Supporting information

for

Low-cost pentagonal NiX₂ (X=S, Se, and Te) monolayers with strong anisotropy as potential thermoelectric materials

Shuwei Tang*,^{a,b} Shulin Bai,^a Mengxiu Wu,^a Dongming Luo,^a Jingyi Zhang,^a Wen

Sun,^a and Shaobin Yang^a

^aCollege of Materials Science and Engineering, Liaoning Technical University, Fuxin,

Liaoning 123000, China.

^bFaculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China

Corresponding author :

Shuwei Tang

E-mail: tangsw911@nenu.edu.cn

College of Materials Science & Engineering

Liaoning Technical University, Fuxin, Liaoning, 123000, China

Contents

1.	Figure S1. The snapshots of AIMD simulations of the pentagonal NiX_2 (X = S,	Se,
	and Te) monolayers at 600KP	age
	S3	

2.	Figure S2. Electronic band diagrams of the pentagonal NiX ₂ (X = S, Se, and Te)
	obtained by HSE06 methodPage S4
3.	Figure S3. The magnified images of the lowest-lying acoustic frequencies in the
	phonon dispersion diagrams of the NiX ₂ (X = S, Se, and Te) monolayers near the Γ
	pointPage S5
4.	Figure S4. Seebeck coefficient and electronic conductivity corresponding to
	relaxation time as a function of carrier concentration for the <i>p</i> -type and <i>n</i> -type
	pentagonal NiX ₂ (X = S, Se, and Te) monolayers at 300KPage S6
5.	Figure S5. Electronic thermal conductivity (K_e) and power factor (PF) as a function
	of carrier concentration for the <i>p</i> -type and <i>n</i> -type pentagonal NiX ₂ (X = S, Se, and
	Te) monolayers at 300K Page S7

Figure S1. The snapshots of AIMD simulations of the pentagonal NiX_2 (X = S, Se, and Te) monolayers at 600K. The Ni, S, Se, and Te atoms are represented by the gray, yellow, green, and red balls, respectively.

Figure S2. Electronic band diagrams of the pentagonal NiX₂ (X = S, Se, and Te) obtained by HSE06 method.

Figure S3. The magnified images of the lowest-lying acoustic frequencies in the phonon dispersion diagrams of the NiX₂ (X = S, Se, and Te) monolayers near the Γ point.

Figure S4. Seebeck coefficient (*S*) and electronic conductivity corresponding to relaxation time (σ/τ) as a function of carrier concentration for the *p*-type (a, c) and *n*-type (b, d) pentagonal NiX₂ (X = S, Se, and Te) monolayers at 300K.

Figure S5. Electronic thermal conductivity (K_e) and Power factor (*PF*) as a function of carrier concentration for the (a, c) *p*-type and (b, d) *n*-type pentagonal NiX₂ (X = S, Se, and Te) monolayers at 300K.