Mobility Driven Thermoelectric and Optical Properties of Two-Dimensional Halide-based Hybrid Perovskites: Impact of Organic Cation Rotation

Hardik L. Kagdada¹, Sanjeev K. Gupta², Satyaprakash Sahoo³,⁴, and Dheeraj K. Singh¹,*

¹Department of Basic Sciences, Institute of Infrastructure Technology Research And Management (IITRAM), Ahmedabad 380026, India
²Computational Materials and Nanoscience Group, Department of Physics, St. Xavier’s College, Ahmedabad 380009, India
³Institute of Physics, Bhubaneswar 751005, India
⁴Homi Bhabha National Institute, Mumbai 400085, India

*Corresponding author: dheerajsingh84@gmail.com; dheerajsingh@iitram.ac.in

Figure S1. Projected density of states (PDOS) with the projection of I-5(pₓ, pᵧ and pₜ) and Pb-6(pₓ, pᵧ and pₜ) orbitals for each MA cation rotation in Pb-I network. Fermi level located at 0 eV.
Figure S2. Charge density iso-surfaces (for HOMO and LUMO level) (without SOC) with MA cation rotation.
Figure S3. Part of the valence band structure (along the Γ-X-Y high symmetry direction of BZ for A1-A4 and R1-R5 structures) calculated with spin-orbit coupling (SOC) effects for visualization of Rashba splitting with the rotation of MA cation.
Figure S4. SOC-Projected density of states (PDOS) (a) Pb-6p and (b) I-5p orbitals including spin orbit coupling effects for A1-A4 structures (symmetric rotation of MA cation) and R1-R5 (Random rotation of MA cation). Fermi level located at 0 eV.
The electrical conductivity and Seebeck coefficients have been calculated using BoltzTrap code through following expressions:

\[S_{\alpha\beta}(\varepsilon, T, \mu_c) = \int_{-\infty}^{\infty} g(\varepsilon)(\varepsilon - \mu_c) \left[-\frac{\partial f(T, \varepsilon, \mu_c)}{\partial \varepsilon} \right] d\varepsilon \]

\[\sigma_{\alpha\beta} = \frac{1}{\Omega} \int \sigma_{\alpha\beta}(\varepsilon) \left[-\frac{\partial f_{\mu_c}(T; \varepsilon)}{\partial \varepsilon} \right] d\varepsilon \]

where \(\sigma_{\alpha\beta}(\varepsilon_{l,k}) = e^2 \tau_{l,k} v_{\alpha}(i, k) v_{\beta}(i, k) \), while \(g(\varepsilon) \) determines the transport function. Here, \(\varepsilon_{l,k} \) represents the band energy for \(l^{th} \) band at \(k \) wavevector, \(\alpha \) and \(\beta \) are the components of the conductivity tensor, while \(\mu_c, T \) and \(\Omega \) depicts the chemical potential, temperature and volume of cell.

References