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SI 1 List of symbols and abbreviations
Table S1 Lists of symbols for variables and constants and abbreviations for sub- and subscripts. 

Variables, 
constants

Unit Description Comment

a Activity
A Geometric factor
cBET BET constant
c mol/cm3 Volume concentration
C F Capacitance
D cm2/s Random diffusion coefficient
dg cm Grain and pore size
E kJ/mol Heat of adsorption Enters in cBET
F C/mol Faraday constant 96485 C/mol
G S Conductance
ΔH kJ/mol Enthalpy change
K Equilibrium coefficient
l cm Length of surface layer sheet
M Metal M = Ti, Zr, Ce…
Mm g/mol Molar mass
p bar Partial pressure
R J/molK Gas constant 8.3144 J/molK
R ohm Resistance
RH Relative humidity = 

2H O ce/p p
s cm Jump distance
ΔS J/molK Entropy change
SSAg cm2/g Specific surface area, gravimetric
SSAv cm2/cm3 Specific surface area, volumetric
SSAm cm2/mol Specific surface area, molar
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T K Absolute temperature
t cm Thickness of surface layer
u cm2K/Vs Charge mobility
w cm Width of surface layer sheet
X Site fraction
Z ohm Impedance
γ mol/cm2 Surface concentration Gamma
ε0 F/cm Vacuum permittivity 8.854‧10-14 F/cm
εe F/cm Effective dielectric constant Epsilon
εr Relative dielectric constant Epsilon
θ Surface coverage Theta, = ν / νm
ν mol/cm2 Molar concentration of physisorbed water Nu
νm mol/cm2 Molar concentration of a monolayer of water Nu
ξ Percolation power Xi
ρ g/cm3 Density Actual material
ρr Relative density Rho
ρt g/cm3 Theoretical density Dense material
σ S/cm Conductivity Sigma
ψ 1/cm BLM porosity surface factor Psi, = σM,s / Gs
ω0 1/s = Hz Vibrational attempt frequency Omega
Subscripts
1st level 2nd level
a adsorption

chm    chemisorbed molecular
chd    chemisorbed dissociative
ph1    1st physisorbed
ph2    2nd physisorbed

d dissociation
chm    in chemisorbed molecular layer
chm-s    from chemisorbed molecular layer to surface
chm-ph1    from chemisorbed molecular to 1st physisorbed 
ph1    in 1st physisorbed layer

m migration = diffusion
m,H+ migration of H+ Grotthuss
m,H3O+ migration of H3O+ vehicular in ph2
0 preexponential like in u0 and G0
M Macroscopic like in σM
s surface like in Gs
L and Lp One layer and one layer with effect of percolation in Gs,L and Gs,Lp
ce condensation equilibrium in pce and Kce
r relative like in ρr and εr
geom geometric
cvex convex
cave concave
Superscript
0 standard like in p0 and G0

SI 2  Impedance spectra
Representative impedance spectra of samples sintered at low and high temperatures, measured 
at low and high temperatures, and in wet or dry atmosphere, are shown in Figure S1. The main 
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features are described in the main text, while we in SI 3 provide a more detailed assessment of 
the origin and parameters of the two high-frequency responses.

Figure S1. Impedance spectra (–Zim vs ZRe in ohms) as measured at 30°C (a and c), 400°C (b and d) in wet ( = 0.03 
2H Op

bar) Ar and at 800°C (e and f) in dry Ar for the samples sintered at 700°C (a and b), 1000°C (e), and 1100°C (c, d, f). 
The equivalent circuit used to model the data was either (R1Q1)(R2Q2) in wet (exemplified in (a)) or (R1Q1)(R2Q2)(R3Q3) 
in dry (exemplified in (e)). Numbers along the curve show the AC frequencies. Characteristic capacitances for the two 
or three responses are indicated (these include the parasitic capacitance of the ProboStat™ cell, which in the 
configuration used amounts to a few pF).

SI 3  Origin of the two high-frequency responses 
The presence of two time constants associated with high frequencies and small bulk-like 
capacitances in these samples as well as in other porous ceramics with surface protonic 
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conduction could be attempted rationalised as due to intersecting grain boundaries or part of 
the electrode impedance. However, the high-temperature spectra in this study shows that the 
two high-frequency responses are well separated from the third response at lower frequencies 
that may be grain boundaries or electrodes. Moreover, the omnipresence of these dual time 
constants for all samples and conditions in this work and other studies of surface conduction in 
porous ceramics suggests that a more intrinsic phenomenon is at play.

Consider first two electrodes connected to a porous sample with no conductivity. It will have a 
dielectric response corresponding to the effective dielectric constant  given by those e r e 0  
of the gas phase (approximated by that of vacuum) and the ceramic phase, to a first 
approximation weighted by the relative density:

   and   r e r r1 ( 1)     e 0 r r(1 ( 1) )      Eq.  1

For bulk monoclinic ZrO2, the relative dielectric constant is approximately 20 [1], so that with 
60% relative density, we will have  ≈ 12 and  ≈ 10-10 F/m = 10-12 F/cm. Our samples with r e e
thickness 0.20 cm and electrode area 1.27 cm2 would be expected to exhibit a geometric 
capacitance of Cgeom ≈ 6∙10-12 F. With the addition of parasitic cell capacitance, this corresponds 
acceptably to the smallest capacitance responses in Figure SI 1.

If conduction would take place in the bulk of the grains, or along parallel surfaces, the response 
will be given by a simple circuit of the conductance and the capacitance in parallel, yielding a 
single bulk-like semicircle in a Nyquist plot. However, if the surface is curved, it will have 
convex features, like rounded and edged grains, and concave features, like grain necks. When 
the current passes over a convex feature, it will have a longer way to go in the conductive 
surface layer, but the parallel capacitance through the dielectric material of the grain gives this 
part of the transport a higher ratio between the parallel capacitance and the conductance 
compared to the average sample. In contrast, passing a concave part offers little capacitance 
from the gas phase there. Hence, the sample response would break up into a 
(RcaveCcave)(RcvexCcvex) type circuit, where the first part attributed to the concave features has 
low capacitance and high-frequency response, and the second one attributed to convex features 
has higher capacitance and a lower-frequency response. As an alternative, one may assign the 
geometric capacitance Cgeom in parallel over a series connection of the concave part resistance 
and the parallel (RcvexCcvex) element: (Cgeom(Rcave(RcvexCcvex))).  

Deriving parameters from a simple 3D model microstructure is a mathematical exercise beyond 
the scope of this work. In reality, parameters are even more complicated to predict and analyse 
and may be expected to be dispersed due to variations in real microstructures. Hence, a very 
first step in this direction is to assign constant phase elements Qcvex instead of Ccvex and use 
circuits (RcaveCcave)(RcvexQcvex) or (Cgeom(Rcave(RcvexQcvex))).

Regardless of the difficulty to apply a geometrically correct model, the total surface resistance 
is Rtot = Rcave + Rcvex. We may furthermore predict that Rcvex/Rcave > 1 due to the long path around 
convex features compared with the short path across concave features like grain necks. In this 
work, the ratio is indeed typically 2-4. Somewhat larger ratios are being reported for porous 
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nanoscopic CeO2 [2] while TiO2 [3] with oriented grains have indications of larger ratios, that 
may reflect the sharper transitions between grains for materials crystallised rather than sintered.

The ratio between capacitances should be Ccvex/Ccave > 1, and predicted to reflect to a first 
approximation the ratio between the dielectric constant of the ceramic and the gas phase. The 
ratio of 2-4 in this work is considerably smaller, and we note that it is remarkably similar to the 
ratio of the resistances. 

SI 4 Temperature dependence of conductivities
The temperature dependencies of the electrical conductivity extracted from the sum of 
resistances of the two high-frequency responses (as explained above) for all samples are shown 
in Figure S2. 

Figure S2 Plot of logσ vs 1/T in wet ( = 0.03 bar) or bottle-dry Ar for samples sintered at different temperatures 
2H Op

shown in the legend. 

The results comprise samples manufactured and measured in the collaborating laboratories in 
China and Norway over a time span of several months, underlining the robustness of the 
temperature dependencies of the data. 

Another sample ST800 was measured in wet O2, and showed qualitatively the same 
conductivities and temperature dependencies as ST800 and the other samples measured in wet 
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Ar, suggesting that the oxygen partial pressure plays no significant role for ZrO2, unlike what 
it does in CeO2. [2, 4]

SI 5  Brick layer model (BLM) for surface conduction and SSA
Here, we first introduce briefly a simple brick layer model (BLM) for surface conduction in 
porous materials. Let us divide the volume of a porous material with equal grain diameters and 
pore diameters dg into cubic bricks of the same size dg so that there are 1/dg bricks in each unit 
length direction and 1/dg

2 per unit area. The bricks are statistically grains or pores. We may 
count surfaces as belonging to grains or pores; we choose to count surfaces as belonging to 
grains. The chance that a brick is a grain is proportional to the relative density ρr. 

                         

Figure S3. Schematic single layers of 6 x 6 brick “random” porous microstructures viewed from above, into the direction 
of conduction. Coloured bricks are grains, grain boundaries are thin black lines, surfaces with adsorbed water are thick 
blue lines. Densities are 5/6 (≈83%, left), ½ (50%, middle), and 2/3 (≈33%, right). Statistical numbers of conducting 
surfaces according to the model are, respectively, 20, 36, and 32 while actual numbers in a repeating matrix (counting 
only half the side surfaces) of these “random” examples of a small number of bricks are, respectively, 22, 45, and 36. 
Their overestimation of surfaces stems from the human rather than statistical selection of the microstructure. 

In the direction of conduction, only 4 of the 6 sides (2/3) of a grain can contribute a conducting 
surface, and only if the neighbouring brick is a pore. For unit area of one layer of bricks, the 
number of grain side surfaces is thus . This is a simple function that goes through 2

r r g4 (1 ) d 

a maximum of  at 50% relative density ρr = 0.5. The surface conductance Gs,L through one 2
g1 d

layer of bricks is obtained by multiplying with the side sheet surface conductance: 

r r
s,L s2

g

4 (1 )G G
d

 
 Eq.  2

Now, we consider the chance of percolation, i.e., the chance that a surface meets a new surface 
in the next layer. We take this to be the same that an interface is a surface, namely . r r(1 ) 
Hence, the area specific number of connected conducting surfaces through one layer that 
percolates to the next is . This is still a simple function with maximum at a 2 2 2

r r g4 (1 ) d 

relative density of 50%, now down at 0.25 conducting surfaces per brick, 0.5 per grain. 
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Figure S4. Schematic side views of the now vertical direction of conduction for examples of 2-layer (left) and 4-layer 
(right) brick structures both with 50% density. The 2-layer example shows that the top layer has 5 internal and one 
shared conducting surface, totalling at 5½, while the simple vertical percolation to the next layer restricts them to only 
3. Statistically the model predicts a lowering by a factor of 4 for a case of 50% density in 2-dimesional brick planes, 
while for this 1-dimensional side-view case of only one brick thickness, the factor is expectedly 2. The 4-layer example 
(right) may help the reader evaluate how vertical percolation continues to restrict pathways, until there in this case is 
no vertical percolating paths, while horizontal surfaces continue to uphold conducting although longer paths.

We might continue like this, making the conduction path ever rarer, but orthogonal surfaces 
will immediately start to connect the ones we consider, and increase the conducting pathways. 
A numerical simulation of this could be useful, but the brick model is anyway crude. Generally, 
the power that the density and porosity are raised to, 1 and 2 in the above cases, can be a variable 
ξ in the surface conductance per layer of bricks taking percolation into account, Gs,Lp:

r r
s,Lp s2

g

4 (1 )G G
d

  
 Eq.  3

In reality, an isotropic microstructure of high porosity such as for powder compacts or poorly 
sintered ceramics will have well-connected pores and ξ probably between 1 and 2, while low 
porosities and certain non-isotropic pore structures may be expected have ξ above 2. 

A unit volume will have a conductance divided by the number of layers of grains, i.e., 1/dg, so 
that we get a macroscopic specific surface conductivity σM,s for the porous material of 

s,Lp r r
M,s g s,Lp s s

g

g

4 (1 )
1

G
d G G G

d
d

   
    Eq.  4

In this formula we recognise that the essential parameters are the conductance Gs of the surface 
layer (given by its volume specific conductivity and thickness), the relative density, and the 
grain (brick) size dg. 

The surface protonic conductivity of a simple porous material according to this model is 
inversely proportional to the grain size and has a maximum at 50% relative density of σM,s = 
Gs/dg for ξ =1 and σM,s = 0.25∙Gs/dg for ξ=2.

The BLM handles in principle densities from 0 to 1 and to some extent closed porosity if ξ >1. 
In considering square bricks it underestimates conductivity by not allowing conduction along 
facets connecting otherwise unconnected grain sides. The BLM and the model proposed by 
Gregori et al. [5] model coincide well for ξ =1 (full percolation) at low porosities, while the 
BLM continues to handle the situation also as the porosity gets high.
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From the geometry of porous ceramics, we may expect macroscopic conductivities to have 
shallow peaks around 50% density at values corresponding to order of magnitude of σM = Gs/dg, 
i.e., the layer resistance in Siemens (S) divided by the grain size.

We next use the same BLM to make first approximation estimates of the specific surface area 
(SSA) of a porous material of the category we deal with here. In each layer of bricks there are 6 
sides to each cube provided that the cube is a grain and its neighbour (in all 6 directions) is a 
pore. The number of surface sides per unit area of a layer is then

r r r r
6sL 2 2

g g

6 6 (1 )pn
d d
  

  Eq.  5

The number of sides in a unit volume will be that of one layer have a surface area multiplied 
with the number of layers of grains, i.e., 1/dg; 

6sL r r
vs 3

g g

6 (1 )nn
d d

 
  Eq.  6

The volumetric specific surface area SSAv is then obtained by multiplying with the area of each 
side: 

2 r r
v vs g

g

6 (1 )SSA n d
d

 
  Eq.  7

We may convert volumetric specific surface area SSAv to gravimetric specific surface area SSAg 
by

v v
g

r s

SSA SSASSA
  

  Eq.  8

where ρ and ρr are, respectively, the density and relative density of the (porous) material, and 
ρs is the theoretical density of the dense material. We may also convert to molar specific surface 
area SSAm by

g v
m

m r s m

SSA SSASSA
M M 

  Eq.  9

where Mm is the molar mass of the material. 
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