Phys. Chem. Chem. Phys.

Supplementary Information

Microwave Spectra, Molecular Geometries, and Internal Rotation of CH₃ in *N*-methylimidazole...H₂O and 2-methylimidazole...H₂O Complexes

Eva Gougoula,^{*a*} Charlotte N. Cummings,^b Chris Medcraft,^c Juliane Heitkämper,^b and Nicholas R. Walker^{*b**}

^a Deutsche Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg.

^b Chemistry- School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle-upon-Tyne, NE1 7RU, UK

° School of Chemistry, UNSW Sydney, Sydney, New South Wales 2052, Australia.

KEYWORDS: rotational spectroscopy, internal rotation, imidazole, chirped-pulse, microwave.

AUTHOR INFORMATION

Corresponding Author

*nick.walker@ncl.ac.uk

<i>N</i> -MIH ₂ O					
	a/Å	b/Å	c/Å		
N(1)	-1.357174	-0.231787	0.008588		
C(2)	-0.099160	-0.721263	0.062897		
H(2)	0.107524	-1.778352	0.101293		
N(3)	0.796658	0.232451	-0.061732		
C(4)	0.087957	1.400243	0.001122		
H(4)	0.576279	2.358912	-0.015310		
C(5)	-1.247427	1.133689	-0.033036		
H(5)	-2.110130	1.773649	-0.079802		
C(6)	-2.581119	-0.998193	-0.035331		
H(6)	-2.347795	-2.048243	0.119485		
H(6)	-3.260370	-0.673033	0.750364		
H(6)	-3.070516	-0.885539	-1.001446		
H _b	2.669123	-0.195381	-0.034050		
0	3.588113	-0.506146	-0.093761		
H _{nb}	3.997168	-0.226173	0.722259		
	2-MI.	H ₂ O			
	a/Å	b/Å	c/Å		
N(1)	1.610674	-0.633079	-0.001090		
H(1)	2.201624	-1.442578	-0.005724		
C(2)	0.254852	-0.642298	0.012642		
N(3)	-0.207781	0.583735	0.014195		
C(4)	0.886215	1.411753	-0.001147		
H(4)	0.782666	2.482594	-0.005503		
C(5)	2.027401	0.675993	-0.010290		
H(5)	3.066282	0.949231	-0.020542		
C(6)	-0.560578	-1.885871	0.004610		
H(6)	-1.606181	-1.625183	0.146866		
H(6)	-0.463607	-2.409208	-0.947316		
H(6)	-0.254048	-2.566814	0.798947		
H _b	-2.110527	0.712036	-0.029976		
0	-3.070668	0.553547	-0.054869		
H _{nb}	-3.426471	1.044396	0.682725		

Table S1 – Atomic coordinates in the optimised geometries of *N*-MI...H₂O and 2-MI...H₂O calculated at the ω B97X-D/aug-cc-pVQZ level.

Table S2 – Spectroscopic parameters of *N*-MI...H₂O and 2-MI...H₂O calculated at different levels of theory. The calculated rotational constants are appropriate to the equilibrium geometry whereas experimental results are for the zero-point state.

N-MIH ₂ O					
	ωB97X-D	/aug-cc-pVQZ	B3LYP(D3	BJ)/aug-cc-pVTZ	
A _e (MHz)	6111	+22 %ª	5744	+15 %ª	
B _e (MHz)	1277	-9 %	1314	-7 %	
C _e (MHz)	1067	-4 %	1080	-3 %	
$\chi_{aa}(N1)$ (MHz)	1.37	+23 %	1.38	+24 %	
$[\chi_{bb}(N1) - \chi_{cc}(N1)]$ (MHz)	3.69	0 %	3.86	+5 %	
$\chi_{aa}(N3)$ (MHz)	-4.00	+8 %	-3.94	+7 %	
$[\chi_{bb}(N3) - \chi_{cc}(N3)]$ (MHz)	-0.40	_b	-0.14	_ b	
<i>V</i> ₃ (cm ⁻¹) ^c	230	+21 %	185	+2 %	
$ \mu_{a} , \mu_{b} , \mu_{c} $ (D) ^b	6.1, 0.1, 1.2	2	5.9, 0, 1.2		
	2-N	ЛІН ₂ О			
	ωB97X-D	/aug-cc-pVQZ	B3LYP(D3BJ)/aug-cc-pVTZ		
A _e (MHz)	4198	-1 %	4183	-1 %	
B _e (MHz)	1759	2 %	1769	+2 %	
C _e (MHz)	1252	1 %	1256	+1 %	
$\chi_{aa}(N1)$ (MHz)	1.24	-9 %	1.31	-4 %	
$[\chi_{bb}(N1) - \chi_{cc}(N1)]$ (MHz)	4.18	+1 %	4.24	+2 %	
$\chi_{aa}(N3)$ (MHz)	-3.37	4 %	-3.27	+1 %	
$[\chi_{bb}(N3) - \chi_{cc}(N3)]$ (MHz)	-0.64	-4 %	-0.44	-35 %	
<i>V</i> ₃ (cm ⁻¹) ^c	223	+30 %	173	+11 %	
$ \mu_a $, $ \mu_b $, $ \mu_c $ (D) ^d	4.5, 1.8, 1.1	1	4.4, 1.6, 1	.0	

^a Calculated as [((6111.37 MHz–5010.77) / 5010.77 MHz) × 100] where 6111.37 MHz is the calculated A_e shown above, 5010.82 MHz is the result for A_0 displayed in Table 1. A similar calculation is performed for percentages in other cells.

^b Experimental results not available for $[\chi_{bb}(N3) - \chi_{cc}(N3)]$ of n-MI...H₂O.

^c The V₃ barrier to internal rotation was calculated by scanning the \angle (H–C6–N1–C2) or

 \angle (H–C6–C2–N3) dihedral angle as appropriate to each complex.

^d Electric dipole moment components along the principal inertial axes.

	$H_{2}^{16}O$	H ₂ ¹⁸ O	DOH	HOD	D_2O
<i>A</i> ₀ ' (MHz)	5016.647(83)ª	4979.14(17)	5036.72(11)	4981.73(38)	5002.87(11)
<i>B</i> ₀ ′ (MHz)	1409.9245(26)	1325.5593(63)	1380.3348(32)	1351.4172(39)	1324.5280(39)
<i>C</i> ₀ ′ (MHz)	1107.2933(23)	1052.8779(42)	1089.9289(26)	1070.2048(39)	1054.3099(28)
D, (kHz)	2.393(12)	2.152(33)	2.271(17)	2.065(64)	1.963(18)
D _{JK} (kHz)	-19.24(12)	-16.53(39)	-18.37(25)	-12.0(26)	-14.16(19)
<i>d</i> 1 (kHz)	-0.821(16)	-0.733(27)	-0.808(18)	[-0.821]	-0.692(17)
$\chi_{aa}(N1)$ (MHz)	1.102(53)	1.23(82)	1.40(19)	1.6(11)	0.89(36)
$[\chi_{bb}(N1) - \chi_{cc}(N1)]$ (MHz)	3.69(26)	3.33(80)	[3.69] ^b	[3.69] ^b	[3.69] ^b
$\chi_{aa}(N3)$ (MHz)	-3.694(43)	-3.67(22)	-3.81(26)	-3.99(76)	-3.65(13)
$[\chi_{bb}(N3) - \chi_{cc}(N3)]$ (MHz)	[-0.40] ^c	[-0.40] ^c	[-0.40] ^c	[-0.40] ^c	[-0.40] ^c
$\sigma_{\scriptscriptstyle RMS}$ (kHz)	22	32	19	28	20
Ν	66	33	23	17	26

Table S3 – Spectroscopic parameters determined by fitting A-species transitions of N-MI...H₂O.

^a Numbers in parentheses are one standard deviation in units of the last significant figure.

^b Fixed equal to experimental result for n-MI...H₂¹⁶O.

 $c [\chi_{bb}(N3) - \chi_{cc}(N3)]$ fixed at result of ω B97X-D/aug-cc-pVQZ calculation (Table S2) which is –0.40 MHz.

	H ₂ ¹⁶ O	H ₂ ¹⁸ O	DOH	HOD	D ₂ O
<i>A</i> ₀ ′ (MHz)	4238.327(41) ^a	4219.869(44)	4216.661(46)	4188.097(48)	4169.345(36)
<i>B</i> ₀ ′ (MHz)	1733.7666(11)	1629.8925(14)	1708.7911(18)	1662.8599(17)	1640.2022(13)
<i>C</i> ₀ ′ (MHz)	1240.3151(12)	1184.7889(18)	1225.7117(17)	1200.1960(18)	1186.9046(16)
D, (kHz)	0.189(16)	0.235(18)	0.249(17)	0.322(13)	0.277(14)
D _{JK} (kHz)	7.45(15)	7.81(18)	6.07(35)	6.90(17)	6.52(14)
$\chi_{aa}(N1)$ (MHz)	1.312(35)	1.390(67)	1.293(61)	1.258(76)	1.362(87)
$[\chi_{bb}(N1) - \chi_{cc}(N1)]$ (MHz)	4.11(10)	3.92(26)	3.98(21)	3.79(21)	4.14(26)
$\chi_{aa}(N3)$ (MHz)	-3.282(78)	-3.12(10)	-3.120(62)	-2.991(59)	-3.247(67)
$[\chi_{bb}(N3) - \chi_{cc}(N3)]$ (MHz)	[-0.67] ^b	[-0.67] ^b	[-0.67] ^b	[-0.67] ^b	-0.67(18)
$\sigma_{ extsf{rms}}$ (kHz)	18	27	23	30	24
Ν	72	65	40	60	76

Table S4– Spectroscopic parameters determined by fitting A-species transitions of 2-MI...H₂O

^a Numbers in parentheses are one standard deviation in units of the last significant figure.

^b The value of $[\chi_{bb}(N3) - \chi_{cc}(N3)]$ of 2-MI...D₂O is consistent with the calculated result (Table S3) and determined with reasonable precision. Values of $[\chi_{bb}(N3) - \chi_{cc}(N3)]$ for all other isotopologues were not determined by the fits performed. For these reasons, $[\chi_{bb}(N3) - \chi_{cc}(N3)]$ for 2-MI...H₂O, 2-MI...H₂¹⁸O, 2-MI...DOH, 2-MI...HOD were fixed equal to the result for 2-MI...D₂O. **Table S5** – Nuclear quadrupole coupling constants in the principal nuclear axis framework. The ω B97X-D/aug-cc-pVQZ results for *N*-MI...H₂O and 2-MI...H₂O are determined from the results for χ_{aa} and $[\chi_{bb} - \chi_{cc}]$ provided in Table S2. The results provided for imidazole are from D. Christen *et al.*, Z. Naturforsch. 1982, 37a, 1378.

	ωB97X-D/au	Exp. (FTMW)	
	<i>N</i> -MIH ₂ O	2-MIH ₂ O	Imidazole
$\chi_{xx}^{(N1)}$ (MHz)	0.8600ª	1.1705 ^a	0.890(52)
$\chi_{yy}(N1)$ (MHz)	1.6797	1.5385	1.633(58)
$\chi_{zz}(N1)$ (MHz)	-2.5397	-2.7091	-2.524(12)
$\chi_{xx}(N3)$ (MHz)	1.8256	2.0059	1.835(24)
$\chi_{yy}(N3)$ (MHz)	2.2058	1.8991	2.278(24)
$\chi_{zz}(N3)$ (MHz)	-4.0314	-3.9050	-4.113(34)

^{a.} Calculated using the QDIAG program available on the PROSPE website < http://www.ifpan.edu.pl/~kisiel/prospe.htm>.

Table S6 Results of global (XIAM) fit of spectroscopic parameters to the frequencies of *A*- and *E*- species transitions of n-MI...H₂O. Numbers in parentheses are one standard deviation in units of the last significant figure. The ordering of atoms within the 3rd and 4th column headers is H_bOH_{nb} such that H_b is deuterium for the isotopologue denoted as "DOH". The value of F_0 (157.929 MHz) is fixed to the result for the *N*-MI monomer available in ref. 9. N_A and N_E denote the number of A-species and E species transitions respectively included in the fit.

	H ₂ ¹⁶ O	H ₂ ¹⁸ O	DOH	HOD	D ₂ O
A ₀ (MHz)	5010.78(21)	4973.91(16)	5030.91(18)	4976.11(29)	4997.19(16)
<i>B</i> ₀ (MHz)	1409.5628(67)	1325.2392(47)	1379.9953(53)	1351. 0759(86)	1324.2123(47)
<i>C</i> ₀ (MHz)	1107.2884(60)	1052.8660(35)	1089.9214(47)	1070.1983(53)	1054.3030(38)
D, (kHz)	2.392(33)	2.179(21)	2.300(26)	2.024(61)	1.980(21)
<i>D_{JK}</i> (kHz)	-18.57(40)	-17.02(40)	-18.78(40)	-10.9(18)	-14.14(32)
d_1 (kHz)	0.820(42)	0.780(22)	0.832(31)	0.802(48)	0.721(21)
<i>F</i> ₀ (GHz)	[157.929]	[157.929]	[157.929]	[157.929]	[157.929]
<i>V</i> ₃ (cm ⁻¹)	182.23(10)	182.41(7)	182.29(8)	182.08(8)	182.37(8)
∠(<i>i, b</i>) (°)	47.16(10)	46.52(7)	47.54(7)	46.81(8)	47.17(8)
$\varDelta_0 \left(\mathrm{U}\mathrm{\AA}^2 ight)$	-2.983(6)	-3.011(4)	-2.989(4)	-3.388(7)	-3.429(4)
$\sigma_{ m RMS}$ (kHz)	50	38	31	21	36
N_A / N_E	26 / 19	24 / 22	15/12	11/8	19/19

Table S7 Results of global (BELGI-C_s) fit of spectroscopic parameters to the frequencies of *A*- and *E*- species transitions of *N*-MI...H₂O. Rotational and centrifugal distortion constants calculated by XIAM and BELGI-C_s are not directly comparable because the latter are calculated in the rho axis system. Numbers in parentheses are one standard deviation in units of the last significant figure. The ordering of atoms within the 3rd and 4th column headers is H_bOH_{nb} such that H_b is deuterium for the isotopologue denoted as "DOH". The value of *F*₀ of 157.929 GHz is fixed to the result for the n-MI monomer available in ref 9. *N*_A and *N*_E denote the number of A-species and E species transitions respectively included in the fit.

	$H_{2}^{16}O$	H ₂ ¹⁸ O	DOH	HOD	D ₂ O
A ₀ (MHz)	4768.6(59)	4747.95(86)	4800.7(54)	4753.9(24)	4779.6(21)
B ₀ (MHz)	1651.9(60)	1550.91(87)	1610.1(55)	1573.1(24)	1542.0(21)
<i>C</i> ₀ (MHz)	1107.3099(43)	1052.8743(24)	1089.9435(40)	1070.1941(27)	1054.2981(27)
D, (kHz)	3.111(49)	2.708(25)	2.974(56)	2.369(42)	2.482(20)
<i>D_{JK}</i> (kHz)	-20.6(5)	-18.1(4)	-20.1(7)	-10.8(11)	-15.5(3)
d_1 (kHz)	[0.959]	[0.959]	[0.959]	[0.959]	0.959(17)
F ₀ (GHz)	[157.929]	[157.929]	[157.929]	[157.929]	[157.929]
<i>V</i> ₃ (cm⁻¹)	173.6(16)	175.49(2)	173.2(2)	177.1(7)	174.6(7)
D _{AB} (MHz)	-902(10)	-878.9(16)	-887.2(99)	-869.2(44)	-867.4(41)
ho (unitless)	0.0226(6)	[0.0228]	0.0227(6)	0.0237(3)	0.0228(3)
∠(<i>i, b</i>) (°)	46.3(3)	46.06(3)	46.6(4)	46.7(3)	46.6(3)
$\sigma_{ m RMS}$ (kHz)	55	27	36	14	23
N_A / N_E	26 / 19	24 / 22	15/12	11/8	19/19

Table S8 Results of global (XIAM) fit of spectroscopic parameters to the frequencies of *A*- and *E*- species transitions of 2-MI...H₂O. Numbers in parentheses are one standard deviation in units of the last significant figure. The ordering of atoms within the 3rd and 4th column headers is H_bOH_{nb} such that H_b is deuterium for the isotopologue denoted as "DOH". The value of F_0 (157.690 MHz) is fixed to the result for the 2-MI monomer available in ref 9. N_A and N_E denote the number of A-species and E species transitions respectively included in the fit.

	H ₂ ¹⁶ O	H ₂ ¹⁸ O	DOH	HOD	D ₂ O
A ₀ (MHz)	4233.93(21)	4216.088(93)	4212.776(60)	4184.178(58)	4165.477(74)
B_0 (MHz)	1732.5621(61)	1628.8335(43)	1707.6301(27)	1661.6617(20)	1639.0453(25)
<i>C</i> ₀ (MHz)	1240.3104(66)	1184.7799(35)	1225.7031(25)	1200.1864(24)	1186.8983(28)
<i>D</i> ر (kHz)	0.233(81)	0.248(33)	0.250(28)	0.295(24)	0.246(27)
<i>D_{JK}</i> (kHz)	7.28(78)	7.51(37)	6.11(60)	6.70(29)	6.61(35)
<i>F</i> 0 (GHz)	[157.690]	[157.690]	[157.690]	[157.690]	[157.690]
<i>V</i> ₃ (cm⁻¹)	154.99(8)	156.02(12)	156.07(4)	152.65(4)	153.57(4)
$D_{\pi 2J}$ (kHz)	-114(7)	-131(4)	-126(3)	-128(2)	-131(3)
∠(<i>i, b</i>) (°)	36.55(6)	36.07(8)	36.20(6)	35.30(3)	34.86(3)
$\varDelta_0 (\mathrm{U} \mathrm{\AA}^2)$	-3.60(3)	-3.580(3)	-3.599(2)	-3.840(2)	-3.865(2)
$\sigma_{ m RMS}$ (kHz)	64	34	25	25	33
N_A / N_E	19 / 14	21/10	20 / 8	21/8	21 / 13

Table S9 Results of global (BELGI-C_s) fit of spectroscopic parameters to the frequencies of *A*- and *E*- species transitions of 2-MI...H₂O. Rotational and centrifugal distortion constants calculated by XIAM and BELGI-C_s are not directly comparable because the latter are calculated in the rho axis system. Numbers in parentheses are one standard deviation in units of the last significant figure. The ordering of atoms within the 3rd and 4th column headers is H_bOH_{nb} such that H_b is deuterium for the isotopologue denoted as "DOH". The value of F_0 of 157.690 GHz is fixed to the result for the 2-MI monomer available in ref 9. N_A and N_E denote the number of A-species and E species transitions respectively included in the fit.

	$H_{2}^{16}O$	H ₂ ¹⁸ O	DOH	HOD	D ₂ O
<i>A</i> ₀ (MHz)	3649.9(35)	3646.5(58)	3630.8(50)	3649.9(35)	3574.2(95)
B_0 (MHz)	2314.3(35)	2196.0(59)	2287.2(49)	2314.3(35)	2228.4(93)
<i>C</i> ₀ (MHz)	1238.69(17)	1183.21(11)	1224.4359(22)	1238.69(17)	1185.74(22)
D, (kHz)	[0.233]	[0.248]	[0.250]	[0.295]	[0.246]
<i>D_{JK}</i> (kHz)	4.33(71)	4.77(74)	2.11(55)	3.09(87)	2.87(80)
<i>F</i> ₀ (GHz)	[157.690]	[157.690]	[157.690]	[157.690]	[157.690]
<i>V</i> ₃ (cm⁻¹)	150.68(89)	152.58(11)	155.5(24)	153.4(30)	155.5(23)
D _{ab} (MHz)	-1058.0(23)	-1071.6(39)	-1057.3(32)	-1068.4(62)	-1069.3(59)
F_{v} (MHz)	5.49(60)	5.36(40)	4.35(73)	4.07(96)	3.92(76)
ρ (unitless)	0.01799(28)	[0.0178]	0.01890(7)	0.01883(94)	0.01898(76)
∠(<i>i, b</i>) (°)	36.56(5)	36.03(14)	36.41(6)	35.66(11)	35.46(11)
$\sigma_{ m RMS}$ (kHz)	79	79	42	84	76
N_A / N_E	19/14	21/10	20/8	21/8	21/13

		<i>N</i> -MIH ₂ O		
	Method	a/Å	b/Å	<i>c</i> /Å
	r _e (calc.)	2.6691	-0.1954	-0.0341
H _b	r _s (exp.)	2.7785(8) ^b	[0] ^c	0.05(4)
	<i>r</i> ₀ (exp.)	2.565(20) ^b	-0.21(5)	[0]
	$r_{\rm e}$ (calc.)	3.5881	-0.5061	-0.0938
0	r _s (exp.)	3.4036(5)	-0.650(3)	[0]
	<i>r</i> ₀ (exp.)	3.430(5)	-0.6229(7)	[0]
	r _e (calc.)	3.9972	-0.2262	0.7223
H _{nb}	<i>r</i> _s (exp.)	3.9163(7)	-0.728(4)	0.462(6)
	<i>r</i> ₀ (exp.)	4.05(4)	-0.11(4)	[0]
		2-MIH ₂ O		
	Method	a/Å	b/Å	c/Å
H _b	r _e (calc.)	2.1105	-0.7120	-0.0300
	<i>r</i> _s (exp.)	2.064(1)	-0.784(3)	0.03(7)
	<i>r</i> ₀ (exp.)	2.143(3)	-0.69(3)	[0]
	r _e (calc.)	3.0707	-0.5535	-0.0549
0	<i>r</i> _s (exp.)	3.0709(6)	-0.538(3)	[0]
	<i>r</i> ₀ (exp.)	3.088(3)	-0.5219(11)	[0]
H _{nb}	$r_{\rm e}$ (calc.)	3.4265	-1.0444	0.6827
	r _s (exp.)	3.5032(6)	-1.181(2)	0.359(6)
	<i>r</i> ₀ (exp.)	3.48(3)	-1.396(14)	[0]

Table S10 – DFT calculated (r_e) and experimentally-determined (r_0 , r_s) atomic coordinates of H₂O in the complexes *N*-MI...H₂O and 2-MI...H₂O

^{a.} $r_{\rm e}$ geometries are calculated at the ω B97XD/aug-cc-pVQZ level.

^b Numbers in parentheses are Costain errors for r_s results and one standard deviation in units of the last significant figure for r_0 results.

^{c.} Imaginary values were obtained for those r_s coordinates indicated in square brackets which are assumed equal to zero.

^{d.} The assumed values of the dihedral angles, \angle (H_b...N3–C2–N1) = 180°, \angle (O–H_b...N3–C2) = 0° and \angle (H_{nb}–O–H_b...N3) = 180° lead to |c| = 0 for H_b, O and H_{nb} of each complex.

N-MIH ₂ O					
	a/Å	b/Å	c/Å		
N(1)	-1.26246(97)ª	-0.30300(121)	0.00001(0)		
C(2)	0.04860(161)	-0.57609(195)	0.00105(0)		
H(2)	0.49485(396)	-1.55826(303)	0.00237(1)		
N(3)	0.79263(115)	0.53411(375)	0.00185(0)		
C(4)	-0.11852(361)	1.56402(155)	0.00028(0)		
H(4)	0.18821(609)	2.59694(229)	-0.00055(1)		
C(5)	-1.41824(239)	1.05856(159)	-0.00148(0)		
H(5)	-2.28981(392)	1.69380(369)	-0.00267(1)		
C(6)	-2.30775(336)	-1.31081(374)	-0.00030(0)		
H(6)	-2.93233(310)	-1.19984(525)	-0.88669(0)		
H(6)	-1.86523(576)	-2.30690(267)	-0.00933(1)		
H(6)	-2.92152(312)	-1.21160(521)	0.89499(0)		
Η _b	2.56475(1963)	-0.21032(5031)	-0.00010(4)		
0	3.43023(487)	-0.62292(66)	-0.00112(0)		
H _{nb}	4.04639(3856)	0.11168(3688)	-0.00066(0)		
	2-MI.	H ₂ O			
	a/Å	b/Å	c/Å		
N(1)	-1.65447(94)	-0.62524(175)	-0.00077(0)		
H(1)	-2.25903(221)	-1.41928(272)	0.00017(0)		
C(2)	-0.29042(98)	-0.65153(46)	-0.00002(0)		
N(3)	0.22479(102)	0.55671(129)	0.00174(0)		
C(4)	-0.86404(238)	1.40814(47)	0.00116(0)		
H(4)	-0.73153(411)	2.47745(26)	0.00452(0)		
C(5)	-2.02952(124)	0.69991(235)	-0.00185(0)		
H(5)	-3.06368(173)	1.00598(402)	-0.00134(0)		
C(6)	0.57333(294)	-1.87203(186)	0.00078(0)		
H(6)	0.37230(391)	-2.47159(153)	-0.88703(0)		
H(6)	1.62476(247)	-1.58465(356)	0.00294(1)		
H(6)	0.36899(390)	-2.47277(153)	0.88704(0)		
H _b	2.14337(298)	0.68539(3005)	0.00000(5)		
0	3.08813(262)	0.52193(108)	-0.00129(0)		
H _{nb}	3.48294(2605)	1.39567(1369)	-0.00004(5)		

Table S11 –Atomic coordinates of *N*-MI...H₂O and 2-MI...H₂O determined by the r_0 method while assuming that \angle (H_{nb}–O–H_b...N3) = 180° and \angle (O–H_b...N3–C2) = 0° for each complex (see text for details).

^a Results are output from fit performed using Kisiel's STRFIT. Numbers in parentheses are one standard deviation in units of the last significant figure.

Table S12 – Computed values of ΔB_{vib}^{i} and B_{e}^{i} for *N*-MI...H₂O.

See text for definitions of B_0^i , ΔB_{vib}^i and B_e^i . Values of B_0^i rotational constants are as shown in Table S6 (*a*, *b* and *c* denote the respective inertial axes). Values of ΔB_{vib}^i are computed by density functional theory using the B3LYP functional, the partially-augmented double- ζ jun-cc-pVDZ basis set and Grimme's DFT-D3 scheme with the Becke-Johnson (BJ) damping function for the treatment of dispersion effects. Values of B_e^i are determined by subtracting ΔB_{vib}^i from B_0^i according to the equation shown (Eqn 3 in the text).

$$B_{e}^{i} = B_{0}^{i} - \Delta B_{vib}^{i} = B_{0}^{i} + \frac{1}{2} \sum_{r} \alpha_{r}^{i}$$

		<i>N</i> -MIH ₂ ¹⁶ O			<i>N</i> -MIH ₂ ¹⁸ O	
	а	b	С	а	b	С
B_0^i	5010.78(21)	1409.5628(67)	1107.2884(60)	4973.91(16)	1325.2392(47)	1052.8660(35)
$\sum_r \alpha_r^i$	-48.863	20.67419	19.17657	-57.417	20.42193	18.62950
$-\Delta B_{vib}^{\ i}$	-24.431	10.33710	9.58829	-28.709	10.21097	9.31475
B_e^i	4986.34(21)	1419.8999(67)	1116.8767(60)	4945.20(16)	1335.4502(47)	1062.1808(35)
		N-MIDOH			N-MIHOD	
	А	b	С	а	b	С
B_0^i	5030.91(18)	1379.9953(53)	1089.9214(47)	4976.11(29)	1351.0759(86)	1070.1983(53)
$\sum_r \alpha_r^i$	54.382	8.29807	14.28911	18.336	12.29522	15.52354
$-\Delta B_{vib}^{\ i}$	27.191	4.14904	7.14456	9.168	6.14761	7.76177
B_e^i	5058.10(18)	1384.1443(53)	1097.0660(47)	4985.28(29)	1357.2235(86)	1077.9601(53)
		<i>N</i> -MID ₂ O				
	а	b	С			
B_0^i	4997.19(16)	1324.2123(47)	1054.3030(38)			
$\sum_r \alpha_r^i$	36.355	9.26088	14.21856			
$-\Delta B_{vib}^{\ i}$	18.178	4.63044	7.10928			
B_e^i	5015.37(16)	1328.8427(47)	1061.4123(38)			

Table S13 – Computed values of ΔB_{vib}^{i} and B_{e}^{i} for 2-MI...H₂O.

See text for definitions of B_0^i , ΔB_{vib}^i and B_e^i . Values of B_0^i rotational constants are as shown in Table S8 (*a*, *b* and *c* denote the respective inertial axes). Values of ΔB_{vib}^i are computed by density functional theory using the B3LYP functional, the partiallyaugmented double- ζ jun-cc-pVDZ basis set and Grimme's DFT-D3 scheme with the Becke-Johnson (BJ) damping function for the treatment of dispersion effects. Values of B_e^i are determined by subtracting ΔB_{vib}^i from B_0^i according to the equation shown (Eqn 3 in the text).

$$B_{e}^{i} = B_{0}^{i} - \Delta B_{vib}^{i} = B_{0}^{i} + \frac{1}{2} \sum_{r} \alpha_{r}^{i}$$

		2-MIH ₂ ¹⁶ O			2-MIH ₂ ¹⁸ O	
	а	b	С	а	b	С
B_0^i	4233.93(21)	1732.5621(61)	1240.3104(66)	4216.088(93)	1628.8335(43)	1184.7799(35)
$\sum_r \alpha_r^i$	157.024	31.30892	30.74646	160.0268	30.22398	29.87129
$-\Delta B_{vib}^{\ i}$	78.512	15.65446	15.37323	80.0134	15.11199	14.93565
B_e^i	4312.44(21)	1748.2166(61)	1255.6836(66)	4296.101(93)	1643.9455(43)	1199.7155(35)
		2-MIDOH			2-MIHOD	
	а	b	С	а	b	С
B_0^i	4212.776(60)	1707.6301(27)	1225.7031(25)	4184.178(58)	1661.6617(20)	1200.1864(24)
$\sum_r lpha_r^i$	131.60096	27.55827	27.13067	160.6056	29.0206	29.72541
$-\Delta B_{vib}^{\ i}$	65.80048	13.77914	13.56534	80.3028	14.5103	14.86271
B_e^i	4278.576(60)	1721.4092(27)	1239.2684(25)	4264.481(58)	1676.1720(20)	1215.0491(24)
		2-MID ₂ O				
	а	b	С			
B_0^i	4165.477(74)	1639.0453(25)	1186.8983(28)			
$\sum_r lpha_r^i$	133.82315	25.01936	25.77635			
$-\Delta B_{vib}^{\ i}$	66.9116	12.50968	12.88818			
B_e^i	4232.389(74)	1651.5550(25)	1199.7865(28)			