Supplementary Information

Pressure-Induced Evolution of Crystal and Electronic Structure of Neptunium Hydrides

Shichang Li, ^{*a*} Xiaoqiu Ye,^b Chunbao Feng,^a Yilin Wang,^a Tao Gao,^c Bingyun Ao,^b Dengfeng Li ^{**a*,d} and Gang Zhang^{*e}

^a School of Science, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China. E-mail: lidf@cqupt.edu.cn

^b Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou, 621908, China.

^c Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China.

^{*d*} Institute for Advanced Sciences, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.

^e Institute of High Performance Computing, A*STAR, 138632, Singapore. E-mail: zhangg@ihpc.a-star.edu.sg

Volumes as a function of pressures for $Fm\overline{3}m$ NpH ₃	
Volume per formula unit as a function of U for $P6_3/mmc$ NpH ₃	
Crystalline structures of the $Im\overline{3}m$ Np	S3
Crystalline structures of the stable H ₂	
Enthalpies of Np-H system with respect to Np and H2 as a function of pressure	
Phonon dispersion curves for NpH3	
Phonon dispersion curves of P63/mmc NpH6	
Visualization of Young's modulus for NpH _x	
Crystalline structures of the stable NpH, NpH2, and NpH3	
Crystalline structures of the NpH8	
X-ray powder diffraction patterns	
The DOS and PDOS for PuH _x	
The Bader charge analysis of Np-H systems	
Charge density and charge-density difference for Np-H system	
COHP of the shortest Np–H bond in stable Np–H phases	
Total and projected phonon DOS for NpH _x ($x = 1-10$) at selected pressures	
Elastic constants	
Structural parameters	

Supplementary Figures

Fig. S1 Volumes as a function of pressures for $Fm\overline{3}m$ NpH3 calculated by using PAW potential in VASP calculations and full-potential WIEN2k calculations.

Fig. S2 Volume per formula unit as a function of U with respect to the $P6_3/mmc$ structure for static NpH₃ under atmospheric pressure.

Fig. S3 Crystalline structures of the $Im\overline{3}m$ Np.

Fig. S4 Crystalline structures of the stable H_2 . (a) $P6_3/m$ and (b) C2/c.

Fig. S5 Enthalpy curves per formula unit as a function of pressure with respect to the $Fm\overline{3}m$ structure for static NpH₂ in the high-pressure regime.

Fig. S6 Enthalpy curves per formula unit as a function of pressure with respect to the $Fm\overline{3}m$ structure for static NpH₃ in the high-pressure regime.

Fig. S7 Calculated phonon dispersion curves of P3c1 NpH₃.

Fig. S8 The phonon dispersion curves of *P*6₃/*mmc* NpH₆.

Fig. S9 Visualization of Young's modulus for NpH_x (x = 1-10) at selected pressures. (a) $Fm\overline{3}m$ structure of NpH at 100 GPa. (b) $Fm\overline{3}m$ structure of NpH₂ at ambient pressure. (c) I4/mmm structure of NpH₂ at 25 GPa. (d) $P6_3/mcm$ structure of NpH₃ at ambient pressure. (e) P4/nmm structure of NpH₅ at 100 GPa. (f) Cmcm structure of NpH₇ at 100 GPa. (g) $Fm\overline{3}m$ structure of NpH₈ at 200 GPa. (h) $P6_3/mmc$ structure of NpH₉ at 200 GPa. (i) $Fm\overline{3}m$ structure of NpH₁₀ at 200 GPa.

Fig. S10 Visualization of Shear modulus for NpH_x (x = 1-10) at selected pressures. (a) $Fm\overline{3}m$ structure of NpH at 100 GPa. (b) $Fm\overline{3}m$ structure of NpH₂ at ambient pressure. (c) I4/mmm structure of NpH₂ at 25 GPa. (d) $P6_3/mcm$ structure of NpH₃ at ambient pressure. (e) P4/nmm structure of NpH₅ at 100 GPa. (f) *Cmcm* structure of NpH₇ at 100 GPa. (g) $Fm\overline{3}m$ structure of NpH₈ at 200 GPa. (h) $P6_3/mmc$ structure of NpH₉ at 200 GPa. (i) $Fm\overline{3}m$ structure of NpH₁₀ at 200 GPa.

Fig. S11 Crystalline structures of the stable NpH, NpH₂, and NpH₃.

Fig. S12 Crystalline structures of the $P6_3/mmc$ NpH₈ with Np atoms at the center of the H₂₄ cages.

Fig. S13 Crystalline structures of the C2/m NpH₈ with Np atoms at the center of the H₂₄ cages.

Fig. S14 X-ray powder diffraction patterns of NpH₅, NpH₇, NpH₈, NpH₉, and NpH₁₀. X-ray dispersion coefficients for $\lambda = 0.154059$ nm.

Fig. S15 The calculated DOS and PDOS for (a) NpH_x and (b) PuH_x. The DOS is projected onto 5f, 6d, and 1s orbitals. Energy is shifted so that the Fermi level E_F equals zero.

Fig. S16 The Bader charge analysis of Np-H systems. The anionic H and cationic Np charges are listed

at selected pressures.

Fig. S17 (a) charge density and (b) charge-density difference along the (1 0 0) plane for the P4/nmm NpH₅ at 100 GPa.

Fig. S18 (a) charge density and (b) charge-density difference along the (1 0 0) plane for the *Cmcm* NpH₇ at 100 GPa.

Fig. S19 (a) charge density and (b) charge-density difference along the (1 - 1 0) plane for the Fm3mNpH₈ at 200 GPa.

Fig. S20 (a) charge density and (b) charge-density difference along the (-1 -1 0) plane for the P_{6_3}/mmc NpH₉ at 200 GPa.

Fig. S21 (a) charge density and (b) charge-density difference along the (0 - 1 - 1) plane for the $Fm\overline{3}m$ NpH₁₀ in the AFM magnetic state at 200 GPa.

Fig. S22. pCOHP of the shortest Np–H bond in predicted stable Np–H phases. (a) Fm3m structure of NpH at 100 GPa. (b) Fm3m structure of NpH₂ at ambient pressure. (c) I4/mmm structure of NpH₂ at 25 GPa. (d) P6₃/mcm structure of NpH₃ at ambient pressure. (e) P4/nmm structure of NpH₅ at 100 GPa. (f) Cmcm structure of NpH₇ at 100 GPa. (g) Fm3m structure of NpH₈ at 200 GPa. (h) P6₃/mmc structure of NpH₉ at 200 GPa. (i) Fm3m structure of NpH₁₀ at 200 GPa.

Fig. S23. Projected phonon DOS for $NpH_x(x = 1-10)$ at selected pressures.

Supplementary Table

Table S1 Calculated elastic constants C_{ij} and bulk (*B*), shear (*G*), Young's (*Y*) moduli and Poisson's ratio (σ) of the stable phase of Np-H systems at selected pressures. All moduli are in GPa.

	NpH	NpH ₂	NpH_2	NpH ₃	NpH ₅ NpH ₇		NpH_8	NpH9	NpH_{10}
	Fm3m	Fm3m	I4/mmm	<i>P</i> 6 ₃ / <i>mcm</i>	P4/nmm	Стст	Fm3m	P6 ₃ /mmc	Fm3m
C_{11}	435.27	113.65	259.79	213.30	609.82	686.79	1266.72	1031.61	810.16
C_{12}	242.61	68.76	97.86	62.55	178.93	212.35	264.28	254.09	369.08
C_{13}	242.61	68.76	31.60	35.47	203.44	186.97	264.28	293.90	369.08
C_{22}	435.27	113.65	259.79	213.30	609.82	621.97	1266.72	1031.61	810.16
C_{23}	242.61	68.76	31.60	35.47	203.44	221.12	264.28	293.90	369.08
C_{33}	435.27	113.65	344.20	299.01	479.53	668.20	1266.72	914.32	810.16
C_{44}	17.51	71.77	35.56	55.04	75.10	217.88	326.87	392.15	292.64
C_{55}	17.51	71.77	36.04	55.01	74.96	231.50	326.87	392.15	292.64
C_{66}	17.51	71.77	32.53	75.38	116.18	212.82	326.87	388.76	292.64
В	306.83	83.72	131.73	109.77	317.65	357.47	598.43	517.58	516.11

G	37.53	45.12	57.54	73.42	117.64	222.43	388.17	375.85	261.30
B/G	8.18	1.85	2.29	1.50	2.70	1.61	1.54	1.38	1.98
Y	108.19	114.74	150.67	180.10	314.13	552.65	957.46	907.81	670.71
σ	0.4412	0.2716	0.3094	0.2265	0.3352	0.2423	0.233	0.2077	0.2834

Table S2 Predicted lattice constants, and atomic coordinates as referred to the conventional unit cells of $NpH_x(x = 1 - 10)$ different pressures. Zero-point energies (ZPE) per formula unit are also listed.

		Lattice parameter (Å, °)	Atom Wyckoff		Ator	ZDE		
System	Phase				(fractional)			
			posi	ition	x	У	Z	(mev)
NpH	Fm3m	a = b = c = 4.220	Np	4a	0.000	0.000	0.000	266.36
	(No: 225, Z = 4)	$\alpha = \beta = \gamma = 90$	Н	4b	0.50	0.000	0.000	
NpH ₂	Fm3m	a = b = c = 5.263	Np	4a	0.000	0.000	0.000	409.00
	(No: 225, Z = 4)	$\alpha = \beta = \gamma = 90$	Н	8c	0.250	0.250	0.250	
	I4/mmm	a = b = 3.060	Np	2a	0.000	0.000	0.000	399.52
	(<i>No</i> : 139, <i>Z</i> = 2)	<i>c</i> = 6.103	Η	4e	0.000	0.000	0.355	
		$\alpha = \beta = \gamma = 90$						
NpH_3	<i>P</i> 6 ₃ / <i>mcm</i>	a = b = 6.252	Np	6g	0.660	1.000	0.750	397.32
	(No:193, Z=6)	c = 6.328	H_{1}	12k	0.305	1.000	0.597	
		$\alpha = \beta = 90$	H_{2}	2a	0.000	0.000	0.750	
		$\gamma = 120$	H ₃	4d	0.333	0.667	0.000	
NpH ₅	P4/nmm	a = b = 3.783		2c	0.000	0.500	0.227	2314.45
(No: 129, Z=2) c		<i>c</i> = 3.717	H_{1}	2a	0.500	0.500	0.000	
		$\alpha = \beta = \gamma = 90$	H_2	8i	0.500	0.731	0.304	
NpH7	Cmcm	<i>a</i> = 3.663; <i>b</i> = 6.157		4c	0.000	0.840	0.750	3266.15
	(No: 63, Z=4) $c = 5.332$		H_{1}	12h	0.747	0.592	0.924	
		$\alpha = \beta = \gamma = 90$	H_{2}	8f	0.000	0.688	0.090	
			H_3	16c	0.000	0.505	0.250	
NpH_8	Fm3m	a = c = b = 4.700	Np	4a	0.000	0.000	0.000	2225.16
	(No: 225, Z = 4)	$\alpha = \beta = \gamma = 90$	Н	32f	0.365	0.635	0.365	
NpH9	$P6_3/mmc$	a = b = 3.456	Np	2c	0.667	0.333	0.250	4697.55
	(<i>No</i> : 194, <i>Z</i> = 2)	<i>c</i> = 5.354	H_{1}	12k	0.157	0.843	0.439	
		$\alpha = \beta = 90$	H_{2}	4f	0.333	0.667	0.156	
		$\gamma = 120$	H_3	2b	0.000	0.000	0.750	
NpH_{10}	Fm3m	a = c = b = 4.877	Np	4b	0.000	0.000	0.500	2400.22
	(<i>No</i> : 225, $Z = 4$)	$\alpha = \beta = \gamma = 90$	${\rm H_1}$	8c	0.750	0.750	0.750	
			H_{2}	32f	0.877	0.877	0.123	