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The main idea of this supplementary material is to provide more detailed information on the derivation of the
equations given in the main text.

I. FROM THE DOUBLE DIFFERENTIAL CROSS SECTION TO RESONANT AND NORMAL AUGER

In this section we want to discuss the lineshapes and intensities from resonant and normal Auger spectra by
starting from the generalized Kramers-Heisenberg formula. Schematic pictures of the two processes are shown in Fig.
1 of the main text. Here we distinguish between final states of infinite lifetime and finite lifetime for the final state of
the process. Finally we show a comparison of the simulated and measured partial electron yield spectra.

A. Final states with infinite lifetime

Let us start with the situation of an infinite experimental resolution and a stable final state, i.e. with infinite
lifetime. In this case the double differential cross section is described in its general form by [1]

σ(ω, ω′) ∝
∑
f

|Ff |2 · δ(ω − ω′ − ωfo) (1)

with

Ff =
∑
c

〈Ψf |Q|Ψc〉〈Ψc|D|Ψo〉
ω − ωco + iΓc

. (2)

Here, ω is the energy of the incoming photon, ω′ the energy of the outgoing photon or electron(s), ωco the energy
difference between the ground state |o〉 and the core-excited state |c〉, ωfo the energy difference between the ground
state |o〉 and the core-excited state |f〉, D the dipole operator for the excitation, Q the decay operator (Coulomb
operator for Auger decay or dipole operator for RIXS) and Γc the half width at half maximum (HWHM) of the
core-hole lifetime broadening.

Equation 1 can be applied to the resonant and normal Auger process. In the resonant Auger process in the
first step an electron is excited from a core hole to an unoccupied orbital n` below the ionization threshold. This
neutral excited state can be considered as consisting of a cation A+ with an electron in the orbital bound to it. In
the next step the cation A+ undergoes an Auger decay and forms a dication A2+ while the excited electron remains
in a bound orbital. This process can be described as g.s.→ A+n`→ A2+n`ε′`′ with g.s. being the ground state and
ε′`′ being the Auger electron. In contrast to this, to observe the normal Auger process, the core electron is promoted
in the first step into the continuum ε`. After this, the cation decays to an dication end emits an Auger elctron. Here
the process can be described at g.s.→ A+ε`→ A2+ε`ε′`′.

In the following we shall first focus on the resonant Auger. Furthermore, we restrict the considerations to only
one core-excited intermediate state A+n` and one final state A2+n`ε′`′. In this case eqn. 2 simplifies to

Ff =
〈A2+n`ε′`′|Q|A+n`〉〈A+n`|D|Ψo〉

ω − ωco + iΓc
(3)
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and we obtain with Qres = 〈A2+n`ε′`′|Q|A+n`〉 as well as Dres = 〈A+n`|D|Ψo〉 for the partial differential cross
section

σ(ω, ω′) ∝
∣∣∣∣ QresDres

ω − ωco + iΓc

∣∣∣∣2 · δ(ω − ω′ − ωfo) (4)

∝ Γc
π

|QresDres|2

(ω − ωco)2 + Γ2
c

· δ(ω − ω′ − ωfo).

In this equation the δ function represents the energy conservation and defines the kinetic energy ω′ of the resonant
Auger electron as a function of the incoming photon. In the last line an additional factor Γc

π is added to obtain a
Lorentzian function normalised to unity. By neglecting experimental broadenings, i.e. photon bandwidth and analyser
resolution, the spectrum consists of a δ-like peak at the energy ω′ = ω − ωfo, see black vertical lines in panel (a) of
Fig. 2 in the main text. The matrix element Dres in eqn. 4 describes the resonant excitation and the matrix element
Qres the Auger decay. Due to the finite lifetime Γc the process can resonate over a larger energy range. The intensity
of the δ-like peak varies with ω and the variation is described with a Lorentzian function, see Fig. 1(a) and as red

curve in Fig. 2(a) of the main text, which is derived from
(
(ω − ωco)2 + Γ2

c

)−1
in eqn. 4. In summary, |Ff |2 gives

the probability of the process as a function of the photon energy ω and the δ-function defines the energy ω′ of the
outgoing Auger electron as a function of the incoming photon.

In the next step we shall consider the normal Auger process subsequent to a photoionization process, i.e.
g.s. → A+ε` → A2+ε`ε′`′. In Fig. 1(b) of the main text it can be seen that the photon energy ω is not in the
Lorentzian distribution of the core-hole state |c〉, i.e. the process is non-resonant. Instead, the process leads to
two outgoing electrons, namely the photoelectron with a kinetic energy ωP and the Auger electron with a kinetic
energy ωA. Note that ωP and ωA are the actual energies of the emitted electrons, but not the peak maxima in
the photoelectron and the Auger spectrum. This leads to the relation ω′ = ωP + ωA, which can only be varified in
photoelectron-Auger electron coincidence spectra.

In the next step we define ω̃ = ω − ωP . The probability of the ionization process is than given by ω̃ − ωco
which is the detuning of photoelectron from the peak maximum. This is equivalent to a Lorentzian profile around
ω − ωco visible in the photoabsorption spectrum, which governs the excitation probability in the resonant Auger
process. Moreover, the amplitudes for the photoelectron and the normal Auger process have to be used. This leads
with Dnor = 〈A+ε`|D|Ψo〉 and Qnor = 〈A2+ε`ε′`′|Q|A+ε`〉 to

σ(ω, ωA) ∝
∣∣∣∣ QnorDnor

ω̃ − ωco + iΓc

∣∣∣∣2 · δ(ω̃ − ωA − ωfo) (5)

∝ Γc
π

|QnorDnor|2

(ω̃ − ωco)2 + Γ2
c

· δ(ω̃ − ωA − ωfo)

for the description of the process for the case of an outgoing Auger electron with the energy ωA. Here the δ-function
is derived from δ(ω − ω′ − ωfo) by using ω′ = ωP + ωA and ω̃ = ω − ωP . Note that the photon energy ω contributes
implicitly to the matrix element Dnor for the photoionization process.

Equation 6 is obviously very similar to eqn. 4. However, contrary to ω is eqn. 4 the quantity ω̃ in eqn. 6 can
have different values around ωco so that one has to integrate over ω̃, i.e.

σ(ω, ωA) ∝
∫
dω̃

Γc
π

|QnorDnor|2

(ω̃ − ωco)2 + Γ2
c

· δ(ω̃ − ωA − ωfo)

=
Γc
π

|QnorDnor|2

(ωA + ωfo − ωco)2 + Γ2
c

=
Γc
π

|QnorDnor|2

(ωA − ωcf )2 + Γ2
c

(6)

with ωcf = ωco − ωfo. Obviously, σ(ω, ωA) is described by a Lorentzian function around the energy difference ωfc
between the core-hole and the final state, see Fig. 2(c) of the main text.

It is also important to understand that different values of ω̃ lead to different values of ωP and ωA, i.e. to
different final states of the Auger decay which include not only the dication A2+ but also both outgoing electrons.

It should be mentioned that the sum (or in case of a continuum of intermeditate states the integral) over c in
equation 2 can lead to lifetime interference contributions, see e.g. discussion around eqn. 9 of the main text. These
contributions occur if one particular final state can be populated by different intermediate states. However, in the
present case the photoelectron ε` is part of the Auger final state so that for each final state |f〉 = |A2+ε`ε′`′〉 there is
only one possible intermediate state, namely |c〉 = |A+ε`〉 so that no lifetime interference can occur.
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B. Final states with finite lifetime

Up to now we have assumed that the Auger final state has a infinite lifetime. This is a reasonable approximation
for the Auger final states subsequent to the decay of shallow core-hole states. Contrary to this the final states after the
decay of deeper core levels (e.g. Ar 1s−1 → 2p−2) possess non-negligible lifetime broadenings which have to be taken
into account. As a result, the accessible energy levels show a Lorentzian-like distribution with a width Γf around the
energy of the final state; here Γf is the lifetime broadening of the final state (HWHM). Once again, we have to tread
resonant and normal Auger separately.

For resonant Auger we have to start with the second line of eqn. 4. Due to the finite lifetime the energy
difference between the initial and the final state is not a fixed value ωfo, but shows a Lorentzian-like distribution
around ωfo. As a result, the possible final state energies can be described in a normalized form with

L(ω̃fo) =
Γf

π((ωfo − ω̃fo)2 + Γ2
f )
. (7)

To take this distribution into account the second line of eqn. 4 has to be convoluted with the Lorentz-distribution
and one obtains

σ(ω, ω′) ∝
∫
dω̃fo

Γc
π

|QresDres|2

(ω − ωco)2 + Γ2
c

× (8)

δ(ω − ω′ − ω̃fo) ·
Γf

π((ωfo − ω̃fo)2 + Γ2
f )

=
Γc
π

|QresDres|2

(ω − ωco)2 + Γ2
c

×

Γf
π((ωfo − ω − ω′)2 + Γ2

f )
.

Obviously, the obtained result is a product of the intensity factor already present in eqn. 5 and a Lorentzian function
with a width Γf . From this follows that the kinetic energy of the Auger electron, ω′, can be described by a Lorentzian
function with a maximum at ωfo − ω, i.e. the maximum depends on the photon energy, and a width of Γf , see black
curve in Fig. 2(c) of the main text. The third line of the equation defines the red Lorentzian lineshape in Fig. 2(c) of
the main text which indicates the intensity of the black Lorentzian curve.

In the next step we shall consider the normal Auger decay. In the last line of eqn. 6 it can be seen that the
kinetic energy of the Auger electron follows a Lorentzian distribution around ωcf . However, in case of a final state
|f〉 with finite lifetime broadening Γf the energy difference ω̃cf between the core-ionized state and the final state is
not fixed, but follows a Lorentzian distribution around ωcf , i.e.

L(ωcf ) =
Γf

π((ωcf − ω̃cf )2 + Γ2
f )
. (9)

To take this into account, the cross section in eqn. 6 has to be convoluted with the distribution in eqn. 9, i.e.

σ(ω, ωA) ∝
∫
dω̃cf

Γc|QnorDnor|2

π((ωA − ω̃cf )2 + Γ2
c)
×

Γf
π((ωcf − ω̃cf )2 + Γ2

f )

=
Γt|QnorDnor|2

π((ωA − ωcf )2 + Γ2
t )
. (10)

As displayed in Fig. 2(d) of the main text, the result of the convolution is also a Lorentzian function, however, with
a larger width Γt = Γf + Γc, i.e. the sum of the lifetime broadening of the core-hole and the final state.

II. THE MOLECULAR CASE

In the Born-Oppenheimer’s approximation, we can factorise the electronic and nuclear degrees of freedom such
that Ψi from the equation 1 can be rewritten as |Ψi〉 = |Φi〉|χi〉. |Φi〉 represents the electronic wavefunction as defined
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previously and |χi〉 is the nuclear wavefunction. In this approximation eqn. 1 can be rewritten as

σ(ω, ω′) ∝
∑
f

∣∣∣∣∣∑
c

〈Φf |Q|Φc〉〈χf |χc〉〈Φc|D|Φo〉〈χc|χo〉
ω − ωco + iΓc

∣∣∣∣∣
2

∆(ω − ω′ − ωfo,Γf ). (11)

In this context ∆(ω− ω′ − ωfo,Γf describes the spectral lineshapes and has to be derived in line with the arguments
above according to the the situation, i.e. resonant or normal Auger as well as the lifetime of the final states.

Let us now focus on the overlap integrals of the nuclear wavefunctions and rewrite 11 with Del = 〈Φc|D|Φo〉
and Qel = 〈Φf |Q|Φc〉 as

σ(ω, ω′) ∝
∑
f

|Qel|2|Del|2
∣∣∣∣∣∑
c

〈χf |χc〉〈χc|χo〉
ω − ωco + iΓc

∣∣∣∣∣
2

∆(ω − ω′ − ωfo,Γf ). (12)

Note that with writing |Qel|2 and |Del|2 before the sum we make the assumption of only one electronic intermediate
state, i.e. the different intermediate states are all formed by different levels of the nuclear motion. To apply eqn. 12
for the vibrational states of electronic transitions, the nuclear wavefunctions χi have to be described according to the
case that they describe bound or dissociative molecular states. In principle, the transitions described by the matrix
elements 〈χf |χc〉 and 〈χc|χo〉 can have different characters depending on the bond character of the potential energy
curves.

In the following we shall first discuss the vibrational profiles of transitions between two states, where we have to
distinguish between bound-bound transitions, bound-dissociative transitions and dissociative-dissociative transitions.
After this we will discuss the entire excitation and decay process, which includes three different states. Since we
only consider processes which involve the ground state, we here have to distinguish four cases, namely bound-bound-
bound transitons, bound-bound-dissociative transitions, bound-dissociative-bound transitions and bound-dissociative-
dissociative transitions.

A. Bound-bound-transitions

We will start the discussion with transitions between two bound states |b〉 and |b′〉. Such transitions can occur
between the ground and the core-hole state as well as between the core-hole and the final state, i.e. the vibrational
overlap matrix elements 〈χb|χb′〉 can represent the matrix elements 〈χf |χc〉 and 〈χc|χ0〉. For bound states the
potential energy curves can be described with Morse potentials described with three parameters: equilibrium distance
R0, vibrational energy h̄ω, and anharmonicity xh̄ω. The simple case of an harmonic oscillator is obtained with
xh̄ω = 0. In case of Morse potentials the vibrational overlap matrix elements 〈χb|χb′〉 can be obtained by following
the methods of Ory, Gittleman, and Maddox [2] as well as Halmann and Laulich [3]. Details of a corresponding fit
approach are discussed in Ref. [4].

B. Bound-dissociative-transitions

In the following discussion of transitions between a bound state |b〉 and a dissociative state |d〉 we have to
calculate the Franck-Condon factor 〈χd|χb0〉 where |χd〉 is the continuum wavefunction for the energy Ed and |χb0〉
the wavefunction of the vibrational ground state of the state |b〉. Bound-dissociative transitions can occur between the
ground and the core-hole state as well as between the core-hole and the final state, so that the matrix elements 〈χd|χb0〉
can represent the matrix elements 〈χf |χc〉 and 〈χc|χ0〉. The potential energy curves and the nuclear wavefunctions
are presented in Fig. 3 of the main text.

For the calculation we assume that the slope of the dissociative potential energy curve is constant. Moreover,
we assume that the bound state is the initial state and that only the vibrational ground state of the bound state is
populated. By applying an harmonic oscillator potential for the bound state the vibrational wavefunction is given by

χb0(x) =

(
1

πa2
0

)1/4

exp

[
−1

2

(
x

a0

)2
]

(13)

with a0 =
(

h̄
µω0

)1/2

. Here, µ is the reduced mass, ω0 the vibrational frequency, and a0 the average deviation of

x = R−R0 with R0 being the equilibrium distance.
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FIG. 1: Airy functions for reduced masses µ = 1 and 15 mproton as well as slopes of −10 and −15 eV/Å. The internuclear
distances are given relative to the classical turning point.

As stated above, we approximate the dissociative potential energy curve with a linear function, i.e. V (x) =
−Fdx with Fd being the slope of the dissociative state. The corresponding Schrödinger equation to be solved is given
by

d2χd
dx2

+
µ

h̄2 (E + Fdx)χd = 0, (14)

with µ being the reduced mass of the molecule. With the substitution [5]

ζ =

(
x+

E

Fd

)(
2µFd

h̄2

)1/3

(15)

on obtains the Airy-equation

d2χd
dζ2

+ ζχd = 0. (16)

This differential equation is solved by the Airy functions Ai(ζ) and Bi(ζ). The latter function is not square-intelerable
and can be neglected so that the relevant solution is given by the Airy functions Ai(ζ). In this way, the solution of
the initial Schrödinger equation (eqn. 14 is given by

χd,E(x) =
(2µ)1/3

h̄2/3F
1/6
d

Ai

[
− (2µFd)

1/3

h̄2/3

(
x+

E

Fd

)]
. (17)

Obviously, the wave functions for different energies E are shifted along the internuclear coordinate x while changes
in the slope Fd as well as in the reduced mass µ influence the oscillations of the function. In order to get an idea
about the length of the oscillations Fig. 1 shows the Airy functions for the µ = 1 mproton and µ = 17 mproton which

represents e.g. HCl and Cl2, respectively. For both masses typical slopes of −10 eV/Å and −15 eV/Å were used in
the calculations.

With the substitutions a = E
Fd

and α =
(
− (2µFd)1/3

h̄2/3

)−1

one obtains

χd,E(x) =
1

αF
1/2
d

Ai

[
x+ a

α

]
. (18)
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For x+a
α < 0 the Airy function decreases quickly and for x+a

α > 0 it oscillates strongly. Based on this, the Franck-
Condon factor can be approximated to

〈χd|χb0〉 ∼=
(

2µα3

√
πa0

)1/2

× exp

[
−1

2

(
∆Ed
γd

)2
]

(19)

with ∆Ed = E − Fdα and γd = Fda0 [1]. Here E is the the energy relative to Ud(R0).
Obviously, the dependence of the Franck-Condon factors on the energy E can be described with a Gaussian

distribution as for the nuclear wavefunction in the ground state. Because of this, the behaviour of the Franck-Condon
factors can be obtained by approximating the Airy functions by δ functions, which peak at the classical turning point.
Note that in this way the energy shift Fdα can not be reproduced. One should also mention that the approximation
of the Airy function by a δ function is not obvious since the width of the first oscillation of the Airy function is
comparable to the width of the nuclear ground state, see Fig. 3 of the main text. However, it has been shown that
the Franck-Condon factors of the exact solution and the approximation deviate only very slightly, see Herzberg [6].
The approximation of the Airy functions with δ functions allow also a derivation of the Franck-Condon factors for
higher vibrational states in the bound potential, see e.g. [7].

C. Dissociative-dissociative-transitions

In the following we want to consider transitions between two dissociative states |d〉 and |d〉′. Such transitions
can occur in the present study only between the core-excited and the final states. In the calculation of the vibrational
matrix elements 〈χd|χ′d〉, the nuclear wavefunctions can be described with Airy functions, which allows to use [8]

1

|αβ|

∫ ∞
−∞

Ai

[
x+ a

α

]
Ai

[
x+ b

β

]
dx =

{
δ(b− a) if α = β

1
|β3−α3|1/3Ai

[
b−a

(β3−α3)1/3

]
if β > α.

(20)

Note that α = β if the slopes of the two potential energy curves involved are equal. This assumption is generally
assumed to be valid for Resonant Inelastic X-ray Scattering (RIXS) spectra. In this case a nuclear wavefunction in
the electronic final state is populated via one nuclear wavefunction in the initial state. As a result of a excitation
and decay process the intermediate nuclear state is always exactly known so that no vibrational lifetime interference
occurs.

III. THE ENTIRE EXCITATION AND DECAY PROCESS

A. The bound-bound-bound case

In the case of bound-bound-bound transitons one can start with equation 12 by taking into account that the
vibrational levels are all discrete. In this case the vibrational matrix elements 〈χf |χc〉 and 〈χc|χo〉 can be calculated
by the approach given in section II A. Details on the simulation of bound-bound-bound transitions can be found in
Refs. [9, 10].

B. The bound-dissociative-dissociative case

In the bound-dissociative-dissociative case the potential energy curves of the intermediate and the final state
are approximated by linear slopes. Here we can distinguish between two cases, namely identical and different slopes
for the two involved potential energy curves. The first case is realized in case of RIXS since here is one deep core hole
in the intermediate and one shallow core hole in the final state. Since in both states only one core hole influences
the valence shell the potential energy curves are expected to be very similar. The second case of different slopes is
realized in Auger processes since here the number of core holes increase by one during the decay.

We start with eqn. 12 and assume a infinite lifetime for the final state. The overlap integral 〈χ0|χc〉 can be
replace by eqn. 19. The treatment of the overlap integral 〈χc|χf 〉 shows, however, differences for identical and different
slopes, although the final results are identical.

In case of identical slopes we can use Airy functions for the continuum and obtain form the upper line of

eqn. 20 as an exact result 〈χ0|χc〉 = δ
(

∆Ec

Fc
− ∆Ef

Ff

)
with Fc = Ff . This δ-function ensures that a given final-state
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nuclear wave function can be populated only via one given core-hole nuclear wavefunction so that vibrational lifetime
interference can be ruled out. In contrast to this, the lower line of eqn. 20 shows that in case of different slopes of
the potential energy curves a given final-state nuclear wave function can be populated can be populated via different
core-hole nuclear wavefunction, i.e. vibrational lifetime interference cannot be strictly ruled out.

However, as discussed above, it was shown that for a bound-dissociative transition the Airy function can be
replace by a δ function localized at the classical turning point. We now assume that this also works well for a
dissociative-dissociative transition with different slopes for the potential energy curves, i.e.

|χc〉 = δ(R− (R0 −
∆Ec
Fc

)) and |χf 〉 = δ(R− (R0 −
∆Ef
Ff

)). (21)

Here, ∆Ei is the deviation of the energy from the potential energy curve at the equilibrium distance, Ui(R0) and Fi
the slope of the potenial of the state |χi〉. From this follows

〈χc|χf 〉 =

∫
dR δ(R− (R0 −

∆Ec
Fc

)) · δ(R− (R0 −
∆Ef
Ff

)) = δ

(
∆Ec
Fc
− ∆Ef

Ff

)
, (22)

i.e. we obtain the same δ-function as in case of identical slopes for the potential energy curves. This means that once
again a final state can be populated only by one intermediate state and vibrational lifetime interference is suppressed.
We will now first solve the general Auger case and than specify for the RIXS case by using Ff = Fc. With the given
information on the overlap integrals we can rewrite eqn. 12 as

σ(ω, ω′) ∝
∫
d∆Ef

∣∣∣∣∣∣∣∣
∫
d∆Ecexp

[
− 1

2

(
∆Ec

γc

)2
]
δ
(

∆Ec

Fc
− ∆Ef

Ff

)
ω − ωco(R0)−∆Ec + iΓc

∣∣∣∣∣∣∣∣
2

δ(ω − ω′ − ωfo(R0)−∆Ef )

=

∫
d∆Ef

∣∣∣∣∣∣∣∣
exp

[
− 1

2

(
∆Ef

γf

)2
]

ω − ωco(R0)− Fc

Ff
∆Ef + iΓc

∣∣∣∣∣∣∣∣
2

δ(ω − ω′ − ωfo(R0)−∆Ef )

=

exp

[
−
(
ω−ω′−ωfo(R0)

γf

)2
]

(ω − ωco(R0)− Fc

Ff
(ω − ω′ − ωfo(R0)))2 + Γ2

c

. (23)

The integral
∫
d∆Ec replaces the sum over c in equation 12 since in the present case there is a continuum of core-

hole states. Moreover, ωco(R0), ωfo(R0), and ωcf (R0) represent the energy differences between the states at the
equilibrium distance R0. The integration over the different final states is represented by the integration

∫
d∆Ef .

As discussed in section I B in case of a resonant Auger decay to final states with finite lifetime, the δ-function
in eqn. 23 has to be replace by a Lorentzian around ω − ω′ − ωfo(R0)−∆Ef and a width Γf . In this case we obtain

σ(ω, ω′) ∝
∫
d∆Ef

∣∣∣∣∣∣∣∣
∫
d∆Ecexp

[
− 1

2

(
∆Ec

γc

)2
]
δ
(

∆Ec

Fc
− ∆Ef

Ff

)
ω − ωco(R0)−∆Ec + iΓc

∣∣∣∣∣∣∣∣
2

Γf
π((ω − ω′ − ωfo(R0)−∆Ef )2 + Γ2

f )

=

∫
d∆Ef

exp

[
−
(

∆Ef

γf

)2
]

(ω − ωco(R0)− Fc

Ff
∆Ef )2 + Γ2

c

× Γf
π((ω − ω′ − ωfo(R0)−∆Ef )2 + Γ2

f )
, (24)

compare Ref. [11].
In the next step we simplify eqn. 23 by assuming the RIXS-case with Fc = Ff and obtain

σ(ω, ω′) ∝
exp

[
−
(
ω−ω′−ωfo(R0)

γf

)2
]

(ω′ − ωcf (R0))2 + Γ2
c

. (25)

This equation can be written in the following simplified way which is often used in literature, namely

σ(ω, ω′) ∝ G(Ω,Ω′,∆)× L(Ω′,Γ), (26)
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FIG. 2: Left: Lorentzian lineshape L for Γ = 1 eV, Gaussian lineshapes G for ∆ = 1 eV as well as Ω = 0 eV and 1 eV, and
resulting cross sections σ(Ω′). Right: σ(Ω′,Ω) for Ω = 0 to 4 eV.

i.e. it is the product of the Gaussian function

G(Ω,Ω′,∆) = exp
{
−((Ω′ − Ω)/∆)2ln2

}
(27)

and a Lorentzian function

L(Ω′,Γ) =
1

Ω′2 + Γ2
c

. (28)

Here Ω = ω−ωco(R0) is the difference between the photon energy ωand the vertical transition energy ωco(R0) between
the intermediate and the ground state, i.e. the small energy shift of Fα is neglected. Ω′ = ω′−ωfc(R0) is the deviation
of the outgoing photon energy ω′ from the energy difference of the potential energy curves of the intermediate and
the final state ωfc(R0). Note that here ωfc is independent of the the internuclear distance since the potential energy

curves are assumed to be parallel, see above. Moreover, ∆ =
√

ln(2)γc is the HWHM of the Franck-Condon factor.
In the following we shall discuss the lineshapes resulting from eqn. 25. As can be seen in Fig. 2, the Lorentzian

function is always centered around Ω′ = 0, i.e. its maximum is at the emitted photon ω′ = ωfc(R0). In contrast to
this, the maximum of the Gaussian function does not only depend on ω′ but also on the excitation energy ω. Instead,
the maximum of the Gaussian function is at Ω′ = Ω, i.e. it depend on the actual excitation energy ω. Since σ(ω, ω′)
is a product of a Lorentzian with the maximum at Ω′ = 0 and a Gaussian with the maximum at Ω′ = Ω its maximum
depends on the photon energy ω. This can be seen in Fig. 2. In the left part of this Figure we see the Lorentzian
(solid black line) and two Gaussians for Ω = 0 eV and 1 eV (dotted and dashed black line, respectively). Finally,
the resulting cross sections for Ω = 0 eV and 1 eV are represented by the solid red and blue lines, respectively. Note
that the blue line shows a strong assymetry. In the right part of the figure cross sections for five different values of
Ω can be seen. From these lineshapes it can be seen that (i) the peak position and (ii) the peak width changes with
the photon energy. In more detail, the maximum is at Ω′ − Ω = 0 eV for Ω = 0 eV. Than it first increases with Ω,
see Ω = 1 eV. At higher values the deviation decreases again, see Ω = 2 to 4 eV. Moreover, one sees also a complex
behaviour for the linewidth (FWHM). This is minimal for Ω = 0 eV and increase first with increasing Ω. At higher Ω
(not seen here) the width decreases again and converges towards the the Frank-Condon width ∆. A detailed behavior
these two quantities as a function of the photon energy is e.g. presented in [13].

In the following we will discuss the physical meaning of these lineshapes. For this, Figure 3 show a schematic
picture of the RIXS process using a bound ground state in the harmonic approximation as well as a dissociative
core-hole and final state in the linear approximation. Note that the dissociative character of the latter two states
cause a continuum of nuclear wavefunctions each. For the ground state the nuclear wavefunction represented by a
Gaussian distribution is shown in red. The blue curves represent Lorentzian distributions which are caused by the
core-hole lifetime. Moreover, excitations and decays at three different internuclear distances are shown. For the middle
transition the energy difference of the ground state and the core-hole state is equal to the photon energy ω. Because of
this, the excitation probability is given by the product of the Franck-Condon factor for the corresponding internuclear
distance and the maximum of the Lorentzian function. For the left and right transitions the photon energy is smaller
and larger compared to the transition energy, respectively. Because of this the excitation probability governed by the
Lorentzian function is reduced. In addition, the Franck-Condon factors are changed since the excitation occurs at a
different internuclear distance. In summary, the probability of the transitions depend on the internuclear distance at
which they take place and can be described by the product of a Lorentzian and a Gaussian function. By assuming
that the internuclear distance does not change in the entire process and using the fact that the energy of the final
state depends on the internuclear distance one obtains different energies ω′ for the emitted photons.
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FIG. 3: Schematic picture to understand the lineshapes in the RIXS case. Given are the potential energy curves of a bound
ground state |o〉 as well as the two dissociative states |c〉 and |f〉. The red Gaussian represents the vibrational wavefunction of
the ground state. The blue lower Lorentzian indicates for a photon energy ω the internuclear distances at which the transition
can take place with respect to energy conservation and the finite lifetime of the core-hole state. For more details, see text.

This now also allows to understand the non-linear dispersion typical for a bound-dissociative-dissociative process
as shown e.g. in Fig. 6 of the main text. For the case that the Gaussian function is much broader than the Lorentzian
function, see Fig. 3 it can readily be shown by simple simulations that the for small values of Ω the maximum of
the product of the Lorentian and the Gaussian is close to the maximum of the Lorentzian. This means that for
different photon energies around the resonance energy ωco(R0) the excitation process takes mainly place at different
internuclear distances around the equilibrium distance. In more detail, the process takes place very close to that
internuclear distance where the energy difference between the ground state and the intermediate state is equal to the
photon energy ω. Since the resonant Auger decay always occurs at the same distance and since the potential energy
curves are parallel, the emitted particle has the energy ωcf (R0), i.e. is not dependent on the photon energy ω. In
contrast to this, for large detunings of Ω the maximum of the product of the Lorentian and the Gaussian is close to
the maximum of the Gaussian. This means that the exciation takes place at the equilibrium distance. Because of
this, the process ends at the same distance on the potential of the final state, i.e. ω′ = ω−ωcf (R0) because of energy
conservation. Consequently, ω′ disperses linearly with ω.

It should be noted that Gel’mukhanov and Ågren investigated a mathematical identical case, however with
different phyical quantities, and derive the non-linear behaviour of the dispersion analytically [12]. They investigate
the energy positions and widths of atomic resonant Auger features as a function of the lineshape and the experimental
resultion, where the lineshape is given by a product of a Lorentzian, see eqn. 5 and a Gaussian that represents the
photon bandwidth.

C. The bound-dissociative-bound case

In the following we discuss the exotic case of a bound ground state, a bound final state and a dissociative
intermediate state. This case is only realized in the shake-up process during the Auger decay. To describe this process
we start again with equation 12 and assume an infinite lifetime of the final state. Moreover, we approximate the
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core-hole state with |χc〉 = δ(R− (R0 − ∆Ec

Fc
)). In this way we obtain

σ(ω, ω′) ∝
∑
f

∣∣∣∣ ∫ d∆Ec〈χf |χc〉〈χc|χ0〉
ω − ωco(R0)−∆Ec + iΓc

∣∣∣∣2 δ(ω − ω′ − ωfo(R0)−∆Ef )

=
∑
f

∫
d∆Ec

∫
d∆Ẽc

χf (R0 − ∆Ec

Fc
)χ0(R0 − ∆Ec

Fc
)

[ω − ωco(R0)−∆Ec + iΓc]
×

χf (R0 − ∆Ẽc

Fc
)χ0(R0 − ∆Ẽc

Fc
)[

ω − ωco(R0)−∆Ẽc − iΓc
] × δ(ω − ω′ − ωfo). (29)

Here χ0(R) and χf (R) are the vibrational wavefunctions of the bound intial and final state. The integrals
∫
d∆Ec

and
∫
d∆Ẽc ensure that all possible intermediate core-excited states are taken into account. In case of a final state

with finite lifetime we once again have to replace the δ-function by a Lorentzian function and obtain

σ(ω, ω′) ∝
∑
f

∫
d∆Ec

∫
d∆Ẽc

χf (R0 − ∆Ec

Fc
)χ0(R0 − ∆Ec

Fc
)

[ω − ωco(R0)−∆Ec + iΓc]
×

χf (R0 − ∆Ẽc

Fc
)χ0(R0 − ∆Ẽc

Fc
)[

ω − ωco(R0)−∆Ẽc − iΓc
] × 1

(ω − ω′ − ωfo)2 + Γ2
f

. (30)

D. The bound-dissociative-bound case

The last case we want to discuss is the bound-bound-dissociative case. By already assuming a finite lifetime
for the final state and the arguments given above we obtain

σ(ω, ω′) ∝
∫
d∆Ef

∣∣∣∣∣∑
c

〈χf |χc〉〈χc|χo〉
ω − ωco + iΓc

∣∣∣∣∣
2

× 1

(ω − ω′ − ωfo)2 + Γ2
f

. (31)

The overlap matrix elements 〈χc|χo〉 for the bound-bound excitation can be calculated given by the method described
in section II A. The matrix elements 〈χf |χc〉 can be obtained by following the method described in section II B. In
detail, for the matrix element 〈χf |0c〉 eqn. 19 can be used. For higher vibrational levels in the core-hole state we refer
to Püttner et al. [7].

IV. COMPARISON OF EXPERIMENTAL AND SIMULATED PARTIAL ELECTRON YIELD
SPECTRUM

In Fig. 4 a direct comparison of the simulated and the experimental electron yield is given and shows a good
agreement.
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