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A Real spherical harmonics

The real spherical harmonics (with tilde) are defined in terms of the complex spherical harmonics

(without tilde) according to
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and satisfy the orthonormality relation
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For an arbitrary function W, the relation between the coefficients of the real and the complex

spherical harmonics can be derived from
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B Derivation of the l;l,m coefficients in one-photon-ionization

According to Egs. (5) and (11), and following Ref. [1] for the orientation averaging, we obtain
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For the remaining integral over orientations in bg ()) we have
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Replacing Egs. (B.5), (B.6), (B.7) in Eq. (B.4) we get
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and replacing Eq. (B.8) in Eq. (B.3) we arrive to the rather symmetric result
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Similarly, by replacing 2% by either 2% or §* in Eq. (B.8) we obtain
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Finally,
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where the last equality follows from assuming that the field is either elliptically polarized in the zy
plane or linearly polarized along z.



C Range of values of b; ¢ in one-photon PECD

From Eq. (25) and the fact that Tx > 0 it follows that 1 + Uﬁ%l) + ﬂél) > 0, which in particular
means that 1 — |B§1)\ + Bgl) > 0 and yields Eq. (24).

D Derivation of the by, b1, and bso coefficients in two-
photon PECD

From Eq. (9) we have that

1 2 o L2 )
bff&:E’A@)‘ /koM/d,Q |- B P

(D.1)

)

where we use the shorthand notation DY = JEM 1 db = JIfo» and FL = FZ;L The orientation
averaging can be performed following Ref. [1],
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M@ is given by Eq. (B.6). Replacing Egs. (B.6), (D.2)-(D.4) in Eq. (D.1) yields
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This expression is valid for arbitrary dM and arbitrary polarization. If we choose the molecular
frame so that dM = dzM, we focus on the case of circular polarization F* = F (i‘L + iayL) /V2,
and use the definition (32), Eq. (D.5) reduces to Eq. (28).

n the absence of magnetic fields dM can be taken real.



Similarly, for the case of b% we get [see Eq. (9)]
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The integral over orientations p reads as
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Since M(5)f(5) = f(s)7 then
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With the help of some vector algebra the second and third terms can be rewritten as
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Replacing Egs. (D.7)-(D.11) in Eq. (D.6) yields

2For the moment we omit the M superscript on E, l_j, ﬁ*, and (Z and the superscript L on 2, ﬁ, and F*.
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This expression is valid for arbitrary orientations of d™ and arbitrary polarization. If we choose the
molecular frame so that d™ = dzM, focus on the case of circular polarization F& = F (iL + iU@L) /V2,
and use definitions (33) and (35), Eq. (D.12) reduces to Eqgs. (29) and (30)

Finally, for b:(f()) we get [see Eq. (9)]
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The orientation integral in the first term reads as
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From table IIT in Ref. [1] we see that {7 = (" =0 for 1 <i < 27. For 28 < i < 36 we get®
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The relevant part of M(7) in Ref. [1] reads as
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Equations (D.12), (D.13), (D.14), and (D.18) yield
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This expression is valid for arbitrary orientations of dM and arbitrary polarization. If we choose
the molecular frame so that d™ = dsM, we focus on the case of circular polarization FT =
F (2% +iog") /v/2, and we use definition (36), Eq. (D.19) reduces to Eq. (31).



E Derivation of b'l(f))

Analogously to Eq. (27), the bll(,%) coefficient corresponding to the process where the first photon is

linearly polarized along 2% and the second photon is circularly polarized in the 2“g" plane is given
by

b2 (k) = |A® 22 | P /koM /dgyp(z;L) cos? 8| DY - FL? (E.1)

where we have added a prime in order to distinguish it from the bf& coefficient in Eq. (29), and we

have FL = F2L and FL = F(2% + iog")/v/2. Using Egs. (27) and (E.1) we obtain
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where in the second line we solved the integral over orientations as in Eq. (B.2) and in the third
line we used )7070(k) = k/v4m, Eq. (39) and the orthonormality of the spherical harmonics. Using
Eq. (40) for bf& yields Eq. (42).
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