Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Supplementary Information for

Strain-induced bandgap engineering in CsGeX₃ (X = I, Br or Cl)

perovskites: Insights from first-principle calculations

Guangbiao Xiang ^a, Yanwen Wu ^a, Man Zhang ^a, Jiancai Leng, ^{*b} Chen Cheng, ^{*a} Hong Ma, ^{*a}

^a Shandong Provincial Key Laboratory of Optics and Photonic Device, Collaborative Innovation Center

of Light Manipulations and Applications, School of Physics and Electronics, Shandong Normal

University, Jinan 250014, China;

^b International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

Supplementary Table 1. Theoretical and experimental values of lattice parameter a (Å) and unit cell volume V (Å³) of CsGeX₃ perovskites.

a (Å)					
	This Work	Other Works	·ks Experimental		
CsGel₃	5.92	5.99 ¹	5.983 ¹	233.8	
CsGeBr₃	5.76	5.36 ² , 5.64 ³ , 5.69 ¹	5.636 ¹ , 5.362 ⁴	191.6	
CsGeCl ₃	5.53	5.43 ³ , 5.52 ⁵ , 5.51 ¹	5.434 ¹	168.9	

Supplementary Table 2. Calculated electronic bandgaps (in eV), some available theoretical results and experimental optical bandgaps (in eV) of perovskites CsGeX₃ (X=I, Br or CI).

Phase	This Work	Other Works	Expt.
CsGel ₃	1.6	1.02 ¹ , 1.17 (PBE) ⁶ , 1.48 (HSE) ⁶	1.53 ¹
CsGeBr ₃	2.13	0.55 (PBE) ² , 4.74 (EHTB) ³ , 1.49 ¹ , 1.48 (PBE) ⁶ , 1.97 (HSE) ⁶	2.32 ¹
CsGeCl₃	2.99	7.91 (EHTB) ³ , 2.11 (PBE) ⁵ , 0.82 (PBE) ⁷ , 2.26 ¹ , 2.17 (PBE) ⁶ , 2.48	3.31 ⁸
		(HSE) ⁶	

Supplementary Table 3. Bandgaps (in eV) of CsGeX₃ (X=I, Br or Cl) under the triaxial strains from -4% to 4%.

Strain phase	-4%	-3%	-2%	-1%	0	1%	2%	3%	4%
CsGel₃	1.05	1.23	1.35	1.48	1.61	1.75	1.89	2.02	2.21
CsGeBr ₃	1.26	1.53	1.75	1.93	2.13	2.32	2.49	2.64	2.90
CsGeCl₃	2.05	2.33	2.57	2.80	3.00	3.20	3.37	3.54	3.68

Supplementary Figure 1: Total densities of states of CsGeX₃ (X=I, Br or Cl) perovskites under different strains.

directions		electrons		holes			
strains	$R \rightarrow \Gamma(m_0)$	$R \rightarrow M(m_0)$	$R \rightarrow X(m_0)$	$R \rightarrow \Gamma(m_0)$	R→M (<i>m</i> ₀)	R→X (m_0)	
–4% (CsGel ₃)	0.129	0.898	0.650	0.131	0.263	0.168	
-3%(CsGel ₃)	0.138	0.843	0.450	0.142	0.271	0.180	
−2%(CsGel ₃)	0.148	0.781	0.342	0.153	0.276	0.191	
–1%(CsGel ₃)	0.162	0.648	0.309	0.170	0.297	0.211	
0%(CsGel₃)	0.176	0.633	0.310	0.186	0.327	0.233	
1%(CsGel ₃)	0.197	0.512	0.298	0.212	0.349	0.259	
2%(CsGel ₃)	0.218	0.490	0.307	0.239	0.384	0.291	
3%(CsGel₃)	0.240	0.483	0.321	0.270	0.426	0.326	
4%(CsGel ₃)	0.266	0.478	0.337	0.318	0.488	0.381	
–4%(CsGeBr ₃)	0.115	1.184	1.271	0.112	0.165	0.134	
-3%(CsGeBr ₃)	0.138	1.070	0.640	0.138	0.183	0.152	
-2%(CsGeBr ₃)	0.157	0.791	0.410	0.159	0.208	0.175	
-1%(CsGeBr ₃)	0.178	0.614	0.330	0.181	0.236	0.200	
0%(CsGeBr ₃)	0.191	0.561	0.315	0.197	0.256	0.218	
1%(CsGeBr ₃)	0.227	0.548	0.332	0.237	0.305	0.262	
2%(CsGeBr ₃)	0.254	0.537	0.345	0.269	0.344	0.297	
3%(CsGeBr ₃)	0.280	0.528	0.364	0.302	0.386	0.334	
4%(CsGeBr ₃)	0.316	0.522	0.421	0.357	0.453	0.394	
-4%(CsGeCl ₃)	0.361	1.025	0.931	0.183	0.217	0.194	
-3%(CsGeCl ₃)	0.380	1.053	1.007	0.210	0.250	0.224	
−2%(CsGeCl ₃)	0.404	1.109	1.113	0.239	0.283	0.254	
-1%(CsGeCl ₃)	0.421	1.143	1.207	0.270	0.318	0.286	
0%(CsGeCl ₃)	0.450	1.191	1.092	0.300	0.354	0.320	
1%(CsGeCl ₃)	0.487	1.204	1.327	0.333	0.393	0.355	
2%(CsGeCl ₃)	0.488	1.237	1.085	0.385	0.454	0.411	
3%(CsGeCl₃)	0.514	1.289	1.068	0.426	0.501	0.455	
4%(CsGeCl ₃)	0.537	1.335	1.119	0.472	0.557	0.507	

Supplementary Table 4. Effective masses of electron and hole of CsGel₃, CsGeBr₃, and CsGeCl₃ under the strains.

- 1. L. Tang, Y. Chang and J. Huang, *Jpn J Appl Phys*, 2009, **48**, 112402.
- 2. M. G. Brik, Solid State Commun, 2011, **151**, 1733–1738.
- 3. D.-K. Seo, N. Gupta and M. H. Whangbo, *Inorg. Chem.*, 1998, **37**, 407–410.
- 4. Z. Lin, L. Tang and C. Chou, *Journal of Crystal Growth*, 2008, **310**, 3224–3229.
- 5. D. Huang, Y. Zhao and Z. Ju, *Appl. Phys. Express*, 2014, **7**, 041201.
- 6. S. Körbel, M. A. L. Marques and S. Botti, J. Mater. Chem. C, 2016, 4, 3157–3167.
- 7. S.B. Erdinca, M. N. Secuka and M. Aycibin, *Ferroelectrics*, 2016, **494**, 138–149.
- 8. J. Qian, B. Xu and W. Tian, *Organic Electronics*, 2016, **37**, 61–73.