Supplementary Information for:

Time-dependent wave packet dynamics study of the resonances in the

 $H + LiH^+(v = 0, j = 0) \rightarrow Li^+ + H_2$ reaction at low collision energies

Ye Mao, Bayaer Buren, Zijiang Yang, Maodu Chen*

Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, PR China

*E-mail: mdchen@dlut.edu.cn (M. Chen)

Fig. S1 Partial-wave cross sections for the H + LiH⁺ (v = 0, j = 0) \rightarrow Li⁺ + H₂ reaction calculated by the TICC method based on the MTBG-PES.

Fig. S2 Total reaction probabilities as a function of collision energy on the H + LiH⁺ (ν = 0, j = 0) \rightarrow Li⁺ + H₂ reaction for J = 0 - 5 partial waves.

Fig. S3 Product vibrational state-resolved reaction probabilities as a function of collision energy on the H + LiH⁺ (v = 0, j = 0) \rightarrow Li⁺ + H₂ reaction for J = 3. The partial wave of J = 3 is selected because of its larger contribution.

Fig. S4 Total and product vibrational state-resolved rate coefficients of the H + LiH^+ (v = 0, j = 0) $\rightarrow \text{Li}^+ + \text{H}_2$ reaction as a function of temperature.