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Figure S1: (a,b) Optimised geometry of the a-PTCDA unit cell, projected along the a (top) and b (bottom)
crystallographic axes (colour scheme: C = brown, H = white, O = red). The individual PTCDA molecules are
arranged in the typical ’herringbone’ configuration and the molecular planes are all parallel, which is consistent
with the known structure of the a-polymorph. (¢) Comparison between the X-ray diffraction data predicted by the
literature reference, [I] the relaxed structure calculated by Density Functional Theory (DFT), and the experimental
powder diffraction data of the PTCDA sample used in this publication.



Figure S2: Visualisation of non-covalent interactions of PTCDA intercalated with A3t (left), AICI** (center), AICIS
(right), using the method developed by Contreras-Garcia et al.[2] The green regions overlapping the aromatic regions
of the PTCDA molecules represent 7-m-stacking interactions in the lattice. It can be seen that the AICI**-intercalated
structure presents the strongest interactions, as indicated by the fuller regions. On the other hand, the intermolecular
interactions are greatly reduced in the case of AICIJ intercalation. Isosurfaces value: 0.3.
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Figure S3: Band diagram, density of states (DOS) and projected density of states (pDOS) for the calculated structure

of a-PTCDA.
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Figure S4: Band diagram, density of states (DOS) and projected density of states (pDOS) for the calculated structure
of PTCDA-AL.
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Figure S5: Band diagram, density of states (DOS) and projected density of states (pDOS) for the calculated structure
of PTCDA-(AICI)s.
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Figure S6: Band diagram, density of states (DOS) and projected density of states (pDOS) for the calculated structure
of PTCDA-(AICL,)s.
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Figure S7: Band diagram, density of states (DOS) and projected density of states (pDOS) for the calculated structure
of the partially intercalated structure PTCDA-AL
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Figure S8: Band diagram, density of states (DOS) and projected density of states (pDOS) for the calculated structure
of the partially intercalated structure PTCDA-AICI.
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Figure S9: Predicted FT-IR spectra for PTCDA and PTCDA-Al,, compared with the experimental FT-IR spectra of
the PTCDA cathode discharged at different voltages. Although some of the experimental peaks can be attributed to
the pristine PTCDA material, the predicted spectrum for PTCDA-Al; shows poor agreement with the acquired data,
thus further disproving the intercalation of Al** as the redox mechanism.
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Figure S10: Predicted X-ray diffractograms for the intercalated PTCDA structures.
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Figure S11: EDX spectra for partially discharged and discharged-charged PTCDA cathodes. the Mo and F peaks are
relative to the metallic current collector and the fluorinated binder polymer, respectively.

Sample C:Al ratio AL:CI ratio
Discharged 0.8 V 35.3:1 1:2.08
Discharged 0.4 V 27.3:1 1:1.58
Discharged 0.4 V, Charged 1.7 V 47.7:1 1:1.98

Table S1: EDX Atomic ratios of the cycled PTCDA cathodes. The C:Al ratio is consistent with a progressive increase
of Al content in the cathode as discharge progresses, and a decrease upon re-charge. The Al:Cl ratio is consistent
with the presence of residual chloroaluminate ions, resulting in a value larger than 1.
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