Supporting Information

Novel PdC monolayer with fully dispersed Pd atoms and rigid carbon

backbone: an intrinsic versatile electrocatalyst for overall

water-splitting and the corresponding reverse reaction

Shaohua Lu,^{*,‡,a,b} Kai Zhu,^{a,‡} Dong Fan,^a and Xiaojun Hu^{*,a}

^a College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.

^b Beijing Computational Science Research Center, Beijing 100193, China.

‡ These authors contributed equally to this work.

* Corresponding Author.

E-mail: lsh@zjut.edu.cn (S. Lu), huxj@zjut.edu.cn(X. Hu)

Supporting Information (SI)

FigureS1	2
FigureS2	2
FigureS3	3
FigureS4	3
FigureS5	4
FigureS6	4
FigureS7	4
FigureS8	5
Figure89	5
FigureS10	5
FigureS11	6
FigureS12	6
FigureS13	6
FigureS14	7
FigureS15	7
FigureS16	8
FigureS17	8
FigureS18	8
FigureS19	9
TableS1	10
TableS2	10
TableS3	10
TableS4	10
TableS5	11
TableS6	11

Supporting Figures

Fig. S1 The relative total energy as a function of (a) cutoff energy and (b) k-points mesh grids of the proposed 2D PdC structure.

Fig. S2 (a) Phonon spectrum and phonon density of states of the β -PdC. (b) The fluctuation of the total energy of the β -PdC structure as a function of the molecular-dynamic simulation time at 500 K.

Fig. S3 (a) The structural evolution of β -PdC monolayer in liquid water after the AIMD simulation process at 300 K for 5 ps. (b)The normalized pair correlation functions of g(r) after the AIMD simulation process.

Fig. S4 Band structures and projected DOS of β -PdC monolayers, calculated by PBE functional. Red dashed lines represent the Fermi level at 0 eV.

Fig. S5 Band structures of α -PdC and β -PdC with the scheme of HSE06 functional.

Fig. S6 The structures of the H_2O molecule adsorbed on the α -PdC in Site A, B, C, and D. The blue, gray, and pink balls represent H, Pd, and C atoms, respectively. The following figures adopt the same color code.

Fig. S7 The structures of the H atom adsorbed on the α -PdC in Site A, B, C, and D.

Fig. S8 The optimized structures of α -PdC with different H coverage from 1/4 to 1.

Fig. S9 (a) The β -PdC shown in a 2×2 supercell from the top and side views. (b), (c), and (d) show the structures of the first H atom adsorbs on the β -PdC in different sites as labeled in (a).

Fig. S10 The optimized structures of H on β -PdC with coverage from 1/4 to 1.

Fig. S11 Free energy diagram for H evolution of β -PdC in different stable sites or with different H coverage at potential U = 0 relative to the standard hydrogen electrode at pH = 0.

Fig. S12 The intermediate state *O adsorbs on Site A, B, C, and D of α -PdC.

Fig. S13 The intermediate state *OH adsorbs on Site A, B, C, and D of α-PdC.

Fig. S14 The structure of intermediate state *OOH before((a), (c), (e), (g)) and after((b), (d), (f), (h)) structure relaxations on Site A, B, C, and D of α -PdC.

Fig. S15 The reaction processes involve all three intermediate states *OH, *O, *OOH on site B of α -PdC.

Fig. S16 Free energy diagram of α -PdC at the B site at different electrode potentials. ΔG_{max} denotes the rate-determining step.

Fig. S17 The reaction process involves all 3 intermediate states (*OH, *O, and *OOH) on the D site of the OH-covered α -PdC.

Fig. S18 The reaction process involves all 3 intermediate states (*OH, *O, and *OOH) at the A site of the OH, O-covered α -PdC.

Fig. S19 The PDOS of d-band of the pristine α -PdC and O-covered α -PdC. The red dash line denotes the d-band center. The Fermi level is shifted to 0.

Supporting Tables

14010 01 1110 01					
System	C ₁₁ (N/m)	C ₂₂ (N/m)	C ₁₂ (N/m)	C ₂₁ (N/m)	C ₆₆ (N/m)
α-PdC	385.94	123.88	1.10	1.10	2.80
β-PdC	171.72	171.72	77.92	77.92	11.35

Table S1 The elastic constants of α - and β -PdC.

Table S2 The Gibbs free energy of H_2O , H_2 and O_2 .

System	E(DFT-D2)	ZPE (eV)	TS (eV)	Hthermal correction	G (eV)
	(eV)			+ZPE (eV)	
H2O	-14.2425	0.5682	0.6699	0.6711	-14.2414
H2	-6.7732	0.2652	0.4019	0.3555	-6.8196
02					-9.9235

Table S3. The bond length, bond angle, and adsorption energy of H₂O on different sites.

System	O-H bond	O-H bond	$\Delta E(eV)$
(a-PdC)	length(Å)	angle(°)	
H ₂ O (gas)	0.97	104.99	
H ₂ O on Site A	0.97	109.08	-0.3684
H ₂ O on Site B	0.98	103.93	-0.4547
H ₂ O on Site C	0.99	103.68	-0.4187
H ₂ O on Site D	0.99	107.68	-0.5417

Table S4. The H adsorption energies of α -PdC on Site A-D.

System	E(DFT-D2)	$\Delta E_{H}(eV)$	ZPE (eV)	TS (eV)	Hthermal correction	G (eV)	$\Delta G_{H}(eV)$
(a-PdC)	(eV)				+ZPE (eV)		
α-PdC	-108.2058		0	0	0	-108.2058	
A site	-111.4452	0.1473	0.1247	0.0253	0.1391	-111.3314	0.2843
B site	-111.5577	0.0347	0.1350	0.0018	0.1364	-111.4230	0.1926
C site	-111.6971	-0.1046	0.0761	0.0134	0.0857	-111.6248	-0.0092
D site	-112.0048	-0.4123	0.1695	0.0125	0.1784	-111.8389	-0.2233

Table 55. The fit description energies of a face under coverage nom 17 to 1.							
System	E(DFT-D2)	ZPE	TS (eV)	H _{thermal}	G (eV)	$\Delta G(eV)$	$\Delta G_{*H}(eV)$
(coverage)	(eV)	(eV)	correction				
				+ZPE (eV)			
1/4	-112.0048	0.1695	0.0125	0.1784	111.8389	-0.2233	-0.2233
1/2-1	-115.7105	0.3697	0.0152	0.3812	115.3445	-0.3191	-0.1595
1/2-2	-115.7497	0.3212	0.0262	0.3398	115.4362	-0.4107	-0.2054
1/2-3	-115.8457	0.3472	0.0253	0.3650	115.5061	-0.4806	-0.2403
3/4	-119.4203	0.5174	0.0289	0.5386	118.9106	-0.4753	-0.1584
1	-122.8451	0.6706	0.0367	0.6980	122.1838	-0.3387	-0.0847

Table S5. The H adsorption energies of α -PdC under coverage from 1/4 to 1.

Table S6. The H adsorption energies on site A, B, and C of β -PdC.

System	E(DFT-D2)	$\Delta E_{H}(eV)$	ZPE	TS	Hthermal correction	G (eV)	$\Delta G_{H}(eV)$
	(eV)		(eV)	(eV)	+ZPE (eV)		
β-PdC	-107.3149		0	0	0	-107.3149	
A site	-109.5095	1.1920	0.2566c	0.3980	0.4609	-109.4467	1.2780
B site	-109.6913	1.0102	0.2536	0.4809	0.4932	-109.6789	1.0458
C site	-109.8300	0.8715	0.1634	0.0101	0.1709	-109.6691	1.0556