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1 Structural prediction of MoxPy (x=1-3, y=1-4)
The pressure-enthalpy diagram of Mo-P structure is presented in Fig. S1. All these systems are dynamically stable with
non-negative phonon modes. Among these structures, we predict five global stable structures and show crystal structures,
phonon modes, and band structures of them in Fig. S2. In Table S1, the lattice parameters and the Wyckoff positions of
five predicted Mo-P compounds and hex-MoP2 are sorted out.

2 Superconductivity
From Fig. S3, by and large, the phonon modes of hex-MoP2 are similar and remain dynamically stable under different
concentration of carrier doping except the doping of 0.4 electrons and 0.6 holes. One can see that the electron (hole)
doping decreases the phonon soft modes at H (L) point. In Fig. S4, we show superconducting transition temperature of
hex-MoP2 according to concentration of carrier doping. With 0.4 h/cell doping, the temperature is enhanced up to 6.2 K.

The EPC constant λ (ω) is calculated, according to the Migdal-Eliashberg theory1,2, by the integral of the Eliashberg
spectral function α2F(ω) or the summation of the EPC λqν in the full BZ for all phonon modes as follow,

λ (ω) = 2
∫

ω

0

α2F(ω)

ω
dω = ∑

qν

λqν , (1)

where the Eliashberg spectral function α2F(ω) is estimated by

α
2F(ω) =

1
2πN(EF)

∑
qν

γqν

ωqν

δ (ω−ωqν), (2)

and λqν is calculated by

λqν =
γqν

πhN(EF)ω2
qν

. (3)

γqν is the phonon linewidth, ωqν is the phonon frequency of the ν th mode at the wave vector q, and N(EF) is the electronic
density of state at the Fermi level EF. The γqν is defined as

γqν =
2πωqν

ΩBZ
∑

k,n,m
|gν

kn,k+qm|2δ (εkn− εF)δ (εk+qm− εF), (4)

where ΩBZ is the volume of BZ, εkn and εk+qm denote the Kohn-Sham energy, and gν
kn,k+qm represents the EPC matrix

element. The gν
kn,k+qm, which can be determined self-consistently by the linear response theory, describes the probability

amplitude for the scattering of an electron with a transfer of crystal momentum vector q.
Next, the superconducting transition temperature Tc can be calculated by the McMillan-Allen-Dynes formula

Tc =
ωlog

1.2
exp[− 1.04(1+λ )

λ −µ∗(1+0.62λ )
], (5)

where ωlog is the logarithmic average frequency and can be calculated by

ωlog = exp[
2
λ

∫
∞

0

dω

ω
α

2F(ω)logω]. (6)

µ∗ is the effective screened Coulomb repulsion constant and can be set to a typical value of 0.1 according to the empirical
values of 0.08 to 0.153–9.

3 Hybrid functionals
In this section, we discuss the effect of hybrid functional (HF) calculations on WP. From Fig. S5, we can see that the WP is
gapped with two different HF HSE06 and PBE0, indicating the WP is non-topologically protected and which results from
accidental degeneracy. Under negative pressure, the gap enlarges further, but the WP will appear again under positive
pressure up to 10 GPa (Fig. S6). Thus, it is convenient to study topological phase transition in hex-MoP2. The phonon
modes of hex-MoP2 are similar and remain dynamically stable under different pressure, as shown in Fig. S7.
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Figure S1 (a)-(h) Calculated enthalpy difference for Mo3P, Mo2P, Mo4P3, MoP, Mo2P3, MoP2, MoP3, and MoP4 at the pressure range of 0-300 GPa.
Space groups are shown in different colors.

Figure S2 (a)-(e) Crystal structures, phonon modes, and band structures of five global stable Mo3P (Pm3̄n), Mo2P (I4/mcm), MoP (P4/nmm and
Pm3̄m), and Mo2P3 (I4/mmm) at 150 GPa, 60 GPa, 60 GPa, 100 GPa, and 100 GPa, respectively. The blue and golden ball are Mo atoms and P
atoms, respectively.
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Table S1 Pressures, lattice parameters, and Wyckoff positions of five predicted Mo-P compounds and hex-MoP2.

Compounds Pressure (GPa) Lattice parameters (Å) Wyckoff position

Mo3P (Pm3̄n) 150
a = b = c = 4.393 Mo 6d 0.000 0.750 0.500
α = β = γ = 90◦ P 2a 0.500 0.500 0.500

Mo2P (I4/mcm) 60
a = b = 5.577 and c = 4.623 Mo 8h 0.658 0.842 0.500

α = β = γ = 90◦ P 4a 0.500 0.500 0.750

MoP (P4/nmm) 60
a = b = 2.980 and c = 5.234 Mo 2c 0.5000 0.000 0.330

α = β = γ = 90◦ P 2c 0.000 0.500 0.130

MoP (Pm3̄m) 100
a = b = c = 2.773 Mo 1a 0.0000 0.000 0.000
α = β = γ = 90◦ P 1b 0.500 0.500 0.500

Mo2P3 (I4/mmm) 100
a = b = 2.861 and c = 12.706 Mo 4e 0.000 0.000 0.111

α = β = γ = 90◦ P1 4e 0.000 0.000 0.297
P2 2b 0.500 0.500 0.000

hex-MoP2 0
a = b = 3.345 and c = 5.106 Mo 1a 0.000 0.000 0.000
α = 90◦, β = 90◦, γ = 120◦ P1 1a 0.333 0.667 0.713

P2 1a 0.333 0.667 0.287
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Figure S3 The phonon modes of hex-MoP2 with regard to concentration of carrier doping.
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Figure S4 The superconducting transition temperature Tc of hex-MoP2 according to concentration of carrier doping.

Figure S5 The band structure of hex-MoP2 with hybrid functionals of HSE06 (a) and PBE0 (b).

Figure S6 The band structure of hex-MoP2 with hybrid functionals of HSE06 under different pressure (a) 5 GPa, -5 GPa (b), 10 GPa (c), and -10Gpa
(d).
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Figure S7 The phonon modes of hex-MoP2 under different pressure (a) 5 GPa, -5 GPa (b), 10 GPa (c), and -10Gpa (d).

Table S2 Fitting parameters of TBM. εs are the on-site energy and ts are hopping energy. All energy parameters are in units of eV.

Fitting parameters λ ε1 ε2 t1 t2 t3 t4 t5 t6
Values 0.05 1.54 -0.19 0.55 0.14 -0.05 -0.16 -0.02 -0.60
Fitting parameters t7 t8 t9 t10 t11 t12 t13 t14 t15 t16
Values -0.31 0.22 0.02 -0.24 -0.09 0.03 -0.06 0.08 0.05 0.00

4 Tight-binding model

We construct a three-band TBM by considering the nearest-neighbor hopping (NNP) in plane and next-NNP out of plane
between Mo atoms for hex-MoP2 under the orbital basis {dxy, dx2−y2 , dz2}. The Bloch wave function can be written as
follow ∣∣χ̃k

α, j
〉
=

1√
N ∑

Rn

eik·Rn
∣∣φRn,α, j

〉
, (7)

where
∣∣φRn,α, j

〉
represents the α th atomic orbital of jth atom, Rn is the lattice vector, and N is the number of primitive cells.

The matrix form of Hamiltonian is

Hk
αi,β j ≡

〈
χ̃

k
αi|H|χ̃k

β j

〉
= ∑

Rn

eik·RnE i j
αβ

(Rn), (8)

where

E i j
αβ

(Rn) =
〈

φ
i
α(r)|Ĥ|φ

j
β
(r−Rn)

〉
(9)

is the hopping integral between the atomic orbitals
∣∣φ i

α

〉
at 0 and

∣∣∣φ j
β

〉
at lattice vector R. Given E i j

αβ
(Rn), the hopping

integrals to all neighboring sites can be generated by

E i j
αβ

(RRn) = Di (R)E i j(Rn)
[
D j (R)

]†
(10)

where Di (R) is the matrix of the ith irreducible representations and E i j(Rn) is the matrix composed of E i j
αβ

(Rn). R is a
subset of the symmetry operations of point group. MoP2 is crystallized in the space group P6̄M2 (No. 187) which has the
point group D3h symmetry,

D3h =
{

E,2C3,3C′2,σh,2S3,3σv
}
. (11)

The final form of Hamiltonian is given by

H0 =

 h11 h12 h13
h22 h23

h.c. h33

 , (12)
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Figure S8 The topological surface states on the (100) surface calculated from TBM.
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Figure S9 The energy dispersion obtained according to k·p model (red line) is compared with that from first-principles calculations (blue line).

where
h11 = ε1 + t1[2cos(kxa)+ cos(1

2kxa)cos(
√

3
2 kya)]+3t2 cos(1

2kxa)cos(
√

3
2 kya)+2t3 cos(kza)

+2cos(kza){t9[2cos(kxa)+ cos(1
2kxa)cos(

√
3

2 kya)]+3t10 cos(1
2kxa)cos(

√
3

2 kya)}+2t15 cos(2kza),
h12 = 2it4[sin(kxa)−2sin(1

2kxa)cos(
√

3
2 kya)]−

√
3(t1− t2)sin(1

2kxa)sin(
√

3
2 kya)

+2cos(kza){2it11[sin(kxa)−2sin(1
2kxa)cos(

√
3

2 kya)]−
√

3(t9− t10)sin(1
2kxa)sin(

√
3

2 kya)},
h13 = 2it5[sin(kxa)+ sin(1

2kxa)cos(
√

3
2 kya)]−2

√
3t6 sin(1

2kxa)sin(
√

3
2 kya)

+2cos(kza){2it11[sin(kxa)+ sin(1
2kxa)cos(

√
3

2 kya)]−2
√

3t13 sin(1
2kxa)sin(

√
3

2 kya)},
h22 = ε1 + t2[2cos(kxa)+ cos(1

2kxa)cos(
√

3
2 kya)]+3t1 cos(1

2kxa)cos(
√

3
2 kya)+2t3 cos(kza)

+2cos(kza){t10[2cos(kxa)+ cos(1
2kxa)cos(

√
3

2 kya)]+3t9 cos(1
2kxa)cos(

√
3

2 kya)}+2t15 cos(2kza),
h23 = 2t6[cos(kxa)− cos(1

2kxa)cos(
√

3
2 kya)]+2

√
3it5 cos(1

2kxa)sin(
√

3
2 kya)

+2cos(kza){2t13[cos(kxa)− cos(1
2kxa)cos(

√
3

2 kya)]+2
√

3it12 cos(1
2kxa)sin(

√
3

2 kya)},
h33 = ε2 + t7[2cos(kxa)+4cos(1

2kxa)cos(
√

3
2 kya)]+2t8 cos(kza)

+2cos(kza){t14[2cos(kxa)+4cos(1
2kxa)cos(

√
3

2 kya)]}+2t16 cos(2kza),

(13)

and εs are on-site energy, ts are hopping energy. The fitting parameters are listed in Table S1.
We show topological surface states on the (100) surface calculated from infinite slabs based on TBM in Fig. S8 which

coincides with Fig. 6 (c) and (d).

5 Effective k·p hamiltonian model
Generally, the hamiltonian of a spinless two-band system is in the form of H(k) = ∑i=0,x,y,z di(k)σi with according eigenval-
ues E± = d0±

√
d2 and normalized eigen-states,

ψ± =
1

A±

(
±
√

d2 +dz
dx + idy

)
, (14)
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Figure S10 Testing the value of constant A from different size of grids around the DWP.

Table S3 Fitting parameters of k·p model. All energy parameters are in units of eV.

Fitting parameters m1 m2 A A1 A2 B B1 B2 C C1 C2
Values 12.50 0.00 0.00 0.50 -0.33 -0.50 0.32 0.32 -0.10 -0.67 0.15

where σ0 is the identity matrix, σx,y,z are the three Pauli matrices, and d0,x,y,z(k) are independent real functions of k,

d2 = d2
x +d2

y +d2
z , A± =

√
2(d2±dz

√
d2) is normalization constant. Considering dxy and dx2−y2 as basis, the representations

of C3 and C2T operations can be express as

D(C3) =

[
− 1

2 −
√

3
2√

3
2 − 1

2

]
,

D(C2yT ) =

[
−1 0
0 1

]
K,

(15)

where K is the complex conjugate operator. Therefore, the 2×2 effective k·p Hamiltonian can be expressed in terms of
polynomials of k through the invariant method as follow:

Heff(k) = [m1 +Ckz +C1(k
2
x +k2

y)+C2k2
z ]σ0

+[Akx +A1kxkz +A2(k
2
x −k2

y)]σz
−(Aky +A1kykz−2A2kxky)σx

+[m2 +Bkz +B1(k
2
x +k2

y)+B2k2
z ]σy,

(16)

where σ is Pauli matrix for orbital. The fitting parameters are listed in Table S2 and energy dispersion around the DWP is
shown in Fig. S9. To determine whether the value of constant A is zero or not, we test different size of grids around the
DWP for fitting. If grid gets smaller, we find the value of A tends to zero. Results are shown in Fig. S10.

6 Monopole charge
The Berry connection and the Berry curvature can be written as,

A =i〈ψ|∇ψ〉,
F = ∇×A = i〈∇ψ|× |∇ψ〉= i 〈ψ+|∇H|ψ−〉×〈ψ−|∇H|ψ+〉

(E+−E−)2 .
(17)

For a two-level system, we get general forms of the Berry connection and the Berry curvature as follow,

Ai = (2(d2±dz
√

d2))−1(dy∇idx−dx∇idy),
Fi j =

1
2d3 εabcda(∇idb)(∇ jdc),

(18)

where εabc is 3-dimensional Levi-Civita symbol.
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