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Supplementary Information-Superconductivity in Mo-P Compounds Under Pres-
sure and in Double-Weyl Semimetal Hex-MoP,

Xin-Hai Tu®*¢, Tao Bo??, Peng-Fei Liu“”’, Wen Yin“*, Ning Hao*¢ and Bao-Tian Wang*“>¢/
1 Structural prediction of Mo,P, (x=1-3, y=1-4)

The pressure-enthalpy diagram of Mo-P structure is presented in Fig. S1. All these systems are dynamically stable with
non-negative phonon modes. Among these structures, we predict five global stable structures and show crystal structures,
phonon modes, and band structures of them in Fig. S2. In Table S1, the lattice parameters and the Wyckoff positions of
five predicted Mo-P compounds and hex-MoP; are sorted out.

2 Superconductivity

From Fig. S3, by and large, the phonon modes of hex-MoP, are similar and remain dynamically stable under different
concentration of carrier doping except the doping of 0.4 electrons and 0.6 holes. One can see that the electron (hole)
doping decreases the phonon soft modes at H (L) point. In Fig. S4, we show superconducting transition temperature of
hex-MoP, according to concentration of carrier doping. With 0.4 h/cell doping, the temperature is enhanced up to 6.2 K.

The EPC constant A(w) is calculated, according to the Migdal-Eliashberg theoryt*4, by the integral of the Eliashberg
spectral function a?F(w) or the summation of the EPC Ay in the full BZ for all phonon modes as follow,
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Yqv is the phonon linewidth, gy is the phonon frequency of the v mode at the wave vector ¢, and N(Ef) is the electronic
density of state at the Fermi level Eg. The Y,y is defined as
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where Qg7 is the volume of BZ, &, and &4, denote the Kohn-Sham energy, and g, , +qm Tepresents the EPC matrix
element. The gy, | qm> which can be determined self-consistently by the linear response theory, describes the probability
amplitude for the scattering of an electron with a transfer of crystal momentum vector q.

Next, the superconducting transition temperature T, can be calculated by the McMillan-Allen-Dynes formula
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where oo, is the logarithmic average frequency and can be calculated by
2 ~do
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u* is the effective screened Coulomb repulsion constant and can be set to a typical value of 0.1 according to the empirical
values of 0.08 to 0.155%,

3 Hybrid functionals

In this section, we discuss the effect of hybrid functional (HF) calculations on WP. From Fig. S5, we can see that the WP is
gapped with two different HF HSE06 and PBEQ, indicating the WP is non-topologically protected and which results from
accidental degeneracy. Under negative pressure, the gap enlarges further, but the WP will appear again under positive
pressure up to 10 GPa (Fig. S6). Thus, it is convenient to study topological phase transition in hex-MoP,. The phonon
modes of hex-MoP, are similar and remain dynamically stable under different pressure, as shown in Fig. S7.
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Figure S1 (a)-(h) Calculated enthalpy difference for MogP, Mo,P, Mo4P3, MoP, Mo,P3, MoP,, MoP3, and MoP,4 at the pressure range of 0-300 GPa.
Space groups are shown in different colors.
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Figure S2 (a)-(e) Crystal structures, phonon modes, and band structures of five global stable MogP (Pm3n), MosP (/4/mcm), MoP (P4/nmm and
Pm3m), and Mo,P3 (/4/mmm) at 150 GPa, 60 GPa, 60 GPa, 100 GPa, and 100 GPa, respectively. The blue and golden ball are Mo atoms and P
atoms, respectively.



Table S1 Pressures, lattice parameters, and Wyckoff positions of five predicted Mo-P compounds and hex-MoP».

Compounds

Pressure (GPa)

Lattice parameters (A)

Wyckoff position

MosP (Pm3n)

Moy P (I4/mcm)

MoP (P4/nmm)

MoP (Pm3m)

Moy P3 (I4/mmm)

hex-MoP,

150

60

60

100

a=b=>5.577 and c = 4.623

a=B=y=90°

a=b=2980andc=5.234

a:ﬁ:y:QOo

a=b=

a=p

o

2.773
=90°

Y

a=b=2.861andc=12.706

100

a=B=y=90°

a=>b=3.345and c= 5.106
o =90° B =90° y=120°

Mo 6d 0.000 0.750 0.500
P 2a 0.500 0.500 0.500

Mo 8h 0.658 0.842 0.500
P 4a 0.500 0.500 0.750

Mo 2¢ 0.5000 0.000 0.330
P 2¢ 0.000 0.500 0.130

Mo 1a 0.0000 0.000 0.000
P 1b 0.500 0.500 0.500

Mo 4e 0.000 0.000 0.111
P1 4e 0.000 0.000 0.297
P2 2b 0.500 0.500 0.000

Mo 1a 0.000 0.000 0.000
P11a 0.333 0.667 0.713
P2 12 0.333 0.667 0.287
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Figure S3 The phonon modes of hex-MoP» with regard to concentration of carrier doping.
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Figure S4 The superconducting transition temperature T, of hex-MoP, according to concentration of carrier doping.
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Figure S6 The band structure of hex-MoP» with hybrid functionals of HSE06 under different pressure (a) 5 GPa, -5 GPa (b), 10 GPa (c), and -10Gpa
(d).
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Figure S7 The phonon modes of hex-MoP» under different pressure (a) 5 GPa, -5 GPa (b), 10 GPa (c), and -10Gpa (d).

Table S2 Fitting parameters of TBM. es are the on-site energy and ts are hopping energy. All energy parameters are in units of eV.

Fitting parameters A & & f ty t3 ta ts tg

Values 005 154 -019 0.55 0.14 -0.05 -0.16 -0.02 -0.60

Fittil‘lg parameters t7 18 9 110 11 112 113 114 115 e
Values -0.31 0.22 0.02 -0.24 -0.09 0.03 -0.06 0.08 0.05 0.00

4 Tight-binding model

We construct a three-band TBM by considering the nearest-neighbor hopping (NNP) in plane and next-NNP out of plane
between Mo atoms for hex-MoP, under the orbital basis {dyy, dxz,yz, d,2}. The Bloch wave function can be written as
follow

_ 1 K.
|Z8.7) = ﬁ%e“{" PR, 7

where | ¢, «.j) represents the o' atomic orbital of jth atom, R, is the lattice vector, and N is the number of primitive cells.
The matrix form of Hamiltonian is

chi,ﬁj = <Zl(;i|H|Zl[§j> = RZei"'R'lE;{ﬁ (Rn), (8
where
EJg(R)) = (94(r)|A19}(r—R.) ) ©

is the hopping integral between the atomic orbitals |¢é‘> at 0 and ’¢l§> at lattice vector R. Given Egﬁ (R,), the hopping
integrals to all neighboring sites can be generated by

EJS(RR,) = D' (R)EY(R,) [D/ (R)]'

(10
where D/ (R) is the matrix of the i’ irreducible representations and E¥/(R,) is the matrix composed of Egﬁ (Ry). Risa

subset of the symmetry operations of point group. MoP; is crystallized in the space group P6M2 (No. 187) which has the
point group Dj3;, symmetry,

Dy, = {E,ZC3,3C£,O';,,2S3,3GV}. (11)
The final form of Hamiltonian is given by
hi1 hiz his
Ho = hay  has |, (12)
h.c. h33
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Figure S8 The topological surface states on the (100) surface calculated from TBM.
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Figure S9 The energy dispersion obtained according to k-p model (red line) is compared with that from first-principles calculations (blue line).

where
hi1 = €1 +t1[2cos(kya) + cos(Fkya) cos(?kya)] + 3tz cos(2kya) cos(?kya) + 2tz cos(kza)
+2cos(kya){to[2cos(kea) + cos( L kya) cos(Lkya)] + 3t1g cos(1kea) cos (2 kya)} + 2t15 cos(2kza),
hiy = 2ita[sin(kea) — 2sin(3kea) cos(L2kya)] — V3 (t1 — t2) sin(3kea) sin( L kya)
+2cos(kya){2it [sin(kea) — 2sin( 1kya) cos(%kya)] — v/3(to — t10) sin(3kea) sin( L kya)},
hyz = 2its[sin(kea) + sin( 1 kea) cos( S kya)] — 21/3te sin( 2 kea) sin(Lkya)
+2cos(kza){2ity; [sin(kca) + sin(3kea) cos(@kya)] —2V/3t13sin(3kyq) sin(@kya)},
hoo = €1 + ta[2cos(kca) + cos(%kxa) cos(?kya)] + 3t; cos(%kxa) cos(@kya) + 2tz cos(kza)
+2cos (k@) {t10]2 cos (k) + cos( k) cos(%kya)] + 3to cos(1kea) cos (2 kya)} + 2t15cos(2kza),
has = 2tg[cos(kea) — cos( 2 kya) cos(@kya)] +2V/3its cos(Zkya) sin(@kya)
+2cos(kza){2t13[cos(kca) — cos(3kya) cos(?kya)] +2V/3it1, cos(Skya) sin(?kya)},
hs3 = € +t7[2cos(kya) + 4 cos(3kya) cos(‘gkya)] + 2tgcos(kza)
+2c0s(kya){t1a[2cos(kea) +4cos(2kea) cos(ékya)]} + 2ty cos(2kza),
and &s are on-site energy, ts are hopping energy. The fitting parameters are listed in Table S1.

We show topological surface states on the (100) surface calculated from infinite slabs based on TBM in Fig. S8 which
coincides with Fig. 6 (c) and (d).

(13)

5 Effective k-p hamiltonian model

Generally, the hamiltonian of a spinless two-band system is in the form of H (k) = ¥, ., . di(k)o; with according eigenval-
ues E+ = dy+ v/ d? and normalized eigen-states,

1 ( +Vd? +d, > (14)

Vem o U detia,
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Figure S10 Testing the value of constant A from different size of grids around the DWP.
Table S3 Fitting parameters of k-p model. All energy parameters are in units of eV.

Fitting parameters
Values

mq moy A A1 A2 B Bl Bz C Cl Cz
12.50 0.00 0.00 0.50 -0.33 -0.50 0.32 032 -0.10 -0.67 0.15

where oy is the identity matrix, o, are the three Pauli matrices, and dy, (k) are independent real functions of k,

> =d>+ df, +d?, Ay = 1/2(d? £ d,Vd?) is normalization constant. Considering d,, and da_ as basis, the representations
of C3 and C,.7 operations can be express as

(15)

where K is the complex conjugate operator. Therefore, the 2x2 effective k-p Hamiltonian can be expressed in terms of
polynomials of k through the invariant method as follow:

Hgy(k) = [my + Ckz + C1(k} + k) + CokZ] 0o
Ak, +Arkeks + Az (k2 — kD))o
—(Aky +A1 kykz — ZAzkxky)Gx

+[ma + Bk, + By (k} + k) + Bakz] o,

(16)

where o is Pauli matrix for orbital. The fitting parameters are listed in Table S2 and energy dispersion around the DWP is
shown in Fig. S9. To determine whether the value of constant A is zero or not, we test different size of grids around the
DWP for fitting. If grid gets smaller, we find the value of A tends to zero. Results are shown in Fig. S10.

6 Monopole charge
The Berry connection and the Berry curvature can be written as,

A=i(y|Vy),

. . xly 17
F=V xA=i(Vy|x Vi) = ,<wvm(ng+>_x g)zwvmw. a7

For a two-level system, we get general forms of the Berry connection and the Berry curvature as follow,

A= (2(d> +d, V)" (dyVid, — d,Vidy),

(18)
Fij= #Sabcda (Vidy) (dec> ’

where €., is 3-dimensional Levi-Civita symbol.
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