Mobility Driven Thermoelectric and Optical Properties of Two-Dimensional Halidebased Hybrid Perovskites: Impact of Organic Cation Rotation

Hardik L. Kagdada¹, Sanjeev K. Gupta², Satyaprakash Sahoo^{3,4}, and Dheeraj K. Singh^{1,*}

¹Department of Basic Sciences, Institute of Infrastructure Technology Research And Management (IITRAM), Ahmedabad 380026, India

²Computational Materials and Nanoscience Group, Department of Physics, St. Xavier's College,

Ahmedabad 380009, India

³Institute of Physics, Bhubaneswar 751005, India

⁴Homi Bhabha National Institute, Mumbai 400085, India

*Corresponding author: <u>dheerajsingh84@gmail.com</u>; <u>dheerajsingh@iitram.ac.in</u>

Figure S1. Projected density of states (PDOS) with the projection of I-5(p_x , p_y and p_z) and Pb-6(p_x , p_y and p_z) orbitals for each MA cation rotation in Pb-I network. Fermi level located at 0 eV.

Figure S2. Charge density iso-surfaces (for HOMO and LUMO level) (without SOC) with MA cation rotation.

Figure S3. Part of the valence band structure (along the Γ -X-Y high symmetry direction of BZ for A1-A4 and R1-R5 structures) calculated with spin-orbit coupling (SOC) effects for visualization of Rashba splitting with the rotation of MA cation.

Figure S4. SOC-Projected density of states (PDOS) (a) Pb-6p and (b) I-5p orbitals including spin orbit coupling effects for A1-A4 structures (symmetric rotation of MA cation) and R1-R5 (Random rotation of MA cation). Fermi level located at 0 eV.

Figure S5. Anisotropic transport coefficients (for holes) Seebeck coefficients (S), electrical conductivity (σ) and thermoelectric power factor (S² σ) for rotation A1-A4 (upper panel) and R1-R5 (lower panel) respectively. Here solid and dashed lines determine the respective transport properties along x and z-axis of structure, respectively.

The electrical conductivity and Seebeck coefficients have been calculated using BoltzTrap code through following expressions^{1,2}:

$$S_{\alpha\beta}(\varepsilon, T, \mu_c) = \frac{\int_{-\infty}^{\infty} g(\varepsilon)(\varepsilon - \mu_c) \left[\frac{-\partial f(T, \varepsilon, \mu_c)}{\partial \varepsilon} \right] d\varepsilon}{T \int_{-\infty}^{\infty} g(\varepsilon) \left[\frac{-\partial f(T, \varepsilon, \mu_c)}{\partial \varepsilon} \right] d\varepsilon}$$
(1)
$$\sigma_{\alpha\beta} = \frac{1}{\Omega} \int \sigma_{\alpha\beta}(\varepsilon) \left[-\frac{\partial f_{\mu_c}(T;\varepsilon)}{\partial \varepsilon} \right] \partial\varepsilon$$
(2)

Where $\sigma_{\alpha\beta}(\varepsilon_{i,k}) = e^2 \tau_{i,k} v_{\alpha}(i,k) v_{\beta}(i,k)$, while $g(\varepsilon)$ determines the transport function. Here, $\varepsilon_{i,k}$ represents the band energy for i^{th} band at k wavevector. α and β are the components of the conductivity tensor, while μ_c , T and Ω depicts the chemical potential, temperature and volume of cell.

References

1. D. Parker and D. J. Singh, Thermoelectric Properties of AgGaTe₂ and Related Chalcopyrite Structure Materials. Phys. Rev. B., (2012) **85**, 125209.

2. G. K. H. Madsen and D. J. Singh, BoltzTraP: A Code for Calculating Band-Structure Dependent Quantities. *Comput. Phys. Commun.* 2006, **175**, 67–71.