79.8	82/85	-	0.99	0.00, 0.00	0.00, 0.00	0.000

Table S2. Geometrical parameters, imaginary frequency (*iv*), and atomic spin densities (ρ) along the H₃C-H activation inside the 8-MR side pocket.

^{*a*} T and CSS stand for the triplet and closed-shell singlet states, respectively.

Al-pair	<i>E</i> _{rel} (kcal/mol)		E _{ads} (kcal/mol)		E _a (kcal/mol)		<i>E</i> _{a,app} (kcal/mol)		ΔE (kcal/mol)	
arrangement	12-MR	8-MR	12-MR	8-MR	12-MR	8-MR	12-MR	8-MR	12-MR	8-MR
T2/T4 _{1Si}	10.0	10.0	-6.3	-11.6	12.9	25.6	6.6	14.0	4.0	-24.5
T2 _{2Si}	0.0	0.0	-5.3	-11.2	11.2	19.6	5.8	8.4	2.2	-21.0
T4 _{2Si}	4.9	4.9	-5.5	-11.4	13.6	24.6	8.0	13.2	4.8	-21.9
T2/T4 _{2Si}	5.9	5.9	-5.5	-11.2	12.1	21.2	6.6	10.0	3.3	-22.4
T2 _{3Si}	3.0	3.0	-4.9	-	15.1	-	10.2	-	7.4	-
T4 _{3Si}	4.9	4.9	-5.5	-	14.1	-	8.6	-	5.5	-

Table S3. Energetic results for the CH₄ activation in the 12-MR opening and inside the 8-MR side pocket calculated using GGA-PBE functional.

Comparing the results calculated with the PBE functional to the results calculated with the PBE+U method, we found no significant changes in the energetic trend.