Supporting information

La@[La5&B30] 0/-/2-: Endohedral Trihedral Metallo-Borospherenes With Spherical Aromaticity

Mei-Zhen Ao,^{a,b} Xiao-Qin Lu,^a Wen-Yan Zan, *^a Yue-Wen Mu,*^a and Si-Dian Li*^a ^aNanocluster Laboratory, Institute of Molecular Science Shanxi University, Taiyuan 030006, P.R. China. ^bFenyang College of Shanxi Medical University, Fenyang 032200, China *E-mail: zanwy@sxu.edu.cn, ywmu@sxu.edu.cn and lisidian@sxu.edu.cn

Table of Contents

- Figure S1. Relative energies of low-lying isomers of La₆B₃₀.
- Figure S2. Relative energies of low-lying isomers of La₆B₃₀⁻.
- Figure S3. Relative energies of low-lying isomers of $La_6B_{30}^{2-}$.
- **Figure S4.** Eigenvalue spectra of La@[La₅&B₃₀] (1) and La@[La₅&B₃₀]²⁻ (3) at PBE0 Level, with the HOMO-LUMO energy gaps indicated in eV.
- **Figure S5.** Gibbs free energies $\Delta G_f(eV)$ of the four lowest-lying isomers of La₆B₃₀ as a function of temperature between 0 to 400 K at PBE0 level.
- **Figure S6.** Gibbs free energies $\Delta G_f(eV)$ of the four lowest-lying isomers of $La_6B_{30}^-$ as a function of temperature from 0 to 400 K at PBE0 level.
- **Figure S7.** Gibbs free energies $\Delta G_f(eV)$ of the four lowest-lying isomers of $La_6B_{30}^{2-}$ as a function of temperature from 0 to 400 K at PBE0 level.
- Figure S8. MD simulations of D_{3h} La@[La₅&B₃₀] (1) at 1000 K.
- **Figure S9.** MD simulations of D_{3h} La@[La₅&B₃₀]²⁻ (**3**) at 1000 K.
- Figure S10. Phonon dispersion curves and density of states (PhDOS) of 1D $La_4B_{21}(4)$ nanowire.
- Figure S11. Band structure and projected density of states (PDOS) of 1D La₄B₂₁ (4) nanowire.
- Figure S12. Side and top views of the ico-chemical shielding surfaces (ICSSs) of (a)

La@[La₅&B₃₀]⁻ (2), and (b) C₆H₆ based on their calculated NICS-ZZ components.

- **Table S1.** Optimized coordinates (x, y, z) of D_{3h} La@[La₅&B₃₀] (1, ³A₁') at PBE0 level.
- **Table S2.** Optimized coordinates (x, y, z) of C_s La@[La₅&B₃₀]⁻(2, ²A') at PBE0 level.
- **Table S3.** Optimized coordinates (x, y, z) of D_{3h} La@[La₅&B₃₀]²⁻ (**3**, ¹A₁') at PBE0 level.
- Table S4. Optimized fractional coordinates (x, y, z) of 1D La₄B₂₁(4) nanowire.

Figure S2. Relative energies of the twelve lowest-lying isomers of $La_6B_{30}^-$ at PBE0 and TPSSh (parentheses) level in eV.

Figure S3. Relative energies of the eighteen lowest-lying isomers of $La_6B_{30}^{2-}$ at PBE0 and TPSSh (parentheses) level in eV.

Figure S4. Eigenvalue spectra of $La@[La_5\&B_{30}]$ (1) (left) and $La@[La_5\&B_{30}]^{2-}$ (3) (right) at PBE0/B/6-311+G(d)/La/ECP46MWB level, with the HOMO-LUMO energy gaps indicated in eV.

Figure S5. Gibbs free energies $\Delta G_f(eV)$ of the four lowest-lying isomers of La₆B₃₀ at PBE0/B/6-311+G(d)/La/ECP46MWB level as a function of temperature between 0 to 400 K relative to D_{3h} La@[La₅&B₃₀] (1) (NE-1).

Figure S6. Gibbs free energies $\Delta G_f(eV)$ of the four lowest-lying isomers of La B_0^- at PBE0/B/6-311+G(d)/La/ECP46MWB level as a function of temperature between 0 to 400 K relative to C_s La@[La₅&B₃₀]⁻ (2) (MA-1).

Figure S7. Gibbs free energies $\Delta G_f(eV)$ of the four lowest-lying isomers of La \mathcal{B}_0^- at PBE0/B/6-311+G(d)/La/ECP46MWB level as a function of temperature between 0 to 400 K relative to $D_{3h}D_{3h}$ La@[La₅&B₃₀]²⁻ (**3**) (**DA-1**)..

Figure S8. MD simulations of D_{3h} La@[La₅&B₃₀] (1) at 1000 K. The calculated rootmean-square-deviation (RMSD) and maximum bond length deviation (MAXD) values (on average) are indicated in Å.

Figure S9. MD simulations of D_{3h} La@[La₅&B₃₀]²⁻ (**3**) at 1000 K. The calculated rootmean-square-deviation (RMSD) and maximum bond length deviation (MAXD) values (on average) are indicated in Å.

Figure S10. The phonon dispersion frequencies of 1D $La_4B_{21}(4)$ nanowire.

Figure S11. Band structure and projected density of states (PDOS) of 1D La_4B_{21} (4) nanowire at PBE level.

Figure S12. Side and top views of the ico-chemical shielding surfaces (ICSSs) of (a) $La@[La_5\&B_{30}]^-$ (2), and (b) C_6H_6 based on their calculated NICS-ZZ components. Yellow and green regions stand for chemical shielding and de-shielding areas, respectively.

Table S1. Optimized coordinates (x, y, z) of D_{3h} La@[La₅&B₃₀] (1, ³A₁') at PBE0/B/6-311+G(d)/La/ECP46MWB level.

В	0 80453200	2 24843100	2,06020900
B	1.96768200	2.18501300	-0.84226200
B	-0.80453200	2.24843100	2.06020900
B	2.87611800	0.61155600	0.84226200
B	-2.87611800	0.61155600	-0.84226200
В	1.96768200	2.18501300	0.84226200
В	2.03308900	1.17380500	2.16656900
В	-1.96768200	2.18501300	0.84226200
В	-2.03308900	1.17380500	2.16656900
La	0.00000000	3.77530500	0.00000000
В	-1.96768200	2.18501300	-0.84226200
В	-2.87611800	0.61155600	0.84226200
В	-0.80453200	2.24843100	-2.06020900
В	-2.03308900	1.17380500	-2.16656900
В	0.80453200	2.24843100	-2.06020900
В	2.03308900	1.17380500	-2.16656900
В	2.87611800	0.61155600	-0.84226200
La	0.00000000	0.00000000	0.00000000
В	0.90843600	-2.79656900	-0.84226200
В	2.34946400	-0.42747000	-2.06020900
В	1.54493200	-1.82096100	-2.06020900
В	1.54493200	-1.82096100	2.06020900
La	3.26951000	-1.88765300	0.00000000
В	2.34946400	-0.42747000	2.06020900
В	-2.34946400	-0.42747000	2.06020900
В	-0.90843600	-2.79656900	-0.84226200
В	-1.54493200	-1.82096100	2.06020900
В	-1.54493200	-1.82096100	-2.06020900
La	-3.26951000	-1.88765300	0.00000000
В	-2.34946400	-0.42747000	-2.06020900
В	-0.90843600	-2.79656900	0.84226200
В	0.90843600	-2.79656900	0.84226200
В	0.00000000	-2.34760900	2.16656900
В	0.00000000	-2.34760900	-2.16656900
La	0.00000000	0.00000000	3.53305600
La	0.00000000	0.00000000	-3.53305600

Table S2. Optimized coordinates (x, y, z) of C_s La@[La₅&B₃₀]⁻ (**2**, ²A') at PBE0/B/6-311+G(d)/La/ECP46MWB level.

B	-1 51/01000	1 8/055300	2 07573600
B	-0.8589/500	2 80011800	-0.84235400
B	-0.85894500	0.47576800	2 104/6200
B	-2.30023300	2 76380000	0.84222000
B	-2 02709000	-2 12958900	-0.84306500
B	-2.02709000	2 80011800	0.84235400
B	-0.03674300	2.34630600	0.04233400
D	2 88068100	2.34030000	0.83477000
D	-2.88008100	-0.33933000	0.03477900
D	-2.00551000	-1.12492700	2.10000000
La	-3.220/9800	1.93473700	0.0000000
B	-2.88068100	-0.53953000	-0.834/7900
В	-2.02709000	-2.12958900	0.84306500
В	-2.36025300	0.47576800	-2.10446200
В	-2.06331600	-1.12492700	-2.18808300
В	-1.51491900	1.84955300	-2.07573600
В	0.04635600	2.34630600	-2.16927300
В	0.96912700	2.76389900	-0.84222000
La	0.00207200	0.00534900	0.00000000
В	2.85700800	-0.65165100	-0.83483800
В	1.58690900	1.78895800	-2.07651900
В	2.37703700	0.38287700	-2.10435200
В	2.37703700	0.38287700	2.10435200
La	3.30112000	1.80717700	0.00000000
В	1.58690900	1.78895800	2.07651900
В	-0.85359100	-2.21918000	2.06118400
В	1.94093600	-2.20788300	-0.84320800
В	0.76460200	-2.25069600	2.06072200
В	0.76460200	-2.25069600	-2.06072200
La	-0.07437400	-3.73931700	0.00000000
В	-0.85359100	-2.21918000	-2.06118400
В	1.94093600	-2.20788300	0.84320800
B	2.85700800	-0.65165100	0.83483800
B	2.01662800	-1 20477400	2 18723800
- B	2,01662800	-1.20477400	-2.18723800
- La	-0.00099300	-0.01092500	3 51812300
La	-0.00099300	-0.01092500	-3 51812300
	0.00077500	5.01072500	2.210122000

 D_{3h} La@[La₅&B₃₀]²⁻ (**3**, ¹A₁') at

Table S3. Optimized coordinates (x, y, z) ofPBE0/B/6-311+G(d)/La/ECP46MWB level.

В	0.81051700	2.25761800	2.10126100
В	1.95664700	2.17472300	-0.83886500
В	-0.81051700	2.25761800	2.10126100
В	2.86168900	0.60714400	0.83886500
В	-2.86168900	0.60714400	-0.83886500
В	1.95664700	2.17472300	0.83886500
В	2.03288600	1.17368700	2.19463100
В	-1.95664700	2.17472300	0.83886500
В	-2.03288600	1.17368700	2.19463100
La	0.00000000	3.74001400	0.00000000
В	-1.95664700	2.17472300	-0.83886500
В	-2.86168900	0.60714400	0.83886500
В	-0.81051700	2.25761800	-2.10126100
В	-2.03288600	1.17368700	-2.19463100
В	0.81051700	2.25761800	-2.10126100
В	2.03288600	1.17368700	-2.19463100
В	2.86168900	0.60714400	-0.83886500
La	0.00000000	0.00000000	0.00000000
В	0.90504200	-2.78186700	-0.83886500
В	2.36041300	-0.42688000	-2.10126100
В	1.54989600	-1.83073700	-2.10126100
В	1.54989600	-1.83073700	2.10126100
La	3.23894700	-1.87000700	0.00000000
В	2.36041300	-0.42688000	2.10126100
В	-2.36041300	-0.42688000	2.10126100
В	-0.90504200	-2.78186700	-0.83886500
В	-1.54989600	-1.83073700	2.10126100
В	-1.54989600	-1.83073700	-2.10126100
La	-3.23894700	-1.87000700	0.00000000
В	-2.36041300	-0.42688000	-2.10126100
В	-0.90504200	-2.78186700	0.83886500
В	0.90504200	-2.78186700	0.83886500
В	0.00000000	-2.34737500	2.19463100
В	0.00000000	-2.34737500	-2.19463100
La	0.00000000	0.00000000	3.51110500
La	0.00000000	0.00000000	-3.51110500

Table S4. Optimized fractional coordinates (x, y, z) of 1D La₄B₂₁(**4**) nanowire at PBE level.

	34.7623263024369	464 -0.00371039363	72768	0.0053697325008126
	-17.38437314368309	922 30.11004821262	63138 -	0.0048079227471372
	0.00066656360194	42 -0.00030245961	82199	4.4370652451652273
В	La			
21	4			
0.52	224592918596261	0.6254264817409362	0.98966	25959311190
0.55	522889666654875	0.6295724703335202	0.31043	62083764923
0.58	867764599825427	0.6024999529082078	0.67779	37495049429
0.40	029085946912579	0.5080085721366879	0.31049	98036490051
0.55	551323717812721	0.6331372921064196	0.67793	15518371957
0.56	614496737495117	0.6082124069822457	0.99110	03439693392
0.42	299967408886526	0.5695721242593303	0.67807	07112541254
0.42	242755949154859	0.5385337797565303	0.99125	31868984529
0.43	328811473290442	0.5689206417184052	0.31056	51242709059
0.39	993514661695243	0.5072921559289154	0.67799	81600363576
0.58	832398189599132	0.5996114872801365	0.31029	70815834436
0.52	244796270251985	0.4802147829537784	0.31019	17285681349
0.57	796829356167068	0.5700187746029498	0.98942	81524889664
0.40	070568630640384	0.4823312198332277	0.98962	30238753436
0.46	635655661245760	0.4492694479351648	0.31028	56910611972
0.43	375169966203097	0.4528198302592091	0.98952	51385930619
0.46	529121992173481	0.4457306194052912	0.67777	42060423625
0.52	251955306799815	0.4773712749845935	0.67768	47603365015
0.49	939506549782170	0.4710488828293640	0.99098	58796693893
0.46	524780233080154	0.5949632089173467	0.98972	44507077025
0.55	501634821723542	0.5100432719650027	0.98937	59743163675
0.49	920645556303757	0.6481555363748028	0.49150	80451662049
0.49	932284716647780	0.5392686809017450	0.61279	49791951457
0.60	032993172071554	0.5404415810714001	0.49106	18641458554
0.38	843153736986520	0.4292051288147651	0.49133	77935223999