Supplementary information

A new krypton complex – Experimental and computational investigation of the krypton sulphur pentafluoride cation, [KrSF₅]⁺, in the gas phase

Sandrina Oliveira,¹ Nuno A. G. Bandeira,^{2,*} João P. Leal,¹ Leonor Maria,¹ José M. Carretas,¹ Bernardo Monteiro,¹ Joaquim Marçalo^{1,*}

¹ Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal

² BioISI, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

*Email: <u>imarcalo@ctn.tecnico.ulisboa.pt</u>; <u>nuno.bandeira@ciencias.ulisboa.pt</u>

Contents

Figure S1 – Kinetic plot for a reaction of isolated, thermalised Kr⁺ with SF₆

Figure S2 – Mass spectra of a 0.5 s reaction of isolated, thermalised Kr⁺ with SF₆ at two different Ar pressures.

Figure S3 – Mass spectra of the reaction of isolated, thermalised Kr⁺ with NF₃.

Table S1 – Final coordinates and energy (E_h, BCCD(T)) from single point energy calculations on geometry optimised structures (MP2) reported in this study.

Figure S4 – Mulliken charges in [KrSF₆]⁺ computed at the MP2/def2-TZVPP level.

Figure S5 – Mulliken charges in [KrSF₅]⁺ (Conformer 1) computed at the MP2/def2-TZVPP level.

Figure S6 – Mulliken charges in [KrSF₅]⁺ (Conformer 2) computed at the MP2/def2-TZVPP level.

Figure S7 – Mulliken charges in [XeSF₆]⁺ computed at the MP2/def2-TZVPP level.

Figure S8 – Mulliken charges in [XeSF₅]⁺ (Conformer 1) computed at the MP2/def2-TZVPP level.

Figure S9 – Mulliken charges in [XeSF₅]⁺ (Conformer 2) computed at the MP2/def2-TZVPP level.

Table S2 – Enthalpies and Gibbs energies of reaction (kcal/mol) computed by MP2 and BCCD(T) methods for $Ng^{+} + SF_{6}$.

Table S3 – Thermochemical calculations for $HXF_n^+ \rightarrow XF_{n-1}^+ + HF$ (X = S, n = 6; X = N, n = 3; X = Si, n = 4).

Figure S10 – Energy density map of the [KrSF₆]⁺ species with (3,+1) Hamiltonian critical points signalled as orange dots.

Figure S11 – Potential energy surface map along with the Kr-F distance coordinate in [KrSF₆]⁺ including spin-orbit coupling.

Figure S1 – Kinetic plot for a reaction of isolated, thermalised Kr⁺ with SF₆.

Figure S2 – Mass spectra of a 0.5 s reaction of isolated, thermalised Kr^+ with SF_6 at two different Ar pressures.

Figure S3 – Mass spectra of the reaction of isolated, thermalised Kr^{+} with NF₃.

KrSF ₆ ⁺				XeSF ₆ ⁺					
-3747.9 Eh (-2351827.7 kcal/mol)				-1324.2 Eh (-830948.22 kcal/mol)					
S	-0.058078000	-0.095547000	0.058321000	S	0.082680000	0.091591000	0.071651000		
F	0.078799000	-0.349799000	1.565504000	F	-0.196430000	-1.372323000	-0.284224000		
F	0.226768000	0.425211000	-1.387679000	F	-0.030446000	-0.176731000	1.588161000		
F	1.432607000	0.311088000	0.003174000	F	-1.440671000	0.449177000	0.022462000		
F	1.581896000	-0.235605000	0.173545000	F	0.366306000	1.688155000	0.436330000		
F	-0.376291000	1.649213000	0.581237000	F	1.609435000	-0.133914000	0.125384000		
F	0.186319000	-1.530270000	-0.350957000	F	0.196269000	0.491984000	-1.437658000		
Kr	0.544679000	3.394709000	-0.374871000	Xe	e -0.586170000	3.863968000	-0.576030000		
KrSF₅⁺ (Conf. 1)				XeSF₅⁺ (Conf. 1)					
-3648.232 Eh (-2289300.13 kcal/mol)				-1224.471 Eh (-768322.76 kcal/mol)					
S	0.001384000	0.563744000	-0.036476000	S	0.000000000	-0.099606000	-0.089783000		
F	0.005436000	0.259726000	1.464264000	F	-0.000001000	-0.338902000	1.385426000		
F	-0.002396000	0.854156000	-1.540425000	F	0.000001000	-1.280397000	-1.005991000		
F	1.320951000	-0.123485000	-0.176551000	F	1.531385000	-0.097412000	-0.099736000		
F	-1.291257000	-0.172321000	-0.179404000	F	-1.531385000	-0.097412000	-0.099739000		
F	-0.026366000	2.029850000	0.253320000	F	0.000001000	1.308687000	-0.591146000		
Kr	0.071969000	-3.293022000	-0.293879000	Xe	-0.00002000	0.540428000	-4.093606000		
KrSF₅⁺ (Conf. 2)				XeSF₅⁺(Conf. 2)					
-3648.231 E _h (-2289299.5 kcal/mol)				-1224.469 E _h (-768365.89 kcal/mol)					
S 0.001915000 0.348898000 0.121476000			S	0.001698000	0.351754000	0.145057000			
F 0.003954000 -0.765396000 1.118644000			F	-0.003485000	-0.753388000	1.152595000			
F 0.011377000 0.043886000 -1.341310000			F	0.009797000	0.034048000	-1.314981000			
F	1.533329000 (0.349813000 0	.132373000	F	1.533288000	0.352453000	0.155016000		
F	-1.529505000 (0.348452000 0	.112813000	F	-1.529898000	0.351497000	0.138194000		
F	-0.001704000	1.768908000 0	.590100000	F	-0.001246000	1.775909000	0.601204000		
Kr	-0 011457000 -	0 565157000 -4	1 599097000	Xe	-0 010155000	-0 582869000	-4 742085000		

Table S1 – Final coordinates and energy (E_h, BCCD(T)) from single point energy calculations on geometry optimised structures (MP2) reported in this study.

Figure S4 – Mulliken charges in $[KrSF_6]^+$ computed at the MP2/def2-TZVPP level.

Figure S5 – Mulliken charges in $[KrSF_5]^+$ (Conformer 1) computed at the MP2/def2-TZVPP level.

Figure S6 – Mulliken charges in [KrSF₅]⁺ (Conformer 2) computed at the MP2/def2-TZVPP level.

Figure S7 – Mulliken charges in $[XeSF_6]^+$ computed at the MP2/def2-TZVPP level.

Figure S8 – Mulliken charges in [XeSF₅]⁺ (Conformer 1) computed at the MP2/def2-TZVPP level.

Figure S9 – Mulliken charges in [XeSF₅]⁺ (Conformer 2) computed at the MP2/def2-TZVPP level.

Deastion	MP2 ^b				BCCD(T) ^c			
Reaction	Δн		∆G		Δн		ΔG	
	Conf. 1	Conf. 2	Conf. 1	Conf.2	Conf. 1	Conf.2	Conf. 1	Conf.2
$Kr^+ + SF_6 \rightarrow KrSF_6^+$	-17.4	-17.4	12.9	12.9	-18.0	-18.0	12.3	12.3
$\mathrm{KrSF_{6}^{+}} \rightarrow \mathrm{Kr} \cdots \mathrm{SF_{5}^{+}} + \mathrm{F}$	16.4	17.4	-17.8	-17.9	15.0	16.0	-19.1	-19.3
$\mathrm{Kr}\mathrm{\cdots}\mathrm{SF}_{\mathrm{5}^{\mathrm{+}}} \to \mathrm{Kr} + \mathrm{SF}_{\mathrm{5}^{\mathrm{+}}}$	4.1	3.1	-15.3	-15.2	3.2	2.2	-16.3	-16.1
$Kr^* + SF_6 \rightarrow Kr + SF_5^* + F$	3.1	3.1	-20.2	-20.2	0.2	0.2	-23.1	-23.1
$Xe^+ + SF_6 \rightarrow XeSF_6^+$	-9.8	-9.8	20.0	20.0	-11.7	-11.7	18.1	18.1
$XeSF_{6}^{+} \rightarrow Xe\cdots SF_{5}^{+} + F$	47.1	48.3	13.5	13.5	46.4	47.5	12.7	12.7
$Xe {\cdots} SF_5^* \to Xe + SF_5^*$	4.7	3.5	-14.8	-14.8	3.7	2.6	-15.6	-15.6
$Xe^+ + SF_6 \rightarrow Xe + SF_5^+ + F$	42.0	42.0	18.7	18.7	38.4	38.4	15.2	15.2

Table S2 – Enthalpies and Gibbs energies of reaction (kcal/mol) computed by MP2 and BCCD(T) methods for Ng⁺ + SF₆^a

^a Δ H and Δ G were computed at T = 298.15 K and the entropy was corrected for a pressure of 10⁻⁷ Torr (S₂ = S₁ - Rln(P₂/P₁)). ^b Basis set def2-TZVPP. ^c Basis set cc-pVTZ.

Reaction	$\Delta H \text{ (kcal/mol)}$ $[\Delta H = AE(XF_{n-1}^{+}/XF_n) + PA(XF_n) + \Delta_f H^{\circ}(HF) - \Delta_f H^{\circ}(F) - \Delta_f H^{\circ}(H^{+})]$					
$HSF_{6}^{+} \rightarrow SF_{5}^{+} + HF$ (X = S, n = 6)	-5.2 ± 4.8					
$HNF_{3}^{+} \rightarrow NF_{2}^{+} + HF$ (X = N, n = 3)	10.6 ± 1.9					
$HSiF_{4}^{+} \rightarrow SiF_{4}^{+} + HF$ $(X = Si, n = 4)$	24.9 ± 4.6					
Data (kcal/mol) ^a	AE(XF _{n-1} ⁺ /XF _n)		PA(XF _n)			
X = S	308.6 ± 4.4^{b}		137.5 ± 1.9°			
X = N	326.0 ± 0.2^{d}		135.9 ± 1.9°			
X = Si	374.0 ± 4.2^{e}		102.2 ± 1.9 ^c			
Δ _f H°(HF)		-65.14 ± 0.19^{f}				
Δ _f H ^o (F)		19.97 ± 0.07^{f}				
Δ _f H°(H ⁺)		367.17 ± 0.01 ^f				

Table S3 – Thermochemical calculations for $HXF_{n^+} \rightarrow XF_{n-1^+} + HF$ (X = S, n = 6; X = N, n = 3; X = Si, n = 4)

^a T = 298.15 K.

^b E. R. Fisher, B. L. Kickel and P. B. Armentrout, *J. Chem. Phys.*, 1992, **97**, 4859-4870; converted to 298.15 K considering a difference of -0.94 kcal/mol between $\Delta_f H^o(SF_5^+)$ [298.15 K] and $\Delta_f H^o(SF_5^+)$ [0 K] in ref. f.

^c E. P. Hunter and S. G. Lias, J. Phys. Chem. Ref. Data, 1998, 27, 413-656.

^d J. Berkowitz, J. P. Greene, J. Foropoulos Jr. and O. M. Nesković, *J. Chem. Phys.*, 1984, **81**, 6166-6175; in the absence of data for NF₂⁺ in ref. f, converted to 298.15 K considering a difference of +0.8 kcal/mol between $\Delta_f H^o(PF_2^+)$ [298.15 K] and $\Delta_f H^o(PF_2^+)$ [0 K] in ref. f.

^e B. L. Kickel, E. R. Fisher and P. B. Armentrout, *J. Phys. Chem.*, 1993, **97**, 10198-10203; converted to 298.15 K considering a difference of +0.23 kcal/mol between $\Delta_f H^o(SiF_3^+)$ [298.15 K] and $\Delta_f H^o(SiF_3^+)$ [0 K] in ref. f.

^f M. W. Chase, Jr., Ed., *NIST-JANAF Thermochemical Tables, 4th ed., J. Phys. Chem. Ref. Data Monogr. 9*, AIP and ACS, New York, USA, 1998.

Figure S10 – Energy density map of the $[KrSF_6]^+$ species with (3,+1) Hamiltonian critical points signalled as orange dots.

Figure S11 – Potential energy surface map along with the Kr-F distance coordinate in $[KrSF_6]^+$ including spin-orbit coupling. The dissociation limit agrees with the experimentally determined value of 5370.1 cm⁻¹ (E. B. Saloman, *J. Phys. Chem. Ref. Data*, 2007, **36**, 215-386). The minimum in the "²P_{1/2}" surface lies at 2.8 Å. A localised basis set was used throughout allowing for the determination of the extent of charge transfer at the equilibrium bond distance using two valence bond like configurations.