Supplementary Information: A new universal force-field for

the Li₂S–P₂S₅ system

Shunsuke Ariga ^a Takahiro Ohkubo ^{*a} Shingo Urata ^b Yutaka Imamura ^b Taketoshi Taniguchi ^b

^aGraduate School of Science and Engineering,

Chiba University, 1-33 Yayoi-cho Inage-ku, Chiba 263-8522, Japan ^bInnovative Technology Laboratories, AGC Inc., Yokohama 230-0045, Kanagawa, Japan

1 LAMMPS inputs

LAMMPS (3 Mar 2020) input files used for the validation are listed:

- γ-Li₃PS₄: gamma-Li3PS4.in gamma-Li3PS4.data
- β -Li₃PS₄: beta-Li₃PS4.in beta-Li₃PS4.data
- Li₄P₂S₆: Li4P2S6.in Li4P2S6.data
- Li₇P₃S₁₁: Li7P3S11.in Li7P3S11.data
- Li₇PS₆: Li7PS6.in Li7PS6.data
- 67Li₂S-33P₂S₅ glass: 67Li₂S-33P₂S₅.in 67Li₂S-33P₂S₅.data
- 70Li₂S-30P₂S₅ glass: 70Li₂S-30P₂S₅.in 70Li₂S-30P₂S₅.data
- 75Li₂S-25P₂S₅ glass: 75Li₂S-25P₂S₅.in 75Li₂S-25P₂S₅.data
- Three-body potential: Li-S.sw

2 Force-field parameters

i	j	ε/kJ/mol	r ⁰ /Å	i	j	ε (kJ/mol)	r ⁰ /Å
Li	Li	0	0	Pa	S4	0.0185256	4.70106
Li	P2	0	0	P4	P4	286.462	1.42927
Li	Pa	0	0	P4	S 2	1.91098	3.62871
Li	P4	0	0	P4	S 1	0.666463	4.10262
Li	S2	3.18402	2.87451	P4	Sc	4.79110	3.14097
Li	S 1	6.87732	2.68218	P4	S 4	0.242553	4.70137
Li	Sc	5.70836	2.65312	S2	S 2	1.71023	4.07182
Li	S4	4.56893	2.73400	S2	S 1	0.806141	4.37816
P2	P2	102.307	0.935300	S2	Sc	2.54094	3.84569
P2	Pa	85.2078	0.845927	S2	S 4	0.357938	4.85356
P2	P4	88.9600	1.28948	S 1	S 1	0.434036	4.60435
P2	S2	0.320577	3.62767	S 1	Sc	1.04667	4.22896
P2	S 1	0.111702	4.10206	S 1	S 4	0.219075	4.99641
P2	Sc	0.805645	3.13883	Sc	Sc	4.53320	3.52301
P2	S4	0.0406344	4.70108	Sc	S 4	0.419943	4.76802
Pa	Pa	224.376	0.631531	S 4	S 4	0.130121	5.27676
Pa	P4	43.4183	1.27491	Li	S 0	4.86227	2.83510
Pa	S2	0.146170	3.62759	P4	S 0	2.76741	4.01127
Pa	S 1	0.0509280	4.10201	S4	S 0	0.826743	4.96363
Pa	Sc	0.367408	3.13866	S 0	S 0	6.53884	4.50173

Table S1: Lennard-Jones pair parameters of atoms i and j in Class II potential. Parameters for a combination of different two types of P2, Pa, P4, S2, S1, Sc, or S4 are derived from Waldman-Hagler combining rules.

Table S2: Bond parameters of bonded atoms i-j in Class II potential.

i	j	r ₀ /Å	$K_2/kJ/mol/Å$	$K_3/kJ/mol/Å^3$	$K_4/kJ/mol/Å^4$
P2	S2	2.05800	759.383	243.108	168.519
Pa	S 1	2.06993	673.925	90.4907	2326.70
Pa	Sc	2.28618	327.446	78.7211	1192.39
P4	S4	2.09744	508.620	26.5935	2697.60
P2	P2	2.31455	659.411	627.968	601.387

Table S3: Angle parameters of bonded atoms i-j-k with j center in Class II potential.

i	j	k	$\theta_0/^\circ$	K ₂ /kj/mol/rad ²	K ₃ /kj/mol/rad ³	K ₄ /kj/mol/rad ⁴
P2	P2	S 2	104.305	135.767	203.550	769.375
Pa	Sc	Pa	116.460	355.808	45.8048	1984.85
S2	P2	S 2	115.313	177.728	267.296	1806.27
S 1	Pa	S 1	114.173	216.016	48.6377	191.055
S 1	Pa	Sc	105.522	149.132	38.1655	416.925
S 4	P4	S 4	109.460	201.806	75.1756	803.675

i	j	k	M/kJ/mol/Å	$N_1/kJ/mol/Å$	$N_2/kJ/mol/Å^2$	$r_1/Å$	r ₂ /Å
P2	P2	S 2	21.5633	19.6593	111.905	2.26144	2.05203
Pa	Sc	Pa	397.935	211.374	249.228	2.09524	2.12546
S 2	P2	S 2	43.6646	183.480	224.394	1.96742	2.07272
S 1	Pa	S 1	89.8430	89.2376	84.0482	2.06174	2.02696
S 1	Pa	Sc	47.7348	74.6585	103.964	2.07712	2.13569
S 4	P4	S 4	127.641	70.7761	96.2362	2.17645	2.18138
Pa S2 S1 S1 S4	Sc P2 Pa Pa P4	Pa S2 S1 Sc S4	43.6646 89.8430 47.7348 127.641	211.374 183.480 89.2376 74.6585 70.7761	249.228 224.394 84.0482 103.964 96.2362	2.09524 1.96742 2.06174 2.07712 2.17645	2.1254 2.0727 2.0269 2.1356 2.1813

Table S4: Bond-bond (bb) and bond-angle (ba) parameters of bonded atoms i-j-k with j center in Class II potential.

Table S5: Dihedral parameters of bonded atoms *i*-*j*-*k*-*l* in Class II potential.

i	j	k	l	K ₁ /kJ/mol	$\phi_1/^\circ$	$K_2/kJ/mol$	$\phi_2/^\circ$	K ₃ /kJ/mol	<i>φ</i> ₃ /°
Pa	Sc	Pa	S 1	2.67041	195.783	3.16898	103.391	1.91883	133.865
S2	P2	P2	S2	0.0	0.0	0.0	0.0	0.0	0.0

Table S6: λ and $\cos \theta^0$ parameters with *i* center of nonbonded atoms *i*-*j*-*k* in Stillinger–Weber potential.

i	j	k	$\lambda/kJ/mol$	$\cos heta^0$
Li	S2	S2	72.3481	-0.106294
Li	S2	S 1	272.660	-0.276177
Li	S2	Sc	2151.02	-0.376578
Li	S2	S 4	534.782	-0.317077
Li	S 1	S 1	797.550	-0.0672886
Li	S 1	Sc	71.4410	-0.0212434
Li	S 1	S 4	217.683	-0.409570
Li	Sc	Sc	1438.18	0.124328
Li	Sc	S 4	443.881	0.0118708
Li	S 4	S 4	50.7193	-0.250519
Li	S 4	S 0	33.3340	0.0535239
Li	S 0	S 0	2248.17	-0.348738

Table S7: γ parameters in Stillinger–Weber potential. $r^{\text{cut}} = 5.0$ Å for all pairs.

i	j	γ /unitless
Li	S2	4.61683
Li	S 1	5.47149
Li	Sc	5.11593
Li	S4	5.42257
Li	S 0	5.26419

3 Mean square displacements

Figure S1: Mean square displacement (MSD) of Li in six compounds with various temperatures are displayed in (a)–(f). Diffusion coefficients are calculated from linear regression drawn with black dashed lines. The fitting time range were half of all simulation run at each temperature.

Figure S2: Mean square displacement (MSD) of Li under micro-canonical (NVE) and isobaricisothermal (NPT) ensembles with various temperatures for (a) $\text{Li}_7\text{P}_3\text{S}_{11}$ crystal and (b) 70Li₂S-30P₂S₅ glass. The temperatures are average values during the simulation run. Diffusion coefficients are calculated from linear regression drawn with black dashed lines. The discrepancy of *D* between NPT and NVE was shown in parenthesis in %.