Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2022

Ab initio derivation of flavin hyperfine interactions in the protein magnetosensor cryptochrome – Supporting Information.

Jean Deviers^{1,2}, Fabien Cailliez², Bernardo Zúñiga Gutiérrez³, Daniel R. Kattnig¹, and Aurélien de la Lande²

¹Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom

²Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405 Orsay, France ³Departamento de Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, C. P. 44430, Guadalajara Jal, Mexico

1 Experimental HFCs.

										A_{11}	A_{22}	A_{33}	A_{\parallel}	A_{\perp}	$A_{\rm iso}$
		Δ	Δ	Δ	Δ	Δ	Δ.			<i>E. c</i>	oli DNA	photolya	se^3		
		A11	A22	A33	\mathbf{A}_{\parallel}	A_{\perp}	Aiso		$H8\alpha$	-	-	-	8.66	6.80	-
			DmCr	y ^{1, 2}				EV DH•	N5	-	-	-	50.12	0	-
	N5	-	-	-	54.17	4.20	-	ГАDII	N10	-	-	-	31.72	0	-
$FAD^{\bullet-}$	N10	-	-	-	27.94	0.03	-		H5	-8.50	-37.00	-24.90	-	-	-
	$\mathrm{H8}\alpha$	-	-	-	-	-	12.39			C. rein	hardtii C	ryptoch	rome^2		
	${\rm H8}\alpha$	9.93	10.40	12.19	-	-	10.84		N5	_	_	_	52.57	2.80	_
FADH●	H1'	-	-	-	-	-	-	FAD●-	N10	_	_	_	23.12	2.80	_
	H5	-	-	-	-	-	-		$H8\alpha$	-	-	-	_	-	10.65
A. niger glucose oxidase ³							A. that	liana Cry	ptochror	me 1^1					
	$H8\alpha$	-	-	-	11.45	9.95	-		Η8α	6.85	7 90	9.00	_	_	7 91
	N5	-	-	-	53.3	0.3	-	FADH•	$H1^{2}$	8.99	8.99	11 49	_	_	9.82
ГAD	N10	-	-	-	25.3	0.3	-	mbn	H5	-	-25.00	-37.02	-	-	-
	$\mathrm{H8}\alpha$	-	-	-	8.45	6.85	-			Synech	ocystis C	ryptochr	ome ¹		
FADH•	N5	-	-	-	53.5	0.5	-		110	6 41	7.01	0.06			7 92
111211	N10	-	-	-	30.5	0.5	-	EV DITe	$H8\alpha$	0.41	1.01 0 EE	8.20	-	-	1.23
	H5	-10.5	-33.91	-24.11	-	-	-	ГАDII	111 ЦБ	1.04	0.00	28.26	-	-	9.20
		X. laev	vis (6-4) j	photolyas	$e^{1,3}$				115	-	-20.00	-38.30	- 1	-	-
	Η8α	_	_	_	8 13	6.50			T	. therm	ophilus C	PD phot	tolyase ¹		
	N5	_	_	_	51.2	0.00	_		${\rm H8}\alpha$	6.61	6.99	8.47	-	-	7.36
FADH•	N10	_	-	_	27.2	Õ	-	FADH [●]	H1'	6.41	8.70	11.75	-	-	8.62
	H5	-13.72	-38.41	-26.11	-	-	-		H5	-	-25.30	-37.49	-	-	-
	$H8\alpha$	6.24	6.59	8.04	-	-	6.96			A. that	liana CP	D photol	yase ¹		
FADH•	H1'	7.05	8.01	11.50	-	-	8.85		$H8\alpha$	6.54	7.21	8.40	-	-	7.38
	H5	-	-25.90	-38.36	-	-	-	FADH [●]	H1'	8.41	8.50	11.34	-	-	9.42
									H5	-	-24.60	-37.02	-	-	-

Table S1: Experimental hyperfine couplings of flavin atoms, measured using EPR spectroscopy on various cryptochrome, glucose oxidase and photolyase proteins. All reported values are in MHz.

2 Validation of the MD simulations

Figure S1: Inter-residue distance of the electron-transfer chain (flavin, W395, W362, W318, W369, Y319), where the flavin is (a) $FAD^{\bullet-}$ and (b) $FADH^{\bullet}$.

3 Validation of the aDFT method.

A +	$\Lambda = (MIII_{-})$	$\Lambda \Lambda \Lambda (\Lambda III_)$			
Atom	$\Delta a_{\rm iso}$ (MHZ)	$\Delta\Delta A (MHZ)$	Atom	Δa_{iso} (MHz)	$\Delta\Delta A (MHz)$
$\begin{array}{c} \mathrm{N5} \\ \mathrm{N10} \\ \mathrm{H1'a} \\ \mathrm{H1'b} \\ \mathrm{H8}\alpha \\ \mathrm{H7}\alpha \end{array}$	$\begin{array}{c} 0.1516 \\ 0.0700 \\ 0.1260 \\ 0.0526 \\ 0.0352 \\ 0.0326 \end{array}$	$\begin{array}{c} 0.1642 \\ 0.0490 \\ 0.0074 \\ 0.0042 \\ 0.0094 \\ 0.0078 \end{array}$	$\begin{array}{c} \mathrm{N5} \\ \mathrm{N10} \\ \mathrm{H1'a} \\ \mathrm{H1'b} \\ \mathrm{H8}\alpha \\ \mathrm{H7}\alpha \end{array}$	$\begin{array}{c} 0.3188 \\ 0.1282 \\ 0.0708 \\ 0.0394 \\ 0.1382 \\ 0.0324 \end{array}$	$\begin{array}{c} 0.1160 \\ 0.0774 \\ 0.0054 \\ 0.0028 \\ 0.0092 \\ 0.0034 \end{array}$
H6 H5	$0.0270 \\ 0.2748$	$0.0078 \\ 0.1014$	H6	0.0924 0.0904	0.0034
	(a) FADH	•		(D) PAD	

Table S2: Absolute difference between DFT and aDFT calculation on the same geometry, averaged over 5 (a) FADH[•] and (b) FAD^{•-} structures.

4 DFT basis set benchmark.

Figure S2: (a) Timings and (b,c) a_{iso} benchmarks of various basis sets, using aDFT as implemented in deMon2k. All values calculated on an 295-atoms MD-generated conformation of FADH[•] with a cluster of residues around. aDFT specs: B3LYP/basis/GEN-A2* for the flavin, B3LYP/DZVP-GGA/GEN-A2 on the neighbouring residues. The number of orbitals generated for the aDFT calculation are given above data points. Timings are for a singlepoint calculation parallelised onto 4 nodes (96 cores).

Residues included in the calculations: S250, R291, Y295, H353, R356, D385, D387, I390, N391, N394, W395, and FADH[•] (FAH 498).

The basis sets tested here are listed in order of increasing completeness, N07D being the smallest one and pcH-3 the largest. Given that pcH-N and pcJ-N basis sets converge exponentially to the complete basis set limit, we take the a_{iso} calculated with pcH-3 to be the most accurate, and can visually estimate an extrapolation to the CBS. For the three atoms considered here, EPR-III emerged as the best compromise of computational lightness and accuracy.

Figure S3: Mean Absolute Error and standard deviations for a_{iso} and ΔA , calculated between a full and mixed basis set, on a set of 10 MD-generated geometries of (a) FADH[•] and (b) FAD^{•-} in their explicit cluster of residues. Magnetic properties were calculated using aDFT at the B3LYP/basis/aux-basis level, with the DZVP-GGA/GEN-A2 basis sets on the chemical environment of the flavin. For the "full basis" set, EPR-III/GEN-A2* was applied on all flavin atoms; and for "mixed basis", EPR-III/GEN-A2* was applied only on magnetically active flavin atoms (those listed in Figure S3) and DZVP-GGA/GEN-A2 on the rest.

 $\langle |\Delta a_{\rm iso}| \rangle = \frac{\sum_{i=1}^{N=10} |a_{\rm iso,i}^{\rm mixed} - a_{\rm iso,i}^{\rm full}|}{N}, \text{ and similarly for } \langle |\Delta \Delta A| \rangle. \text{ Both are in MHz. Using a mixed basis set speeds up the calculation by a factor of 1.9, on average.}$

5 Validation of the minimal cluster.

A /	minima	l cluster	full c	luster	$\Delta a = a^{\text{full}}$	$-a^{\text{minimal}}$
Atom	$a_{\rm iso}~({\rm MHz})$	$\Delta A (MHz)$	$a_{\rm iso}$ (MHz)	$\Delta A (MHz)$	$\Delta a_{\rm iso}$ (MHz)	$\Delta\Delta A (MHz)$
H5	-24.920	35.261	-24.768	35.069	-0.152	-0.192
N5	14.161	48.680	14.062	48.395	-0.099	-0.285
N10	7.586	21.240	7.426	20.796	-0.160	-0.444
H1'a	7.407	3.679	7.299	3.630	-0.108	-0.049
H1'b	6.490	4.317	6.386	4.256	-0.104	-0.063
$H8\alpha$	6.691	1.530	6.592	1.517	-0.099	-0.013
$\mathrm{H7}\alpha$	-0.665	1.222	-0.786	1.209	-0.121	-0.013
H6	1.589	3.434	1.579	3.404	-0.010	-0.030

Table S3: Comparison between HFC tensors on FADH[•] in full and minimal cluster.

A 4	minima	l cluster	full c	luster	$\Delta a = a^{\text{full}} - a^{\text{minimal}}$		
Atom	$a_{\rm iso}$ (MHz)	$\Delta A (MHz)$	$a_{\rm iso}$ (MHz)	$\Delta A (MHz)$	$\Delta a_{\rm iso}$ (MHz)	$\Delta\Delta A (MHz)$	
N5	17.437	60.257	17.474	60.473	0.037	0.216	
N10	5.827	18.187	5.739	18.003	-0.088	-0.184	
H1'a	5.228	3.451	5.173	3.415	-0.055	-0.036	
H1'b	3.492	3.869	3.452	3.837	-0.040	-0.032	
$H8\alpha$	8.978	2.371	8.993	2.379	0.015	0.008	
$H7\alpha$	-3.081	1.554	-3.093	1.556	-0.012	0.002	
H6	-7.968	5.830	-7.992	5.849	-0.024	0.019	

Table S4: Comparison between HFC tensors on $FAD^{\bullet-}$ in full and minimal cluster.

 $\Delta a_{\rm iso}$ and $\Delta \Delta A$ are reported in Table S3 for FADH[•] and in Table S4 for FAD^{•-}. They are small in magnitude and typically do not represent more than 2% of the corresponding quantity. The exception is the case of H7 α on FADH[•], whose very small $a_{\rm iso}$ value makes the relative error comparatively large. However, such a small tensor has a correspondingly minuscule impact on the spin dynamics of a magnetosensor, and so increasing the cluster size for this tensor would yield only very marginal accuracy gains.

6 Distribution of spin density in the "minimal cluster" model.

Frame index	% of spin charge delocalised onto cluster atoms					
	FAD●-	FADH•				
1	1.02	0.65				
2	1.39	15.01				
3	0.69	0.95				
4	0.66	0.73				
5	0.81	9.56				
6	0.95	0.69				
7	1.00	1.07				
8	0.74	0.54				
9	0.90	0.38				
10	1.04	0.92				

Table S5: Percentage of the total spin charge (S = 1 for both FAD⁻ and FADH[•]) localised on non-flavin atoms. The Löwdin atomic spin charges were calculated using aDFT at the B3LYP/EPR-III/GEN-A2* level for magnetically active isoalloxazine atoms and B3LYP/DZVP-GGA/GEN-A2 for the rest, on 10 geometries of the flavin cofactor in its minimal cluster, as defined in the main text, extracted from a 800 ns MD trajectory at 80 ns interval.

7 Autocorrelation times of a_{iso} and ΔA from FAD^{•-} and FADH[•] atoms.

		NATT_)	A 4 ((MITT_)					
atom	$a_{\rm iso}$ (MHZ)	$\Delta A (MIIZ)$			$a_{i\alpha\alpha}$	$a_{\rm iso}$ (MHz)		(MHz)
acom	N_{eff}	$ au~(\mathrm{ps})$	N_{eff}	$ au~(\mathrm{ps})$	atom	N m	π (ng)	N m	π (ng)
NF	101.0	20.0	101.0	20.0		IVeff	7 (ps)	IVeff	7 (ps)
N5	101.0	20.0	101.0	20.0	N5	45.0	20.0	45.0	20.0
N10	83.7	24.1	44.6	45.3	110	40.0	20.0	40.0	20.0
Ц 1'h	101.0	20.0	101.0	20.0	N10	8.3	108.3	45.0	20.0
111 0	101.0	20.0	101.0	20.0	H1'b	68.2	13.2	8.7	103.5
H1'a	101.0	20.0	101.0	20.0	TT1'2	45.0	20.0	45.0	20.0
H5	101.0	20.0	142.4	14.2	пга	43.0	20.0	43.0	20.0
110	101.0	20.0	F0.0	24.4	H6	45.0	20.0	45.0	20.0
H0	101.0	20.0	58.8	34.4	$H7\alpha$	45.0	20.0	5.0	179.8
$H7\alpha$	66.0	30.6	45.8	44.1	IIIa	45.0	20.0	0.0	115.0
$H8\alpha$	101.0	20.0	101.0	20.0	$H8\alpha$	45.0	20.0	23.3	38.6
1100	101.0	20.0	101.0	20.0		•_ · ·		4 - 4	
(a) FAI	(a) FADH• in cluster - $N = 101$, $\Delta t = 20$ ps.					•- in cl	luster - N	$=45, \Delta$	t = 20 ps.

Table S6: Autocorrelation times of a_{iso} and ΔA , calculated on relevant atoms of the (a) semiquinone and (b) radical anion flavin cofactor, in its minimal cluster as defined in the main text. The sample of structures on which these quantities were calculated are extracted from a MD trajectory, at an interval of $\Delta t = 20$ ps. N is the size of the sample; N_{eff} is the effective size of this sample, computed using the R function coda::effectiveSize(x); $\tau = \Delta t \times \frac{N}{N_{\text{eff}}}$ is the autocorrelation time of the property considered.

8 RMSD of flavins' isoalloxazine heavy atoms along MD trajectories.

Figure S4: Root-Mean-Square Deviation of the position of flavin atoms along the MD trajectories. For relevance and clarity, only the geometries on which magnetic properties were subsequently computed are included in this analysis. The time interval between two successive data points in therefore 2 ns.

9 The static picture: flavin optimised in vacuum.

atom	$A_{\rm YY}$	A_{XX}	$\mathbf{A}_{\mathbf{Z}\mathbf{Z}}$	a_{iso}	ΔA
N5	-2.655	-3.018	50.823	15.050	53.660
N10	-0.423	-0.690	18.861	5.916	19.418
H1'a	1.781	1.284	5.351	2.805	3.819
H1'b	5.519	5.021	9.136	6.559	3.866
$H8\alpha$	11.516	11.356	14.305	12.392	2.869
$H7\alpha$	-4.085	-4.433	-2.487	-3.668	1.773
H6	-11.751	-13.647	-4.976	-10.125	7.723

Table S7: Principal elements, isotropic value and anisotropy of the HFC tensors, calculated on a single conformation of FAD^{$\bullet-$} in vacuum using aDFT. The structure was obtained from a geometry optimisation at the PBEh-3c level, as implemented in Orca. All values are in MHz.

atom	$A_{\rm YY}$	A_{XX}	$A_{\rm ZZ}$	a_{iso}	ΔA
N5	-2.428	-2.793	41.182	11.987	43.793
N10	0.244	-0.154	21.537	7.209	21.492
H1'a	2.345	1.911	6.014	3.423	3.886
H1'b	6.555	5.670	10.043	7.423	3.930
$\mathrm{H8}\alpha$	6.924	6.754	8.749	7.476	1.910
$H7\alpha$	-1.297	-1.542	-0.012	-0.950	1.407
H6	-6.114	-6.460	-1.691	-4.755	4.596
H5	-27.247	-39.191	-1.588	-22.675	31.631

Table S8: Principal elements, isotropic value and anisotropy of the HFC tensors, calculated on a single conformation of FADH[•] in vacuum using aDFT. The structure was obtained from a geometry optimisation at the PBEh-3c level, as implemented in Orca. All values are in MHz.

10 In vacuo lumiflavin vs. in-cluster FAD^{•-}: principal components.

atom	A	AYY	A	XXX	A_{ZZ}		
atom	ref	$\mathrm{MD}_{cluster}$	ref	$\mathrm{MD}_{cluster}$	ref	$MD_{cluster}$	
N5	-2.433	-1.827	-2.805	-2.125	49.237	56.176	
N10	-0.404	0.666	-0.675	0.436	16.944	19.382	
Hb	11.406	3.755	11.406	3.269	11.406	7.334	
$H8\alpha$	12.328	9.691	12.328	9.427	12.328	11.907	
$H7\alpha$	-3.968	-3.663	-3.968	-3.956	-3.968	-2.200	
H6	-14.865	-9.769	-12.152	-10.773	-5.538	-3.649	

Table S9: Eigenvalues of the diagonalised HFC tensors for atoms of FAD^{•-}. "ref" refers to the tensors calculated in [7]; "MD_{cluster}" to the average tensors calculated on the flavin in its cluster. In this latter set, $\overrightarrow{\text{Hb}} = (\overrightarrow{\text{H1'a}} + \overrightarrow{\text{H1'b}})/2$. All values are in MHz.

11 Flavin isotropic HFCs and tensor anisotropy.

Figure S5: average (dot) and quartiles (box) of the isotropic HFC and tensor anisotropy for selected atoms on (\mathbf{a},\mathbf{b}) FADH[•] and (\mathbf{c},\mathbf{d}) FAD^{•-}. Vertical bars span the entire distribution, locating the minimum and maximum value of a given sample. Green and orange data points were obtained on geometries taken from an MD run, while data points represented by blue crosses were calculated on a flavin optimised in vacuum using the PBEh-3c scheme. The dihedral angle of its ribityl chain with respect to the isoalloxazine moiety was constrained throughout the optimisation. Blue dots correspond to reference values calculated by Hiscock *et al.*⁴

12 Shifted representation of flavin isotropic HFCs and tensor anisotropy.

Figure S6: Shifted average (dot) and quartiles (box) of the (a,c) isotropic HFC and (b,d) tensor anisotropy for selected atoms on FADH[•] and FAD^{•-}. The average value of the flavin in cluster was subtracted from all values so as to better show the magnitude of the shift induced by polarisation. To regenerate values reported in Figure S5, apply: $a_{iso,aniso} = average(a_{iso,aniso}^{atom,in-cluster}) + \Delta a_{iso,aniso}$.

13 Shifted representation of flavin isotropic HFCs and tensor anisotropy, including QM/MM tensors.

Figure S7: Shifted average (dot) and quartiles (box) of the (a,c) isotropic HFC and (b,d) tensor anisotropy for selected atoms on FADH[•] and FAD^{•-}. The average value of the flavin in cluster was subtracted from all values so as to better show the magnitude of the shift induced by polarisation. To regenerate values reported in Figure S5, apply: $a_{iso,aniso} = average(a_{iso,aniso}^{atom,in-cluster}) + \Delta a_{iso,aniso}$.

14 Visual representation of the flavin isotropic HFCs and of its variance, in and out of its minimal cluster.

(b) FADH•

Figure S8: Graphical representation of average $FAD^{\bullet-}$ and $FADH^{\bullet}$ hyperfine coupling tensors, calculated using aDFT on MD-generated geometries (a) without and (c) with a minimal chemical environment. The variance of average tensor elements is also plotted in a similar fashion, again (b) out of (MD*vac* dataset) and (d) in (MD*cluster* dataset) its minimal cluster.

15 Projections of HFC tensors onto average eigenbasis.

Figure S9: Projection of (a) FAD^{•-} N10, (b) FADH[•] N10 and (c) FADH[•] H5 HFC tensors onto their average eigenvectors V_i . Blue (resp. red) histograms are for calculations with (resp. without) inclusion of the environment, *i.e* in the MD_{cluster} (resp. MD_{vac}) dataset.

16 Geometrical origin to extreme a_{iso} values: H5 improper angle.

Figure S10: Density plots of H5 improper angle (out-of-planeness) for geometries yielding respectively interquartile (Q1-Q3, in blue) or large (>Q3, in red) a_{iso} values of H5.

17 Statistical uncertainties on a_{iso} and ΔA in $MD_{cluster}$ and $MD_{QM/MM}$ datasets.

A .		М	D _{vac} : N _{to}	t = 400							
Atom	Lowest $\rm N_{eff}$	$\mathrm{U}(\mathrm{A}_{\mathrm{yy}})$	$U(A_{xx})$	$U(A_{zz})$	$\mathrm{U}(a_\mathrm{iso})$	$\mathrm{U}(\Delta \mathrm{A})$					
N5	400	0.067	0.069	0.339	0.158	0.068					
N10	332	0.105	0.107	0.211	0.141	0.075					
H1'a	270	0.105	0.103	0.131	0.113	0.051					
H1'b	293	0.179	0.155	0.188	0.174	0.121					
$H8\alpha$	400	0.183	0.182	0.201	0.189	0.142					
$\mathrm{H7}\alpha$	400	0.061	0.062	0.07	0.060	0.014					
H6	400	0.124	0.182	0.067	0.124	0.059					
	(a) $FAD^{\bullet-} MD_{vac}$										
(-)											
Atom		М	D _{vac} : N _{to}	t = 400							
Atom	Lowest N_{eff}	M U(A _{yy})	$D_{vac}: N_{tot}$ $U(A_{xx})$	t = 400 U(A _{zz})	$U(a_{iso})$	$U(\Delta A)$					
Atom N5	Lowest N _{eff} 368	M U(A _{yy}) 0.397	$\frac{D_{vac}: N_{tor}}{U(A_{xx})}$	$\begin{array}{c} t = 400 \\ U(A_{zz}) \\ \hline 0.356 \end{array}$	$\frac{\mathrm{U}(\mathrm{a_{iso}})}{0.383}$	$\frac{\mathrm{U}(\Delta \mathrm{A})}{0.587}$					
Atom N5 N10	Lowest N_{eff} 368 400	$\begin{array}{c} M \\ U(A_{yy}) \\ 0.397 \\ 0.074 \end{array}$	$\frac{D_{vac}: N_{tot}}{U(A_{xx})}$ 0.397 0.074	t = 400 U(A _{zz}) 0.356 0.261	U(a _{iso}) 0.383 0.136	$U(\Delta A)$ 0.587 0.058					
Atom N5 N10 H1'a	Lowest N _{eff} 368 400 322	$\begin{array}{c} M \\ U(A_{yy}) \\ 0.397 \\ 0.074 \\ 0.181 \end{array}$	$\frac{D_{vac}: N_{to}}{U(A_{xx})}$ 0.397 0.074 0.152	$\begin{array}{c} t = 400 \\ U(A_{zz}) \\ \hline 0.356 \\ 0.261 \\ 0.178 \end{array}$	$\begin{array}{c} U(a_{iso}) \\ 0.383 \\ 0.136 \\ 0.170 \end{array}$	$\begin{array}{c} U(\Delta A) \\ 0.587 \\ 0.058 \\ 0.116 \end{array}$					
Atom N5 N10 H1'a H1'b	Lowest N _{eff} 368 400 322 27	$\begin{array}{c} & {\rm M} \\ {\rm U}({\rm A_{yy}}) \\ \hline 0.397 \\ 0.074 \\ 0.181 \\ 1.502 \end{array}$	$\begin{array}{c} D_{vac}: \ N_{tot} \\ U(A_{xx}) \\ \hline 0.397 \\ 0.074 \\ 0.152 \\ 0.423 \end{array}$	$\begin{array}{c} t = 400 \\ U(A_{zz}) \\ \hline 0.356 \\ 0.261 \\ 0.178 \\ 1.659 \end{array}$	$\begin{array}{c} U(a_{iso}) \\ 0.383 \\ 0.136 \\ 0.170 \\ 1.195 \end{array}$	$\begin{array}{c} U(\Delta A) \\ \hline 0.587 \\ 0.058 \\ 0.116 \\ 5.493 \end{array}$					
Atom N5 N10 H1'a H1'b H8α	Lowest N _{eff} 368 400 322 27 400	$\begin{array}{c} & {\rm M} \\ {\rm U}({\rm A_{yy}}) \\ \hline 0.397 \\ 0.074 \\ 0.181 \\ 1.502 \\ 0.122 \end{array}$	$\begin{array}{c} \textbf{D}_{vac}: \ \textbf{N}_{tor}\\ \textbf{U}(\textbf{A}_{xx}) \\ \hline 0.397 \\ 0.074 \\ 0.152 \\ 0.423 \\ 0.119 \end{array}$	$\begin{array}{c} t = 400 \\ U(A_{zz}) \\ \hline 0.356 \\ 0.261 \\ 0.178 \\ 1.659 \\ 0.135 \end{array}$	$\begin{array}{c} U(a_{iso}) \\ 0.383 \\ 0.136 \\ 0.170 \\ 1.195 \\ 0.125 \end{array}$	$\begin{array}{c} {\rm U}(\Delta {\rm A})\\ 0.587\\ 0.058\\ 0.116\\ 5.493\\ 0.063\end{array}$					
$\begin{array}{c} \text{Atom} \\ \text{N5} \\ \text{N10} \\ \text{H1'a} \\ \text{H1'b} \\ \text{H8}\alpha \\ \text{H7}\alpha \end{array}$	Lowest N_{eff} 368 400 322 27 400 400	$\begin{array}{c} M \\ U(A_{yy}) \\ \hline 0.397 \\ 0.074 \\ 0.181 \\ 1.502 \\ 0.122 \\ 0.051 \end{array}$	$\begin{array}{c} \textbf{D}_{vac}: \ \textbf{N}_{tor}\\ \textbf{U}(\textbf{A}_{xx}) \end{array} \\ \hline 0.397 \\ 0.074 \\ 0.152 \\ 0.423 \\ 0.119 \\ 0.051 \end{array}$	$\begin{array}{c} t = 400 \\ U(A_{zz}) \\ \hline 0.356 \\ 0.261 \\ 0.178 \\ 1.659 \\ 0.135 \\ 0.052 \end{array}$	$\begin{array}{c} U(a_{iso})\\ 0.383\\ 0.136\\ 0.170\\ 1.195\\ 0.125\\ 0.051 \end{array}$	$\begin{array}{c} U(\Delta A) \\ \hline 0.587 \\ 0.058 \\ 0.116 \\ 5.493 \\ 0.063 \\ 0.010 \end{array}$					
$\begin{array}{c} \text{Atom} \\ \text{N5} \\ \text{N10} \\ \text{H1'a} \\ \text{H1'b} \\ \text{H8}\alpha \\ \text{H7}\alpha \\ \text{H6} \end{array}$	$\begin{array}{c} \text{Lowest N_{eff}} \\ 368 \\ 400 \\ 322 \\ 27 \\ 400 \\ 400 \\ 400 \\ 400 \end{array}$	$\begin{array}{c} & M \\ U(A_{yy}) \\ \hline 0.397 \\ 0.074 \\ 0.181 \\ 1.502 \\ 0.122 \\ 0.051 \\ 0.081 \end{array}$	$\begin{array}{c} \textbf{D}_{vac}: \ \textbf{N}_{tor}\\ \textbf{U}(\textbf{A}_{xx}) \\ \hline 0.397 \\ 0.074 \\ 0.152 \\ 0.423 \\ 0.119 \\ 0.051 \\ 0.075 \end{array}$	$\begin{array}{c} t = 400 \\ U(A_{zz}) \\ \hline 0.356 \\ 0.261 \\ 0.178 \\ 1.659 \\ 0.135 \\ 0.052 \\ 0.063 \end{array}$	$\begin{array}{c} U(a_{iso})\\ 0.383\\ 0.136\\ 0.170\\ 1.195\\ 0.125\\ 0.051\\ 0.073\\ \end{array}$	$\begin{array}{c} U(\Delta A) \\ 0.587 \\ 0.058 \\ 0.116 \\ 5.493 \\ 0.063 \\ 0.010 \\ 0.021 \end{array}$					

(b) FADH• MD_{vac}

		ME	O _{cluster} : N _t	$t_{tot} = 386$						
Atom	Lowest $\rm N_{eff}$	$\mathrm{U}(\mathrm{A}_{\mathrm{yy}})$	$\mathrm{U}(\mathrm{A}_{\mathrm{xx}})$	$\mathrm{U}(\mathrm{A}_{\mathrm{zz}})$	$\mathrm{U}(a_\mathrm{iso})$	${\rm U}(\Delta {\rm A})$				
N5	386	0.069	0.071	0.319	0.153	0.066				
N10	223	0.114	0.116	0.314	0.181	0.114				
H1'a	258	0.150	0.149	0.164	0.154	0.095				
H1'b	386	0.172	0.172	0.179	0.175	0.122				
$H8\alpha$	230	0.255	0.253	0.266	0.258	0.266				
$H7\alpha$	386	0.079	0.080	0.071	0.077	0.024				
H6	386	0.130	0.165	0.072	0.123	0.057				
(c) $FAD^{\bullet-} MD_{cluster}$										
		. ,								
Atom		ME	O _{cluster} : N _t	$t_{\rm ot} = 389$						
Atom	Lowest N_{eff}	MD U(A _{yy})	$O_{cluster}: N_t U(A_{xx})$	tot = 389 U(A _{zz})	$U(a_{iso})$	$U(\Delta A)$				
Atom N5	Lowest N _{eff} 57	MD U(A _{yy}) 0.511	$\begin{array}{c} D_{cluster}: \ N_{t} \\ U(A_{xx}) \\ \hline 0.512 \end{array}$	$c_{\rm ot} = 389$ $U(A_{\rm zz})$ 1.346	$\frac{\mathrm{U}(\mathrm{a_{iso}})}{0.789}$	$U(\Delta A)$ 2.183				
Atom N5 N10	Lowest N _{eff} 57 50	ME U(A _{yy}) 0.511 0.076	$\begin{array}{c} D_{cluster}: \ \mathrm{N_{t}}\\ \mathrm{U}(\mathrm{A_{xx}})\\ \hline 0.512\\ 0.075 \end{array}$	$t_{\rm tot} = 389$ U(A _{zz}) 1.346 0.976	$U(a_{iso})$ 0.789 0.376	$U(\Delta A)$ 2.183 0.204				
Atom N5 N10 H1'a	Lowest N _{eff} 57 50 217	$\begin{array}{c} \text{ME} \\ \text{U}(\text{A}_{\text{yy}}) \\ \hline 0.511 \\ 0.076 \\ 0.198 \end{array}$	$D_{cluster}$: N _t U(A _{xx}) 0.512 0.075 0.187	$t_{\rm iot} = 389$ U(A _{zz}) 1.346 0.976 0.252	$\begin{array}{c} U(a_{\rm iso}) \\ 0.789 \\ 0.376 \\ 0.212 \end{array}$	$U(\Delta A)$ 2.183 0.204 0.179				
Atom N5 N10 H1'a H1'b	Lowest N _{eff} 57 50 217 24	$\begin{array}{c} \text{ME} \\ \text{U}(\text{A}_{\text{yy}}) \\ \hline 0.511 \\ 0.076 \\ 0.198 \\ 1.918 \end{array}$	$\begin{array}{c} D_{cluster}: \ N_{t} \\ U(A_{xx}) \\ \hline 0.512 \\ 0.075 \\ 0.187 \\ 2.074 \end{array}$	$\begin{array}{c} {}_{\rm tot}=389\\ {\rm U}({\rm A_{zz}})\\ \hline 1.346\\ 0.976\\ 0.252\\ 2.190 \end{array}$	$\begin{array}{c} U(a_{iso}) \\ 0.789 \\ 0.376 \\ 0.212 \\ 2.061 \end{array}$	$\begin{array}{c} {\rm U}(\Delta {\rm A})\\ 2.183\\ 0.204\\ 0.179\\ 16.970\end{array}$				
$\begin{array}{c} \text{Atom} \\ \hline \text{N5} \\ \text{N10} \\ \text{H1'a} \\ \text{H1'b} \\ \text{H8}\alpha \end{array}$	Lowest N _{eff} 57 50 217 24 172	$\begin{array}{c} \text{ME} \\ \text{U}(\text{A}_{\text{yy}}) \\ \hline 0.511 \\ 0.076 \\ 0.198 \\ 1.918 \\ 0.213 \end{array}$	$\begin{array}{c} D_{cluster}: \ N_{t} \\ U(A_{xx}) \\ \hline 0.512 \\ 0.075 \\ 0.187 \\ 2.074 \\ 0.206 \end{array}$	$\begin{array}{c} \text{cot} = 389 \\ \text{U}(\text{A}_{zz}) \\ \hline 1.346 \\ 0.976 \\ 0.252 \\ 2.190 \\ 0.251 \end{array}$	$\begin{array}{c} U(a_{iso}) \\ 0.789 \\ 0.376 \\ 0.212 \\ 2.061 \\ 0.224 \end{array}$	$\begin{array}{c} {\rm U}(\Delta {\rm A})\\ 2.183\\ 0.204\\ 0.179\\ 16.970\\ 0.199 \end{array}$				
$\begin{array}{c} \text{Atom} \\ \hline \text{N5} \\ \text{N10} \\ \text{H1'a} \\ \text{H1'b} \\ \text{H8}\alpha \\ \text{H7}\alpha \end{array}$	Lowest N _{eff} 57 50 217 24 172 201	$\begin{array}{c} \text{ME} \\ \text{U}(\text{A}_{yy}) \\ 0.511 \\ 0.076 \\ 0.198 \\ 1.918 \\ 0.213 \\ 0.116 \end{array}$	$\begin{array}{c} D_{cluster}: \ \mathrm{N_{t}}\\ \overline{\mathrm{U}(\mathrm{A_{xx}})}\\ \hline 0.512\\ 0.075\\ 0.187\\ 2.074\\ 0.206\\ 0.121 \end{array}$	$\begin{array}{c} \text{tot} = 389 \\ \text{U}(\text{A}_{zz}) \\ \hline 1.346 \\ 0.976 \\ 0.252 \\ 2.190 \\ 0.251 \\ 0.110 \end{array}$	$\begin{array}{c} U(a_{iso})\\ 0.789\\ 0.376\\ 0.212\\ 2.061\\ 0.224\\ 0.116\end{array}$	$\begin{array}{c} {\rm U}(\Delta {\rm A})\\ 2.183\\ 0.204\\ 0.179\\ 16.970\\ 0.199\\ 0.054 \end{array}$				
$\begin{array}{c} \text{Atom} \\ \hline \text{N5} \\ \text{N10} \\ \text{H1'a} \\ \text{H1'b} \\ \text{H8}\alpha \\ \text{H7}\alpha \\ \text{H6} \end{array}$	Lowest N _{eff} 57 50 217 24 172 201 320	$\begin{array}{c} \text{ME} \\ \text{U}(\text{A}_{yy}) \\ 0.511 \\ 0.076 \\ 0.198 \\ 1.918 \\ 0.213 \\ 0.116 \\ 0.089 \end{array}$	$\begin{array}{c} D_{cluster}: \ \mathrm{N_{t}}\\ \overline{\mathrm{U}(\mathrm{A_{xx}})}\\ \hline 0.512\\ 0.075\\ 0.187\\ 2.074\\ 0.206\\ 0.121\\ 0.093\\ \end{array}$	$\begin{array}{c} {}_{\rm tot} = 389 \\ {\rm U}({\rm A}_{zz}) \\ \hline 1.346 \\ 0.976 \\ 0.252 \\ 2.190 \\ 0.251 \\ 0.110 \\ 0.064 \end{array}$	$\begin{array}{c} U(a_{iso})\\ 0.789\\ 0.376\\ 0.212\\ 2.061\\ 0.224\\ 0.116\\ 0.082\\ \end{array}$	$\begin{array}{c} {\rm U}(\Delta {\rm A})\\ 2.183\\ 0.204\\ 0.179\\ 16.970\\ 0.199\\ 0.054\\ 0.027\end{array}$				

(d) FADH• $MD_{cluster}$

Atom	$\mathrm{MD}_{QM/MM}: \mathrm{N_{tot}} = 396$									
Atom	Lowest $\rm N_{eff}$	$\mathrm{U}(\mathrm{A}_{\mathrm{yy}})$	$U(A_{xx})$	$\mathrm{U}(\mathrm{A}_{\mathrm{zz}})$	$U(a_{\rm iso})$	$\mathrm{U}(\Delta \mathrm{A})$				
N5	326	0.074	0.078	0.326	0.159	0.074				
N10	290	0.109	0.111	0.259	0.160	0.092				
H1'a	280	0.125	0.122	0.154	0.134	0.071				
H1'b	339	0.189	0.189	0.181	0.186	0.139				
$H8\alpha$	396	0.183	0.181	0.199	0.188	0.141				
$H7\alpha$	396	0.072	0.073	0.065	0.070	0.020				
H6	396	0.129	0.169	0.072	0.123	0.058				
(e) $FAD^{\bullet-} MD_{QM/MM}$										
Atom		MD	_{QM/MM} : N	$V_{\rm tot} = 369$						
mon	Lowest N_{eff}	$\mathrm{U}(\mathrm{A}_{\mathrm{yy}})$	$U(A_{xx})$	$U(A_{zz})$	$U(a_{\rm iso})$	$U(\Delta A)$				
N5	369	0.371	0.372	0.463	0.402	0.643				
N10	199	0.074	0.081	0.429	0.195	0.097				
H1'a	369	0.176	0.167	0.179	0.174	0.121				
H1'b	22	1.742	1.899	1.888	1.843	13.584				
$H8\alpha$	369	0.138	0.134	0.152	0.141	0.080				
$H7\alpha$	307	0.086	0.088	0.068	0.081	0.026				
H6	369	0.088	0.083	0.064	0.078	0.024				
H5	369	0.712	0.848	0.704	0.755	2.276				

(f) FADH• $MD_{QM/MM}$

Table S10: Statistical uncertainties, in MHz, on the average values of a_{iso} and ΔA for every atom of interest on the flavin, from the MD_{vac}, MD_{cluster} and MD_{QM/MM} datasets. For each table, N_{tot} is the number of data points, *i.e* the number of structures for which the HFC calculation converged successfully. "Lowest N_{eff}" is, for each atom, the smallest N_{eff} among the samples of A_{yy}, A_{xx} and A_{zz} values. This quantity is reported because the uncertainties on a_{iso} and ΔA , are calculated from those on the the tensors' eigenvalues $A_{ii \in \{x, y, z\}}$.

18 Average values of the full HFC tensor.

All values reported below are in MHz.

18.1 FAD^{•-} out of cluster (MD_{vac}).

$$N5 = \begin{pmatrix} -1.904 & 0.038 & -1.140 \\ 0.044 & -1.665 & -2.467 \\ -1.141 & -2.467 & 52.707 \end{pmatrix} \qquad N10 = \begin{pmatrix} 0.976 & -0.073 & 2.398 \\ -0.077 & 0.398 & -0.839 \\ 2.396 & -0.839 & 16.421 \end{pmatrix}$$
$$Hb2 = \begin{pmatrix} 6.965 & -0.532 & -1.236 \\ -0.532 & 4.434 & 0.302 \\ -1.237 & 0.302 & 4.297 \end{pmatrix} \qquad Hb1 = \begin{pmatrix} 4.470 & 0.915 & -1.112 \\ 0.913 & 2.050 & -0.322 \\ -1.113 & -0.323 & 1.742 \end{pmatrix}$$
$$H6 = \begin{pmatrix} -4.931 & -1.282 & 0.217 \\ -1.281 & -11.790 & -0.269 \\ 0.217 & -0.269 & -11.007 \end{pmatrix} \qquad H7\alpha = \begin{pmatrix} -3.598 & -0.533 & -0.001 \\ -0.533 & -2.712 & 0.039 \\ -0.001 & 0.039 & -4.073 \end{pmatrix}$$
$$H8\alpha = \begin{pmatrix} 9.890 & 0.835 & 0.087 \\ 0.835 & 11.010 & 0.158 \\ 0.087 & 0.158 & 9.453 \end{pmatrix}$$

18.2 FAD^{•–} in cluster (MD_{cluster}).

$$N5 = \begin{pmatrix} -1.744 & 0.054 & -1.406\\ 0.059 & -1.555 & -2.688\\ -1.407 & -2.688 & 55.522 \end{pmatrix} \qquad N10 = \begin{pmatrix} 1.133 & -0.098 & 2.528\\ -0.102 & 0.557 & -0.978\\ 2.527 & -0.978 & 18.794 \end{pmatrix}$$
$$Hb1 = \begin{pmatrix} 5.410 & 0.996 & -1.160\\ 0.994 & 2.809 & -0.345\\ -1.162 & -0.346 & 2.520 \end{pmatrix} \qquad Hb2 = \begin{pmatrix} 7.760 & -0.671 & -1.277\\ -0.671 & 5.192 & 0.384\\ -1.278 & 0.385 & 5.024 \end{pmatrix}$$
$$H6 = \begin{pmatrix} -4.180 & -1.606 & 0.146\\ -1.606 & -9.984 & -0.227\\ 0.146 & -0.228 & -10.028 \end{pmatrix} \qquad H7\alpha = \begin{pmatrix} -3.404 & -0.558 & 0.001\\ -0.558 & -2.530 & 0.036\\ 0.001 & 0.036 & -3.886 \end{pmatrix}$$
$$H8\alpha = \begin{pmatrix} 10.132 & 0.754 & 0.076\\ 0.754 & 11.155 & 0.139\\ 0.076 & 0.139 & 9.738 \end{pmatrix}$$

18.3 FAD^{•-} in QM/MM (MD_{QM/MM}).

$$N5 = \begin{pmatrix} -1.813 & -0.001 & -1.687\\ 0.004 & -1.731 & -0.375\\ -1.689 & -0.375 & 53.680 \end{pmatrix} \qquad N10 = \begin{pmatrix} 1.188 & 0.019 & 2.496\\ 0.016 & 0.591 & -0.205\\ 2.495 & -0.205 & 18.868 \end{pmatrix}$$
$$Hb1 = \begin{pmatrix} 5.168 & 0.920 & -1.159\\ 0.918 & 2.642 & -0.342\\ -1.160 & -0.342 & 2.389 \end{pmatrix} \qquad Hb2 = \begin{pmatrix} 8.030 & -0.677 & -1.211\\ -0.676 & 5.551 & 0.355\\ -1.212 & 0.356 & 5.326 \end{pmatrix}$$
$$H6 = \begin{pmatrix} -4.420 & -1.419 & 0.218\\ -1.418 & -10.578 & -0.235\\ 0.219 & -0.235 & -10.321 \end{pmatrix} \qquad H7\alpha = \begin{pmatrix} -3.362 & -0.554 & 0.024\\ -0.554 & -2.503 & -0.020\\ 0.024 & -0.020 & -3.849 \end{pmatrix}$$
$$H8\alpha = \begin{pmatrix} 9.616 & 0.778 & 0.053\\ 0.778 & 10.707 & 0.091\\ 0.053 & 0.091 & 9.218 \end{pmatrix}$$

18.4 FADH[•] out of cluster (MD_{vac}).

$$N5 = \begin{pmatrix} 2.162 & -0.160 & 2.250 \\ -0.163 & 1.885 & -0.812 \\ 2.250 & -0.812 & 46.440 \end{pmatrix} \qquad N10 = \begin{pmatrix} 1.965 & 0.083 & -3.130 \\ 0.080 & 0.864 & -0.032 \\ -3.129 & -0.032 & 19.667 \end{pmatrix}$$
$$Hb2 = \begin{pmatrix} 16.208 & 0.046 & -0.797 \\ 0.045 & 12.979 & 0.136 \\ -0.797 & 0.136 & 12.819 \end{pmatrix} \qquad Hb1 = \begin{pmatrix} 3.800 & 1.258 & 0.457 \\ 1.256 & 1.767 & 0.226 \\ 0.457 & 0.226 & 1.175 \end{pmatrix}$$
$$H5 = \begin{pmatrix} 2.867 & -2.024 & 0.135 \\ -2.016 & -35.803 & -0.136 \\ 0.137 & -0.136 & -22.836 \end{pmatrix} \qquad H6 = \begin{pmatrix} -2.184 & -1.928 & 0.003 \\ -1.929 & -3.184 & -0.092 \\ 0.003 & -0.092 & -5.384 \end{pmatrix}$$
$$H7\alpha = \begin{pmatrix} -1.060 & -0.405 & 0.046 \\ -0.405 & -0.288 & -0.127 \\ 0.046 & -0.127 & -1.354 \end{pmatrix} \qquad H8\alpha = \begin{pmatrix} 5.515 & 0.522 & -0.106 \\ 0.522 & 6.205 & -0.191 \\ -0.106 & -0.191 & 5.247 \end{pmatrix}$$

18.5 FADH• in cluster ($MD_{cluster}$).

$$N5 = \begin{pmatrix} 2.154 & -0.125 & 2.656 \\ -0.127 & 1.839 & -0.842 \\ 2.657 & -0.842 & 47.393 \end{pmatrix} N10 = \begin{pmatrix} 2.080 & 0.053 & -3.477 \\ 0.050 & 0.889 & 0.016 \\ -3.476 & 0.016 & 20.597 \end{pmatrix}$$
$$Hb1 = \begin{pmatrix} 4.062 & 1.245 & 0.502 \\ 1.243 & 1.898 & 0.236 \\ 0.503 & 0.237 & 1.353 \end{pmatrix} Hb2 = \begin{pmatrix} 16.990 & -0.067 & -0.801 \\ -0.067 & 13.653 & 0.142 \\ -0.801 & 0.142 & 13.576 \end{pmatrix}$$
$$H5 = \begin{pmatrix} 2.738 & -1.780 & -0.173 \\ -1.774 & -36.707 & -0.110 \\ -0.171 & -0.111 & -23.508 \end{pmatrix} H6 = \begin{pmatrix} -1.970 & -1.969 & 0.036 \\ -1.969 & -2.769 & -0.124 \\ 0.036 & -0.125 & -5.118 \end{pmatrix}$$
$$H7\alpha = \begin{pmatrix} -0.818 & -0.454 & 0.055 \\ -0.454 & -0.073 & -0.134 \\ 0.055 & -0.134 & -1.160 \end{pmatrix} H8\alpha = \begin{pmatrix} 6.412 & 0.525 & -0.112 \\ 0.525 & 7.086 & -0.201 \\ -0.112 & -0.201 & 6.135 \end{pmatrix}$$

18.6 FADH• in QM/MM (MD_{QM/MM}).

$$N5 = \begin{pmatrix} 2.091 & -0.133 & 2.724 \\ -0.134 & 1.787 & -0.880 \\ 2.725 & -0.881 & 47.580 \end{pmatrix} \qquad N10 = \begin{pmatrix} 1.965 & 0.059 & -3.344 \\ 0.056 & 0.798 & -0.016 \\ -3.343 & -0.016 & 19.941 \end{pmatrix}$$
$$Hb2 = \begin{pmatrix} 16.053 & -0.031 & -0.757 \\ -0.031 & 12.738 & 0.114 \\ -0.757 & 0.114 & 12.638 \end{pmatrix} \qquad Hb1 = \begin{pmatrix} 4.025 & 1.229 & 0.504 \\ 1.227 & 1.861 & 0.235 \\ 0.505 & 0.235 & 1.353 \end{pmatrix}$$
$$H5 = \begin{pmatrix} 2.659 & -1.843 & -0.271 \\ -1.838 & -36.927 & -0.124 \\ -0.269 & -0.124 & -23.830 \end{pmatrix} \qquad H6 = \begin{pmatrix} -2.160 & -1.938 & 0.040 \\ -1.939 & -3.101 & -0.092 \\ 0.040 & -0.092 & -5.323 \end{pmatrix}$$
$$H7\alpha = \begin{pmatrix} -1.268 & -0.436 & 0.054 \\ -0.436 & -0.512 & -0.131 \\ 0.054 & -0.131 & -1.586 \end{pmatrix}$$
$$H8\alpha = \begin{pmatrix} 5.911 & 0.522 & -0.110 \\ 0.522 & 6.586 & -0.196 \\ -0.110 & -0.197 & 5.644 \end{pmatrix}$$

、

19 Standard deviations of the full HFC tensor.

All values reported below are in MHz.

19.1 FAD^{•–} out of cluster (MD_{vac}).

$$N5 = \begin{pmatrix} 0.842 & 0.304 & 4.200 \\ 0.304 & 0.729 & 2.931 \\ 4.201 & 2.932 & 3.442 \end{pmatrix} N10 = \begin{pmatrix} 1.287 & 0.172 & 1.250 \\ 0.172 & 1.108 & 0.995 \\ 1.250 & 0.995 & 1.874 \end{pmatrix}$$
$$Hb2 = \begin{pmatrix} 1.565 & 0.176 & 0.259 \\ 0.176 & 1.546 & 0.104 \\ 0.259 & 0.104 & 1.679 \end{pmatrix} Hb1 = \begin{pmatrix} 1.151 & 0.165 & 0.294 \\ 0.165 & 1.031 & 0.152 \\ 0.294 & 0.152 & 1.049 \end{pmatrix}$$

$$H6 = \begin{pmatrix} 0.572 & 0.509 & 0.605\\ 0.509 & 2.037 & 0.413\\ 0.605 & 0.413 & 1.189 \end{pmatrix} \qquad H7\alpha = \begin{pmatrix} 2.213 & 0.163 & 0.160\\ 0.162 & 2.380 & 0.264\\ 0.160 & 0.264 & 2.264 \end{pmatrix}$$
$$H8\alpha = \begin{pmatrix} 7.028 & 0.335 & 0.246\\ 0.335 & 7.380 & 0.495\\ 0.246 & 0.496 & 7.200 \end{pmatrix}$$

19.2 FAD^{•–} in cluster (MD_{cluster}).

$$N5 = \begin{pmatrix} 0.852 & 0.322 & 4.339 \\ 0.322 & 0.727 & 3.076 \\ 4.340 & 3.077 & 3.220 \end{pmatrix} N10 = \begin{pmatrix} 1.355 & 0.188 & 1.391 \\ 0.188 & 1.175 & 1.152 \\ 1.391 & 1.152 & 2.313 \end{pmatrix}$$
$$Hb2 = \begin{pmatrix} 1.728 & 0.202 & 0.269 \\ 0.202 & 1.698 & 0.122 \\ 0.270 & 0.122 & 1.828 \end{pmatrix} Hb1 = \begin{pmatrix} 1.371 & 0.183 & 0.301 \\ 0.183 & 1.259 & 0.155 \\ 0.301 & 0.155 & 1.279 \end{pmatrix}$$
$$H6 = \begin{pmatrix} 0.573 & 0.436 & 0.572 \\ 0.436 & 1.939 & 0.377 \\ 0.572 & 0.378 & 1.175 \end{pmatrix} H7\alpha = \begin{pmatrix} 2.113 & 0.156 & 0.158 \\ 0.156 & 2.239 & 0.249 \\ 0.158 & 0.249 & 2.177 \end{pmatrix}$$
$$H8\alpha = \begin{pmatrix} 7.234 & 0.327 & 0.262 \\ 0.327 & 7.607 & 0.507 \\ 0.262 & 0.507 & 7.493 \end{pmatrix}$$

19.3 FAD^{•-} in QM/MM (MD_{QM/MM}).

$$N5 = \begin{pmatrix} 0.858 & 0.250 & 4.257 \\ 0.251 & 0.714 & 2.944 \\ 4.258 & 2.944 & 3.302 \end{pmatrix} N10 = \begin{pmatrix} 1.300 & 0.174 & 1.376 \\ 0.174 & 1.127 & 1.141 \\ 1.376 & 1.141 & 2.182 \end{pmatrix}$$
$$Hb2 = \begin{pmatrix} 1.763 & 0.188 & 0.259 \\ 0.188 & 1.753 & 0.119 \\ 0.260 & 0.119 & 1.875 \end{pmatrix} Hb1 = \begin{pmatrix} 1.341 & 0.171 & 0.293 \\ 0.171 & 1.238 & 0.142 \\ 0.293 & 0.142 & 1.254 \end{pmatrix}$$
$$H6 = \begin{pmatrix} 0.602 & 0.463 & 0.567 \\ 0.463 & 1.968 & 0.378 \\ 0.567 & 0.378 & 1.183 \end{pmatrix} H7\alpha = \begin{pmatrix} 0.700 & 0.078 & 0.075 \\ 0.078 & 0.693 & 0.122 \\ 0.075 & 0.122 & 0.733 \end{pmatrix}$$
$$H8\alpha = \begin{pmatrix} 1.898 & 0.102 & 0.097 \\ 0.102 & 1.944 & 0.169 \\ 0.097 & 0.169 & 1.867 \end{pmatrix}$$

19.4 FADH• out of cluster (MD_{vac}) .

$$N5 = \begin{pmatrix} 4.007 & 0.304 & 4.443 \\ 0.304 & 4.077 & 2.379 \\ 4.443 & 2.379 & 3.664 \end{pmatrix} \qquad N10 = \begin{pmatrix} 0.919 & 0.260 & 2.722 \\ 0.260 & 0.763 & 1.168 \\ 2.721 & 1.169 & 2.646 \end{pmatrix}$$
$$Hb2 = \begin{pmatrix} 4.419 & 0.377 & 0.328 \\ 0.377 & 4.154 & 0.160 \\ 0.328 & 0.161 & 4.347 \end{pmatrix} \qquad Hb1 = \begin{pmatrix} 1.596 & 0.172 & 0.695 \\ 0.172 & 1.645 & 0.288 \\ 0.696 & 0.288 & 1.628 \end{pmatrix}$$

$$H5 = \begin{pmatrix} 7.054 & 2.513 & 3.258\\ 2.514 & 8.336 & 0.823\\ 3.258 & 0.822 & 7.679 \end{pmatrix} \qquad H6 = \begin{pmatrix} 0.379 & 0.171 & 0.309\\ 0.171 & 1.162 & 0.306\\ 0.309 & 0.306 & 0.736 \end{pmatrix}$$
$$H7\alpha = \begin{pmatrix} 0.828 & 0.086 & 0.100\\ 0.086 & 0.868 & 0.209\\ 0.100 & 0.209 & 0.829 \end{pmatrix} \qquad H8\alpha = \begin{pmatrix} 4.063 & 0.169 & 0.182\\ 0.170 & 4.243 & 0.325\\ 0.182 & 0.325 & 4.279 \end{pmatrix}$$

19.5 FADH• in cluster (MD_{cluster}).

$$N5 = \begin{pmatrix} 3.701 & 0.316 & 4.511 \\ 0.316 & 3.784 & 2.427 \\ 4.510 & 2.427 & 5.300 \end{pmatrix} \qquad N10 = \begin{pmatrix} 0.974 & 0.274 & 2.885 \\ 0.274 & 0.764 & 1.198 \\ 2.884 & 1.198 & 3.296 \end{pmatrix}$$
$$Hb2 = \begin{pmatrix} 5.505 & 0.395 & 0.313 \\ 0.395 & 5.023 & 0.161 \\ 0.313 & 0.161 & 5.221 \end{pmatrix} \qquad Hb1 = \begin{pmatrix} 1.790 & 0.230 & 0.709 \\ 0.230 & 1.811 & 0.280 \\ 0.709 & 0.281 & 1.802 \end{pmatrix}$$
$$H5 = \begin{pmatrix} 6.843 & 2.578 & 3.253 \\ 2.579 & 8.407 & 0.808 \\ 3.254 & 0.808 & 7.381 \end{pmatrix} \qquad H6 = \begin{pmatrix} 0.399 & 0.239 & 0.308 \\ 0.239 & 1.176 & 0.300 \\ 0.308 & 0.300 & 0.829 \end{pmatrix}$$
$$H7\alpha = \begin{pmatrix} 1.066 & 0.116 & 0.115 \\ 0.116 & 1.069 & 0.220 \\ 0.115 & 0.220 & 1.077 \end{pmatrix} \qquad H8\alpha = \begin{pmatrix} 4.715 & 0.193 & 0.213 \\ 0.193 & 4.906 & 0.356 \\ 0.213 & 0.356 & 4.984 \end{pmatrix}$$

19.6 FADH• in QM/MM ($MD_{QM/MM}$).

N5 =	$ \begin{pmatrix} 3.561 \\ 0.315 \\ 4.490 \end{pmatrix} $	$\begin{array}{c} 0.315 \\ 3.646 \\ 2.424 \end{array}$	$ \begin{array}{c} 4.490 \\ 2.424 \\ 4.665 \end{array} \right) $	N10 =	$\begin{pmatrix} 0.911 \\ 0.259 \\ 2.740 \end{pmatrix}$	$0.259 \\ 0.737 \\ 1.140$	$\begin{array}{c} 2.741 \\ 1.140 \\ 2.994 \end{array}$	
Hb2 =	$\begin{pmatrix} 4.748 \\ 0.392 \\ 0.321 \end{pmatrix}$	$\begin{array}{c} 0.392 \\ 4.387 \\ 0.159 \end{array}$	$\begin{array}{c} 0.321 \\ 0.158 \\ 4.558 \end{array} \right)$	Hb1 =	$\begin{pmatrix} 1.676 \\ 0.204 \\ 0.693 \end{pmatrix}$	$0.204 \\ 1.717 \\ 0.271$	$\left. \begin{array}{c} 0.692 \\ 0.271 \\ 1.708 \end{array} \right)$)
H5 =	$\begin{pmatrix} 6.692 \\ 2.571 \\ 3.229 \end{pmatrix}$	$2.570 \\ 8.286 \\ 0.795$	$\begin{array}{c} 3.228 \\ 0.796 \\ 7.210 \end{array} \right)$	$H6 = \left(\right)$	$\begin{pmatrix} 0.391 \\ 0.212 \\ 0.312 \end{pmatrix}$	$\begin{array}{c} 0.212 \\ 1.130 \\ 0.298 \end{array}$	$\begin{pmatrix} 0.312 \\ 0.298 \\ 0.799 \end{pmatrix}$	
$ m H7\alpha =$	$\begin{pmatrix} 0.764 \\ 0.085 \\ 0.055 \end{pmatrix}$	$\begin{array}{c} 0.085 \\ 0.734 \\ 0.105 \end{array}$	$\begin{array}{c} 0.055 \\ 0.105 \\ 0.775 \end{array}$	${\rm H8}\alpha =$	$\begin{pmatrix} 1.377 \\ 0.081 \\ 0.090 \end{pmatrix}$	$\begin{array}{c} 0.081 \\ 1.415 \\ 0.145 \end{array}$	0.090 0.145 1.355)

References

¹ Erik Schleicher, Ringo Wenzel, Margret Ahmad, Alfred Batschauer, Lars-Oliver Essen, Kenichi Hitomi, Elizabeth D. Getzoff, Robert Bittl, Stefan Weber, and Asako Okafuji. The electronic state of flavoproteins: investigations with proton electron-nuclear double resonance. *Applied Magnetic Resonance*, 37(1-4):339–352, 1 2010.

² Daniel Nohr, Sophie Franz, Ryan Rodriguez, Bernd Paulus, Lars-Oliver Essen, Stefan Weber, and Erik Schleicher. Extended electron-transfer in animal cryptochromes mediated by a tetrad of aromatic amino acids. *Biophysical Journal*, 111(2):301–311, 7 2016.

³ Asako Okafuji, Alexander Schnegg, Erik Schleicher, Klaus Möbius, and Stefan Weber. G-tensors of the flavin adenine dinucleotide radicals in glucose oxidase: a comparative multifrequency electron paramagnetic resonance and electronnuclear double resonance study. *The Journal of Physical Chemistry B*, 112(11):3568–3574, 3 2008.

⁴ Hamish G Hiscock, Susannah Worster, Daniel R Kattnig, Charlotte Steers, Ye Jin, David E Manolopoulos, Henrik Mouritsen, and P J Hore. The quantum needle of the avian magnetic compass. *PNAS*, 113(17):4634–4639, 2016.