Electronic Supplementary Information

Ionic effects on Supramolecular Hosts: Solvation and Counter-ion Binding in Polar Media

Nicolás Moreno-Gómez,^{*a,b,‡*} Edgar F. Vargas,^{*,*b*} and Richard Buchner^{*,*a*}

^{*a*} Institut für Physikalische und Theoretische Chemie, Universität Regensburg, D-93040 Regensburg, Germany. E-mail: Richard.Buchner@chemie.uni-regensburg.de

^b Laboratorio de Termodinámica de Soluciones, Departamento de Química,

Universidad de Los Andes, Cr. 1 No. 18 A-12, Bogotá, Colombia. E-mail: edvargas@uniandes.edu.co

[‡] Present address: Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany and Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, 70569, Germany

Quint-Viallard analysis of molar conductivity

With formal charge numbers of -4 (Na₄TES) respectively +4 (TAM \cdot (HCl)₄) for the cryptand ion the studied ionic resorcin[4]arenes can be formally regarded as unsymmetrical 1:4 respectively 4:1 electrolytes. To model the molar electrical conductivity, Λ , of solutions of unsymmetrical electrolytes Quint and Viallard (Q-V) proposed a theory based on Kohlrausch's law of independent ion migration.¹ This Q-V model can be expressed² by the following set of equations

$$\Lambda = \sum_{j=1}^{h} \frac{c_j |z_j| \lambda_j}{c}$$
(S1a)

$$\lambda_j = \lambda_j^{\infty} - S_j (I)^{1/2} + E_j I \ln I + J_{1,j} I - J_{2,j} I^{3/2}$$
(S1b)

$$I = \frac{\alpha}{2} \sum_{j} z_j^2 c_j \tag{S1c}$$

where c_j represents the concentration of species j with charge number $|z_j|$ at the total electrolyte concentration, c. The molar ionic conductivity, λ_j , is calculated with eq. (S1b) where the parameters S_j , E_j , $J_{1,j}$ and $J_{2,j}$ depend on λ_j , the distance parameter a_j , viscosity, η , and static permittivity, ε , of the solvent. The complex expressions for these parameters are given in reference 2.

Originally, the Q-V model did not consider ion association. This was included by Apelblat,³ who coupled equations (S1a-c) with a chemical equilibrium approach

$$K_{\rm A} = \frac{(1-\alpha)}{\nu_+\nu_- c\alpha^2} F_{\gamma} \tag{S2}$$

via the dissociation degree, α , which modifies the total ionic strength, *I*, in equation (S1c). In eqn. (S2) ν_+ and ν_- are the stoichiometric coefficients of the ions involved in the equilibrium and F_{γ} is the quotient of their activity coefficients, γ_i , approximated in dilute solutions by the Debye-Hückel equation

$$\log \gamma_j = \frac{z_j^2 A \sqrt{I}}{1 + a_j B \sqrt{I}}$$
(S3a)

$$A = 1.825 \times 10^6 (\varepsilon T)^{3/2} \qquad B = 50.29 \times 10^8 (\varepsilon T)^{1/2}$$
(S3b)

The thus obtained data for the limiting molar conductivities, Λ^{∞} , and association constants, K_{A}° , are given in Table S8. The Λ^{∞} values from the Q-V and lcCM (Table 1 of the Main Manuscript) models differ by ~ 3% for Na₄TES and ~ 6% for TAM · (HCl)₄. This is already large but in view of the exotic electrolytes possibly acceptable. However, the association constants obtained with the Q-V approach are clearly unrealistic. With K_{A}° values in the range of ~140-1000 M⁻¹

most Q-V results are exceptionally high for aqueous solutions of salts involving Na⁺ or Cl⁻ ions (Table S8). Additionally, with practically no association at 278.15 and 308.15 K but values > 140 M⁻¹ in between the temperature dependence for TAM \cdot (HCl)₄ is inconsistent.

Estimated solute relaxation times

Rotational correlation times of possible solute species (free Na₄TES respectively TAM \cdot (HCl)₄ and their contact (CIPs) and solvent-shared ion pairs (SIPs)) were estimated with the Stokes-Debye-Einstein equation

$$\tau_j^{\text{rot}} = \frac{3V_{\text{eff},j}\eta}{k_B T} \tag{S4}$$

where η is the dynamic viscosity of the sample and $V_{\text{eff},j} = V_{\text{m}}f_{\perp}C$ the effective volume of the dipole, determined by its molecular volume, V_{m} , the associated geometry factor, f_{\perp} , and the hydrodynamic coupling parameter, C.⁴ For oblate ellipsoids with semi-principal axes a < b = c the geometry factor is given by

$$f_{\perp} = \frac{2}{3} \cdot \frac{1 - q^4}{\left(\frac{2 - q^2}{\sqrt{q^2 - 1}}\right) \left(\arctan\sqrt{q^2 - 1}\right) - 1}$$
(S5)

where $q = b/a.^5$ For $c \to 0$ the thus obtained τ_j^{rot} values can be directly compared to experimental relaxation times, $\tau_j.^6$

Estimates for the rotational correlation time, τ_{rot} , of irregular-shaped bodies, like TES^{4–} (Fig. 1 of the Main Paper) or its contact (CIP), $[NaTES]^{3–}$ (Fig. 5), or solvent-separated ion pairs (SSIP), $[TES^{4-} \cdot H_2O \cdot Na^+]^{3-}$, are very coarse as these structures only roughly resemble rotational ellipsoids. Also, their hydrodynamic coupling to bulk viscosity is unknown. Nevertheless, such values may provide a first hint for the assignment of observed relaxations. Approximating TES^{4–} and $[NaTES]^{3-}$ as oblate ellipsoids with molecular volumes, V_m , determined by Winmostar⁷ and semi-principle axes a < b = c extracted with Avogadro (V 1.1.1)⁸ from the MOPAC2016⁹ (PM6 Hamiltonian) output yielded values of $\tau_{rot} = 1.5$ ns for TES^{4–} and 4.8 ns for $[NaTES]^{3-}$ at infinite dilution in DMSO. The corresponding values in water are 670 ps for TES^{4–}, 474 ps for $[TES^{4-} \cdot H_2O \cdot Na^+]^{3-}$, and 2.1 ns for $[NaTES]^{3-}$. Thus, the relaxation times of the free anion and its ion pairs should be sufficiently different to allow their distinction in the dielectric spectrum.

On the other hand, it is also obvious that the above τ_{rot} values considerably exceed the experimental relaxation times of the solute-related modes ($\tau_1 \approx 2.2$ ns and $\tau_2 \approx 400$ ps for DMSO; $\tau_1 \approx 300$ ps and $\tau_2 = 60$ ps for water). One possible

reason besides the unknown value for the effective hydrodynamic coupling parameter, *C*, is that eqn. (S5) implies the dipole moment parallel being to the short *a* axis of the ellipsoid. The MOPAC results suggest that this is neither true for TES^{4–} nor [NaTES]^{3–}. Thus, one may argue that in addition to the tumbling motion of the ellipsoid involving rotation around the *b* and *c* axes, also the presumably faster spinning around the *a* axis is DRS active. Although we tentatively assign mode 1 to [NaTES]^{3–} contact ion pairs (CIPs) in DMSO and solvent-shared ion pairs (SSIPs) in water and mode 2 to free TES^{4–} anions in both solvents, it is only fair to say that the evidence provided by the above comparison of calculated τ_{rot} values with the experimental data for τ_1 and τ_2 is limited.

Supplementary Tables

Table S1: Parameters of the D+D+CD model for the dielectric spectra of Na₄TES solutions of concentration, *c*, in DMSO at 298.15 K: static permittivity, ε ; amplitudes, *S_j*, and relaxation times, τ_j , of the resolved modes, *j* = 1...3; width parameter, β_3 ; and high-frequency permittivity, ε_{∞} . Also included are data for density, ρ , and conductivity, κ , of these solutions.^{*a*}

С	ρ	κ^b	ε	S_1	$ au_1$	S_2	$ au_2$	S_3	$ au_3$	β_3	\mathcal{E}_{∞}
0.0000 ^c	1.095470	0.073	46.50					42.36	20.7	0.885	4.14
0.0142	1.100868	0.073	48.85	3.30	2080	0.88	320	40.75	20.8	0.879	3.92
0.0247	1.104824	0.102	49.73	4.53	2100	1.52	353	39.67	20.3	0.884	4.01
0.0519	1.115009	0.151	49.29	5.26	1650	2.38	321	37.65	21.1	0.865	4.00
0.0757	1.123791	0.177	49.71	6.94	1640	2.75	346	36.14	22.1	0.842	3.88
0.0958	1.131346	0.183	51.34	8.53	2420	3.90	420	35.36	23.5	0.809	3.54
0.1416	1.152584	0.165	51.62	9.08	3440	6.28	562	32.86	27.2	0.751	3.40
0.1846^{c}	1.173013	0.195	40.45			7.73	500F	28.53	28.0	0.726	3.22

^{*a*} Units: *c* in M; ρ in kg L⁻¹; κ in S m⁻¹; τ_j in 10⁻¹² s. ^{*b*} Interpolated from data of Ref. 10. ^{*c*} See Ref. 11. Parameter values followed by the letter F were not adjusted in the fitting procedure.

Table S2: Parameters of the 3D model for the dielectric spectra of aqueous Na₄TES solutions of concentration, *c*, at 298.15 K: static permittivity, ε ; amplitudes, S_j and relaxation times, τ_j , of the resolved modes, j = 1...3; and high-frequency permittivity, ε_{∞} . Also included are data for density, ρ , and conductivity, κ .^{*a*}

С	$ ho^b$	κ	ε	S_1	$ au_1$	S_2	$ au_2$	S_3	$ au_3$	\mathcal{E}_{∞}
0.0000 ^c	0.997047		78.37					74.85	8.32	3.52
0.0100	1.001444	0.488	81.90	4.47	556	0.57	60.0F	71.01	8.27	5.85
0.0244	1.007969	1.033	81.38	5.69	301	0.87	60.0F	68.80	8.23	6.03
0.0488	1.019547	1.844	80.56	6.93	293	1.94	60.0F	65.42	8.23	6.26
0.0722	1.031324	2.515	79.27	6.71	247	3.77	60.0F	62.44	8.07	6.36
0.0819	1.036412	2.762	78.80	7.01	250	4.32	60.0F	61.14	7.96	6.32
0.1307	1.063694	3.804	76.54	7.39	335	6.02	60.0F	56.80	8.18	6.33
0.1841	1.096924	4.624	73.39	6.89	353	8.18	60.0F	51.71	8.19	6.61
0.2263	1.125676	5.131	69.14	5.56	322	8.36	60.0F	48.07	8.29	7.16

^{*a*} Units: *c* in M; ρ in kg L⁻¹; κ in Sm⁻¹; τ_j in 10⁻¹² s. ^{*b*} Interpolated from Ref. 12. Parameter values followed by the letter F were not adjusted in the fitting procedure.

Table S3: Parameters of the 5D model for the dielectric spectra of TAM \cdot (HCl)₄ solutions of concentration, *c*, in DMSO-Water(10.9% *w*) at 298.15 K: static permittivity, ε ; amplitudes, *S_j* and relaxation times, τ_j , of the resolved modes, *j* = 1...5; and high-frequency permittivity, ε_{∞} . Also included are data for density, ρ , and conductivity, κ .^{*a*}

С	ρ	κ	ε	S_1	$ au_1$	S_2	$ au_2$	S_3	$ au_3$	S_4	$ au_4$	S_5	$ au_5$	\mathcal{E}_{∞}
0.0000	1.098638	0	57.08					37.25	40.5	13.19	16.9	2.37	2.32	4.27
0.0295	1.104436	0.101	57.05	1.58	1650	0.54F	450F	30.53	47.2	17.31	20.0	2.91	2.69	4.19
0.0552	1.109257	0.144	57.08	2.58	1230	1.05	412F	26.90	52.0	19.05	22.5	3.02	3.22	4.47
0.0852	1.114789	0.178	56.19	3.07	1150	1.67	387	25.73	55.5	17.91	23.5	3.27	3.66	4.54
0.1112	1.119502	0.196	55.79	4.44	1220	2.10	194	25.83	56.6	15.50	22.8	3.29	3.85	4.62
0.1374	1.124153	0.207	55.27	4.99	1290	2.65	223	24.73	60.0	14.93	23.4	3.29	3.89	4.67
0.1727	1.130475	0.215	53.92	5.18	1250	3.53	230	24.14	63.5	13.09	23.4	3.24	4.02	4.74

^{*a*} Units: *c* in M; ρ in kg L⁻¹; κ in S m⁻¹; τ_j in 10⁻¹² s. Parameter values followed by the letter F were not adjusted in the fitting procedure.

$10^{3}m$				Λ			
	<i>T</i> =278.15	T = 283.15	<i>T</i> =288.15	T = 293.15	T = 298.15	T = 303.15	<i>T</i> =308.15
0.04051	295.1	341.4	397.6	449.3	503.4	559.6	618.7
0.08309	295.4	341.4	390.0	441.1	494.3	549.6	606.4
0.16472	290.0	334.1	381.8	432.6	486.7	539.3	595.2
0.20445	287.7	331.5	378.3	427.5	479.0	532.8	587.3
0.24705	284.4	328.8	375.6	424.6	475.8	529.0	583.9
0.28748	282.1	326.4	372.9	421.4	472.1	524.9	579.0
0.32725	281.0	324.8	370.9	419.3	470.2	522.9	577.0
0.40726	277.6	320.8	366.3	414.3	464.1	516.2	570.0
1.23481	255.3	299.0	340.5	384.6	431.6	479.8	568.4
2.14952	245.6	283.5	323.9	366.6	411.5	458.3	530.5
2.93682	230.1	266.3	304.5	344.7	387.0	431.2	506.5
3.61978	220.8	255.5	291.9	330.4	370.6	412.5	476.7
4.18862	216.7	250.7	286.6	324.4	364.0	405.0	455.5
4.87160	208.8	241.6	276.1	312.5	350.7	390.1	447.2
5.54371	204.8	236.8	270.5	306.1	343.6	382.4	430.5
6.08865	201.4	233.2	266.7	302.0	339.0	377.5	422.3
6.75745	197.0	228.0	260.8	295.2	331.4	369.0	416.9

Table S4: Molar electrical conductivity, Λ , of aqueous solutions of Na₄TES at temperatures T.^{*a*}

^{*a*} Units: *m* in mol kg⁻¹; Λ in S cm² mol⁻¹; *T* in K.

$10^{3}m$	Λ						
	T = 293.15	<i>T</i> =298.15	<i>T</i> =303.15	<i>T</i> =308.15			
0.44103	72.0	80.3	89.0	97.8			
1.03141	67.9	75.7	83.9	92.3			
1.76357	61.2	68.3	75.6	83.2			
2.25817	58.7	65.5	72.6	79.9			
2.80300	56.1	62.6	69.4	76.4			
3.45386	53.5	59.7	66.2	72.9			
3.91858	52.3	58.3	64.7	71.2			
4.40452	50.9	56.9	63.0	69.4			
4.89774	49.9	55.6	61.7	67.9			
5.38144	48.8	54.5	60.4	66.6			
5.84393	48.2	53.9	59.7	65.8			
6.32897	47.4	52.9	58.7	64.6			
6.79298	46.6	52.1	57.8	63.6			
7.25651	46.2	51.6	57.2	63.0			
7.62350	45.7	51.1	56.7	62.4			

Table S5: Molar electrical conductivity, Λ , of Na₄TES solutions in DMSO at temperatures *T*.^{*a*}

^{*a*} Units: *m* in mol kg⁻¹; Λ in S cm² mol⁻¹; *T* in K.

Table S6: Molar electrical conductivity, Λ , of aqueous solutions of TAM · (HCl)₄ at temperatures *T*.^{*a*}

10 ³ <i>m</i>				Λ			
	<i>T</i> =278.15	<i>T</i> =283.15	<i>T</i> =288.15	T = 293.15	T = 298.15	T = 303.15	<i>T</i> =308.15
2.14298	372.9	423.9	476.7	531.2	587.5	644.9	704.5
2.96417	364.0	413.7	464.9	517.8	572.2	627.9	686.0
3.89899	355.4	403.6	453.5	504.3	560.1	611.8	667.9
4.86213	349.8	397.4	446.5	497.0	549.0	602.2	657.3
5.75270	344.7	391.6	440.2	490.8	542.1	594.6	648.9
6.59003	340.2	386.4	434.0	483.0	533.3	584.9	638.4
7.42781	337.3	383.0	430.2	478.7	528.7	579.6	632.3
8.19092	335.2	380.1	426.7	474.7	524.3	574.9	626.9
8.80957	331.7	376.7	423.0	470.5	519.5	569.5	621.7

^{*a*} Units: *m* in mol kg⁻¹; Λ in S cm² mol⁻¹; *T* in K.

$10^{3}m$	Λ							
	T = 293.15	T = 298.15	T = 303.15	<i>T</i> =308.15				
0.51783	95.1	105.4	116.3	127.6				
1.09710	78.4	86.9	95.7	104.9				
1.65674	70.4	78.0	85.8	93.8				
2.21573	65.1	72.0	79.1	86.5				
2.73586	61.5	68.0	74.7	81.7				
3.28961	58.3	64.4	70.7	77.3				
3.87559	55.5	61.3	67.3	73.5				
4.42547	53.7	59.4	65.1	71.2				
4.97921	52.0	57.5	63.0	68.8				
5.54985	50.3	55.5	61.0	66.6				
6.09307	48.8	53.9	59.2	64.7				
6.57973	47.7	52.6	57.8	63.1				
6.99118	47.8	52.8	58.0	63.4				
7.10856	48.0	53.0	58.3	63.7				

Table S7: Molar electrical conductivity, Λ , of TAM \cdot (HCl)₄ solutions in DMSO at temperatures *T*.^{*a*}

^{*a*} Units: *m* in mol kg⁻¹; Λ in S cm² mol⁻¹; *T* in K.

Т	Λ^∞	$K_{\rm A}^{\circ}$
	$TAM \cdot (HCl)_4$	
278.15	421.5	0.01
283.15	475.9	141.7
288.15	532.5	263.5
293.15	589.6	417.1
298.15	651.9	504.3
303.15	715.3	496.3
308.15	802.1	1.0
	Na ₄ TES	
278.15	306.9	709.0
283.15	354.7	816.4
288.15	406.7	757.1
293.15	459.9	808.2
298.15	515.8	872.6
303.15	573.3	952.5
308.15	633.0	1039.4
		2 1

Table S8: Limiting molar conductivities, Λ^{∞} , and association constants, K_{A}° , of aqueous solutions of TAM · (HCl)₄ and Na₄TES at temperature, *T*, obtained from fitting Λ with the Quint-Viallard model (eqs. S1-S3).^{*a*}

^{*a*} Units: Λ^{∞} in S·cm²·mol⁻¹; $K_{\rm A}^{\circ}$ in M⁻¹; *T* in K.

	TAM ·	$(HCl)_4$	Na ₄ TES			
Т	λ^{∞}_{+} λ^{∞}_{-}		λ^{∞}_{+}	λ_{-}^{∞}		
		wa	nter			
278.15	203.3	47.4^{c}	30.3 ^c	175.5		
283.15	230.3	54.2 ^c	34.9 ^c	203.3		
288.15	258.0	61.3 ^c	39.8 ^c	233.7		
293.15	286.3	68.7 ^c	44.9 ^c	264.6		
298.15	316.9	76.3 ^c	50.2 ^c	297.0		
303.15	345.8	84.1 ^c	55.8 ^c	330.1		
308.15	377.5	92.2 ^{<i>c</i>}	61.6 ^c	364.2		
		DM	ISO			
293.15	23.7	22.7 ^b	12.5^{d}	30.0		
298.15	30.9	24.1^{b}	14.2^{d}	32.6		
303.15	38.5	25.6^{b}	15.9^{d}	35.5		
308.15	46.5	27.3 ^b	17.5^{d}	38.6		

Table S9: Limiting molar ionic conductivities, λ_i^{∞} , of cations (*i* = +) and cations (*i* = -) of TAM · (HCl)₄ and Na₄TES as function of temperature, *T*, in water and DMSO.

^{*a*} Units: λ_i^{∞} in S cm² mol⁻¹; *T* in K.^{*b*} Interpolated from data of Ref. 13. ^{*c*} Taken from Ref. 14.^{*d*} Interpolated from data of Ref. 15.

Supplementary figures

Figure S1: Spectra (symbols) of (a) relative permittivity, $\varepsilon'(\nu)$, and (b) dielectric loss, $\varepsilon''(\nu)$, and associated fits with the D+D+CD model (lines) of Na₄TES in DMSO. Arrows indicate increasing concentration, c/M = 0, 0.0142, 0.0247, 0.0519, 0.0757, 0.0958, 0.1416, 0.1846; for clarity not all data points are shown.

Figure S2: Dielectric loss spectrum, $\varepsilon''(\nu)$, of c = 0.1841 M aqueous Na₄TES at 298.15 K. Experimental data (•) where fitted with the 3D Model (red line). The shaded areas indicate the contributions of the resolved modes, j = 1...3.

Figure S3: (a) Resolved amplitudes, S_j , and (b) relaxation times, τ_j , as a function of Na₄TES concentration, *c*, in water at 298.15 K. In the final fit the relaxation time of mode j = 2 was fixed to $\tau_2 = 60$ ps for all *c* to minimize the scatter of the resulting amplitudes. Lines are for eye guidance. Half-filled symbols correspond to pure water.

Figure S4: Spectra (symbols) of (a) relative permittivity, $\varepsilon'(\nu)$, and (b) dielectric loss, $\varepsilon''(\nu)$, of TAM·(HCl)₄ in DMSO-Water(10.9% *w*) and associated fits with the 5D model (lines). Arrows indicate increasing concentration, c/M = 0, 0.0295, 0.0552, 0.0852, 0.1112, 0.1374, 0.1727; for clarity not all data points are shown.

Figure S5: Molar ionic conductivities of solutions of Na₄TES (squares) and TAM \cdot (HCl)₄ (circles) in water (a) and DMSO (b) as a function of Temperature, *T*. Dashed lines represent linear fits.

References

- [1] J. Quint and A. Viallard, J. Solution Chem., 1978, 7, 533–548.
- [2] A. Apelblat, R. Neuder and J. Barthel, in *Electrolyte Data Collection, Part 4c. Electrolyte conductivities, ionic conductivities and dissociation constants of aqueous solutions of organic dibasic and tribasic acids: tables, diagrams, correlations, and literature survey, ed. G. Kreysa, DECHEMA, Frankfurt, Germany, 2006, vol. XII.*
- [3] A. Apelblat, J. Solution Chem., 2011, 40, 1234.
- [4] J. L. Dote and D. Kivelson, J. Phys. Chem., 1983, 87, 3889–3893.
- [5] V. Raicu and Y. Feldman, *Dielectric relaxation in biological systems: Physical principles, methods, and applications,* Oxford University Press, USA, 2015.
- [6] C. F. J. Böttcher and P. Bordewijk, *Theory of Electric Polarization, Vol. 2*, Elsevier, Amsterdam, 1978.
- [7] N. Senda, Idemitsu Tech. Rep., 2006, 49, 106–111.
- [8] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, *J. Cheminformatics*, 2012, **4**, 17.
- [9] J. J. Stewart, Journal of computer-aided molecular design, 1990, 4, 1–103.
- [10] A. Nazet and R. Buchner, *Unpublished Work*.
- [11] Due to the high conductivity of the most concentrated solution, c = 0.1846 M, its spectrum could only be determined down to $v_{min} = 0.2$ GHz. Accordingly, mode j = 1 could not be resolved.
- [12] A. Eiberweiser, Ph.D. thesis, Universität Regensburg, 2013.
- [13] S. P. Ergin, *Ionics*, 2014, **20**, 1463–1470.
- [14] M. Bešter-Rogač, R. Neueder and J. Barthel, J. Solution Chem., 1999, 28, 1071–1086.
- [15] N.-P. Yao and D. Bennion, J. Electrochem. Soc., 1971, 118, 1097–1106.