Unraveling the multivalent Aluminium-ion redox mechanism in 3,4,9,10-Perylenetetracarboxylic dianhydride (PTCDA)

February 3, 2022

Nicolò Canever and Thomas Nann

Supporting information

Figure S1: (a,b) Optimised geometry of the α-PTCDA unit cell, projected along the a (top) and b (bottom) crystallographic axes (colour scheme: $\mathrm{C}=$ brown, $\mathrm{H}=$ white, $\mathrm{O}=$ red). The individual PTCDA molecules are arranged in the typical 'herringbone' configuration and the molecular planes are all parallel, which is consistent with the known structure of the α-polymorph. (c) Comparison between the X-ray diffraction data predicted by the literature reference, [1] the relaxed structure calculated by Density Functional Theory (DFT), and the experimental powder diffraction data of the PTCDA sample used in this publication.

Figure S2: Visualisation of non-covalent interactions of PTCDA intercalated with Al^{3+} (left), AlCl^{2+} (center), AlCl_{2}^{+} (right), using the method developed by Contreras-García et al. 2 2 The green regions overlapping the aromatic regions of the PTCDA molecules represent π - π-stacking interactions in the lattice. It can be seen that the AlCl^{2+}-intercalated structure presents the strongest interactions, as indicated by the fuller regions. On the other hand, the intermolecular interactions are greatly reduced in the case of AlCl_{2}^{+}intercalation. Isosurfaces value: 0.3.

Figure S3: Band diagram, density of states (DOS) and projected density of states (pDOS) for the calculated structure of α-PTCDA.

Figure S4: Band diagram, density of states (DOS) and projected density of states (pDOS) for the calculated structure of PTCDA- Al_{2}.

Figure S5: Band diagram, density of states (DOS) and projected density of states (pDOS) for the calculated structure of PTCDA- $(\mathrm{AlCl})_{2}$.

Figure S6: Band diagram, density of states (DOS) and projected density of states (pDOS) for the calculated structure of PTCDA- $\left(\mathrm{AlCl}_{2}\right)_{2}$.

Figure S7: Band diagram, density of states (DOS) and projected density of states (pDOS) for the calculated structure of the partially intercalated structure PTCDA-Al.

Figure S8: Band diagram, density of states (DOS) and projected density of states (pDOS) for the calculated structure of the partially intercalated structure PTCDA-AlCl.

Figure S9: Predicted FT-IR spectra for PTCDA and PTCDA-Al ${ }_{2}$, compared with the experimental FT-IR spectra of the PTCDA cathode discharged at different voltages. Although some of the experimental peaks can be attributed to the pristine PTCDA material, the predicted spectrum for PTCDA $-\mathrm{Al}_{2}$ shows poor agreement with the acquired data, thus further disproving the intercalation of Al^{3+} as the redox mechanism.

Figure S10: Predicted X-ray diffractograms for the intercalated PTCDA structures.

Figure S11: EDX spectra for partially discharged and discharged-charged PTCDA cathodes. the Mo and F peaks are relative to the metallic current collector and the fluorinated binder polymer, respectively.

Sample	C:Al ratio	Al:Cl ratio
Discharged 0.8 V	$35.3: 1$	$1: 2.08$
Discharged 0.4 V	$27.3: 1$	$1: 1.58$
Discharged 0.4 V, Charged 1.7 V	$47.7: 1$	$1: 1.98$

Table S1: EDX Atomic ratios of the cycled PTCDA cathodes. The C:Al ratio is consistent with a progressive increase of Al content in the cathode as discharge progresses, and a decrease upon re-charge. The $\mathrm{Al}: \mathrm{Cl}$ ratio is consistent with the presence of residual chloroaluminate ions, resulting in a value larger than 1.

References

[1] K. Tojo and J. Mizuguchi, "Refinement of the crystal structure of -3,4:9,10-perylenetetracarboxylic dianhydride, C24H8O6, at 223 K," Zeitschrift für Kristallographie - New Crystal Structures, vol. 217, pp. 253-254, June 2002. Publisher: De Gruyter (O).
[2] J. Contreras-García, E. R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. N. Beratan, and W. Yang, "NCIPLOT: A Program for Plotting Noncovalent Interaction Regions," Journal of Chemical Theory and Computation, vol. 7, pp. 625-632, Mar. 2011. Publisher: American Chemical Society.

