Supporting Information

Tuning the structural stability and spin-glass behavior in the α -MnO₂ nanotubes by Sn ions doping

Xin Liu^{1,2,3}*, Yang Xie^{1,2}, Zhiwei Hu⁴*, Hong-Ji Lin⁵, Chien-Te Chen⁵, Liang Dong^{1,2}, Yahui Zhang^{1,2,3}, Qing wang^{1,2,3} and Shao-Hua Luo^{1,2,3},

1 School of Material Science and Engineering, Northeastern University, 110819, Shenyang, China

2 School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao,

066004, China

3 Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, 066004, China

- 4 Max-Planck Institute for Chemical Physics of Solids, Nöthnitzer Str.40, 01187 Dresden, Germany.
- 5 National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan.

Email: <a>liuxinnumber1@foxmail.com; <a>Zhiwei.hu@cpfs.mpg.de

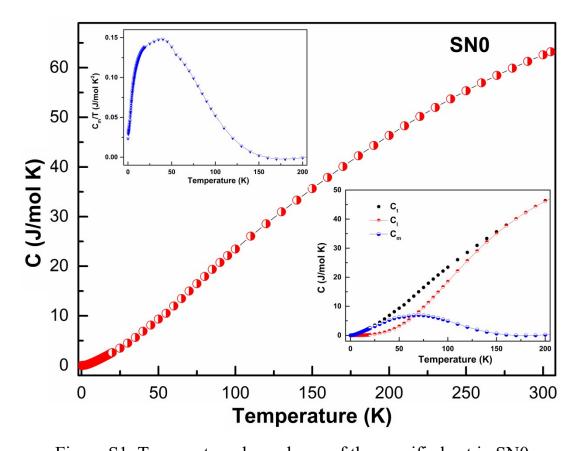


Figure S1. Temperature dependence of the specific heat in SN0 The measured specific heat (C_t) in SN0 includes the contributions from the lattice specific (C_l) and the magnetic specific heat (C_m). We first fitted the high temperature range of the curve from 150 to 300 K, and determined the Debye temperature θ_D = 561 K. Then we calculated the lattice contribution C_l by the expression:

$$C_{m,p} = 9N_A k_B \frac{T^3}{\theta_D^3} \int_0^{\frac{\theta_D}{T}} \frac{x^4 e^x}{(e^x - 1)^2} dx$$

As shown in the lower right part of the Fig. S1. After subtracting the lattice contribution C_l from the C_t , we obtained the C_m contribution. The upper inset shows the magnetic spectic heat plotted as C_m/T vs T.