Supporting Information

Towards Solvent Regulated Self-Activation of N-Terminal Disulfide Bond Oxidoreductase-D

Aparna G Nair ${ }^{a \ddagger}$, D. Sravanakumar Perumalla ${ }^{a, b \ddagger}$, and Padmesh Anjukandi* ${ }^{* a *}$
${ }^{a}$ Department of Chemistry, Indian Institute of Technology, Palakkad-678557, Kerala, India. E-mail: padmesh@iitpkd.ac.in
${ }^{b}$ 'Present Address': Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru-560012, India.

[^0]
CONTENTS

S1. Methods 4
A. Molecular Mechanics- Molecular Dynamics Simulations 4
B. QM/MM Molecular Dynamics 5
C. Metadynamics 5
D. DFT Calculations 6
S2. Nucleophile Generating Residues near the Active Site 7
A. Proton Transfer From Tyr $_{40 / 42 / 71} \mathrm{OH}$ To $\mathrm{Asp}_{68} \mathrm{O}^{-}$ 7
B. Distance between $\mathrm{Asp}_{68} \mathrm{O}^{-}$and $\mathrm{Tyr}_{40 / 42} \mathrm{OH}$ 7
C. Distance between $\mathrm{Asp}_{68} \mathrm{O}^{-}$and $\mathrm{Tyr}_{71} \mathrm{OH}$ 11
D. $\mathrm{Asp}_{68} \mathrm{O}^{-}$as a nucleophile 11
E. Defining QM region 13
S3. Presence of cap-loop near the active site 13
A. Opening of Phe_{70} Cap 13
S4. $\mathrm{Tyr}_{40 / 42} \mathrm{O}^{-}$As Nucleophile 16
A. Opening of Phe_{70} Cap - Distance Analysis 16
B. Opening of Phe_{70} Cap - Torsional Angle Analysis 16
C. Stability of $\mathrm{Tyr}_{40 / 42} \mathrm{O}^{-}$nucleophile generated 17
D. Solvation around $\mathrm{Tyr}_{40 / 42} \mathrm{O}^{-}$residues 20
E. Solvation around $\mathrm{Cys}_{103 / 109}$ residues 20
S5. Solvent Accessible Surface Area (SASA) 22
S6. Scheme for Disulfide Scission by Nucleophile 25
S7. Path I: Direct Proton Transfer 26
S8. Path II: Direct Proton Transfer Followed by OH^{-}Formation 29
S9. $\mathrm{Tyr}_{42} \mathrm{O}^{-}$attack on disulfide 33
S10. Static Calculation on Disulfide Cleavage 33
A. Static Calculation on Path IA: $\mathrm{S}_{\mathrm{N}} 2$ by TyrO 33
B. Static Calculation on Path IB: α-elimination by TyrO^{-} 34
S11. Stabilization of $\operatorname{Tyr}_{42} \mathrm{O}$ 35
S12. References 39

S1. METHODS

A. Molecular Mechanics- Molecular Dynamics Simulations

The native structure for the 124 residue $\mathrm{nDsbD}_{\mathrm{Ox}}$ (PDB ID: 1L6P) is collected from Protein Data Bank [1], and missing atoms for Arg_{8} and Lys_{73} are added using PYMOL [2]. Classical Molecular Dynamics (MD) simulations are performed using GROMACS-2016.3 [3, 4]. for understanding the behaviour of the catalytic disulfide bond and its surrounding residues. Considering that 1L6P is a globular protein of size $\approx 6 \mathrm{~nm}$, the protein-water system is enclosed in a cubic box of length 8 nm . Protein is then solvated with TIP3P modelled [5] 16336 water molecules and neutralized for residual charges using $10 \mathrm{Na}^{+}$and $5 \mathrm{Cl}^{-}$ions. Following the protocol below, the protein-water system is simulated for 400 ns with 2 fs time step and Amber99sb-ildn force field [6]. Periodic boundary condition is applied along the three axes and all bonds are constrained using LINCS algorithm [7]. 1.0 nm cut-off is defined for both short-range Coulomb and van der Waals interactions. Long-range electrostatic interactions are accounted using the Particle-mesh Ewald method [8, 9]. Trajectory coordinates are recorded for every 200fs, later visualized and analyzed using VMD 1.9.3 software [10]. MD simulations are also conducted on native $n D s b D_{\text {Ox }}$ with (i) de-protonated Tyr_{40} and protonated $\mathrm{Asp}_{68}\left(\mathrm{dTyr}_{40}\right)$ (ii) de-protonated Tyr_{42} and protonated $\mathrm{Asp}_{68}\left(\mathrm{dTyr}_{42}\right)$ in a similar fashion. As TyrO^{-}is not a natural state for amino acid, partial charges and topology parameters are derived from tleap tool in Ambertools18 [11]. 400ns MD simulations is also performed with $\mathrm{cDsbD}_{\mathrm{Ox}}$ (PDB ID: 2FWE)[12] using the same method described as above and with the following changes; protein is enclosed in a cubic box of size 10 nm , solvated with 32145 TIP3P water molecules and neutralized with $10 \mathrm{Na}^{+}$and $4 \mathrm{Cl}^{-}$ions.

The protocol for all MD simulations conducted here are as follows: (i) Energy minimization of the neutralized protein-water system with Steepest Descent algorithm (ii) Equilibration in NVT ensemble at 300 K for 1 ns , followed by 1 ns equilibration in NPT ensemble at 1 bar pressure (iii) Final production run with V-rescale thermostat [13] and Parrinello-Rahman barostat [14] for 400ns.

B. QM/MM Molecular Dynamics

System conformation favourable for the reactions is identified from the MD trajectory and is taken as the input for QM/MM MD simulations [15] implemented in CP2K 6.1 code [16]. The inputs are converted into CP2K readable format with tleap package of AmberTools18 [11], keeping atom positions and simulation box size intact. Topology files obtained so were corrected for solvent-protein Lennard-Jones interaction potential terms and later energetically minimized. The side chain of $\mathrm{Tyr}_{40}, \mathrm{Tyr}_{42}, \mathrm{Asp}_{68}, \mathrm{Gln}_{101}, \mathrm{Cys}_{103}, \mathrm{Cys}_{109}$, and the water molecules from the first solvation shell ($4 \AA$ cut-off) around these residues are included in the QM region (fig. S6). These atoms are then placed inside a cubic box of length 2.6 nm with a reflective wall along all the sides. QM energies are calculated based on Density Functional Theory (DFT) with Gaussian Plane Wave method (GPW) [17] (BLYP-D3 functional [1821], DZVP basis set [22] and Goedecker-Teter-Hutter (GTH) pseudo-potential [23, 24] with 300Ry cut-off). For energy calculations on larger systems such as proteins, BLYP-D3/DZVP is on par with CCSD results [25]. Also, BLYP density functional has been earlier adopted in exploring the disulfide chemistry [26-28]. MM region for the present calculations are modelled by Amberff14SB force-field[29] and TIP3P water model. QM/MM boundary is separated with IMOMM [30] link atom approach [31, 32] with hydrogen as the linking atom. Electrostatic interaction between QM and MM region is defined using Gaussian Expansion of Electrostatic Potential (GEEP) method [33, 34]. QM/MM system is then equilibrated for 5 ps with 0.5 fs time step at 300 K using Nosé-Hoover thermostat chain [35, 36], in NVT ensemble.

C. Metadynamics

Free Energy Surface (FES) for the reactions are explored with QM/MM MD metadynamics (MTD) simulations [37]. As we are looking at a rare event, MTD simulations are run in parallel with eight walkers [38]. This helps sample all possible conformation in the Collective Variable (CV) space for the reaction under study. History dependent Gaussian potential of height $0.25 \mathrm{kcal} / \mathrm{mol}$ and width 0.15 is deposited with the CV every 300 steps (150fs). Here, CV is defined as the difference in coordination number $\left(\Delta C N\left(O_{a}, O_{d}, H\right)\right.$) for acceptor $\left(O_{a}\right)$
and donor $\left(O_{d}\right)$ oxygen atom, with respect to the hydrogen atom which is being transported (eq. (S2)).

$$
\begin{equation*}
C V=\Delta C N\left(O_{a}, O_{d}, H\right)=C N\left(O_{a}, H\right)-C N\left(O_{d}, H\right) \tag{S1}
\end{equation*}
$$

$C N\left(O_{d}, H\right)$ and $C N\left(O_{a}, H\right)$ are calculated using eq. (S2).

$$
\begin{equation*}
C N(O, H)=\frac{1-\left(\frac{d_{O H}}{d_{0}}\right)^{6}}{1-\left(\frac{d_{O H}}{d_{0}}\right)^{12}} \tag{S2}
\end{equation*}
$$

where ' $d_{O H}$ ' is the distance between oxygen and hydrogen atom; ' d_{0} ' is the equilibrium bond length between the respective atoms, taken here as $0.98 \AA$. If the proton is located near the acceptor, then the $\mathrm{CV}\left(\Delta C N\left(O_{a}, O_{d}, H\right)\right)$ will have a positive value otherwise negative. Thus, a value close to 0.45 of any CV is considered the product state along that CV.

D. DFT Calculations

Energetics for static gas-phase nucleophile mediated disulfide cleavage reaction was computed using BLYP-D3/6-31G* [18-21, 39] in ORCA quantum chemistry program suite [40]. $\mathrm{Tyr}_{42} \mathrm{O}^{-}, \mathrm{Cys}_{103 / 109}$ residues as defined in the QM region only are incorporated for the study. The inputs for the calculation is collected from the $\mathrm{Tyr}_{42} \mathrm{O}^{-}-\mathrm{Cys}_{103} \mathrm{C}_{\alpha} \mathrm{H}$ distance scan performed using the QM/MM implementation in Gromacs 2016.3-ORCA combined program. Valency for carbon is satisfied using hydrogen atoms. The reactants and products are optimized within extreme tight SCF convergence criteria. The transition state was confirmed from the imaginary frequency.

S2. NUCLEOPHILE GENERATING RESIDUES NEAR THE ACTIVE SITE

A. Proton Transfer From $\mathrm{Tyr}_{40 / 42 / 71} \mathrm{OH}$ To $\mathrm{Asp}_{68} \mathrm{O}^{-}$

The active site in $n D s b D_{\mathrm{O}}$ is surrounded by amino acid residues such as $\mathrm{Tyr}_{40}, \operatorname{Tyr}_{42}$, Asp_{68} and Tyr_{71}, whose side chain can act as potential nucleophile generators (fig. S1). Here, $\left(\mathrm{TyrO}^{-}\right)$nucleophile can be generated through proton abstraction by Asp_{68} from any of the above tyrosine residues.

FIG. S1: Possible nucleophile generating residues near the disulfide bond of $n \operatorname{DsbD}_{\text {Ox }}$. For identification, one of the Asp $_{68}$ oxygen is coloured orange.

B. Distance between $\mathrm{Asp}_{68} \mathrm{O}^{-}$and $\mathrm{Tyr}_{40 / 42} \mathrm{OH}$

Possibilities of proton abstraction by Asp $_{68}$ from $\mathrm{Tyr}_{40 / 42}$ to form TyrO^{-}nucleophile is analyzed here. For this, the evolution of distance with time and corresponding normalized distributions are plotted (figs. S2 and S3). Based on the simulations, distance analysis between the residues are separated into two sections (i) $0-150 \mathrm{~ns}$ and (ii) $150-400 \mathrm{~ns}$. The majority of the time up to 150 ns , as both $\mathrm{Tyr}_{40 / 42}$ residues are far away from Asp_{68}, there is no significant hydrogen bond interaction. Thus in the distribution plot (fig. S3a) major peak
is due to $4-8 \AA$ distance. In rare cases, Asp $_{68}$ comes closer only to Tyr_{40} ($\mathrm{t}=60 \mathrm{~ns}$, fig. S2a). After 150 ns , it can be seen that both oxygen's of Asp_{68} forms a hydrogen bond to Tyr_{42}; the trend being retained for $\approx 25 \mathrm{~ns}$ and repeated over time. Nevertheless, at $\approx 200 \mathrm{~ns}, \mathrm{Tyr}_{40}$ and Tyr_{42} together share hydrogen bond interactions with Asp_{68}. The same can be interpreted from the distribution as well. The dominant peak at $\approx 2 \AA$ comes from $\operatorname{Tyr}_{42} \mathrm{OH}-\mathrm{Asp}_{68} \mathrm{O}^{-}$, whereas $\mathrm{Tyr}_{40}-\mathrm{Asp}_{68}$ distance contributes only one-third of the area (fig. S3b). Thus, it can be concluded that near the active site of $n \operatorname{nsbD}_{\mathrm{Ox}}$, strong hydrogen bond interaction exists between the side chains of $\mathrm{Tyr}_{42}-\mathrm{Asp}_{68}$ residues and proton abstraction from Tyr_{42} by Asp_{68}, can generate TyrO^{-}nucleophile. Tyr_{40} also has a minor contribution towards the formation of TyrO^{-}, but the possibilities are minimal. Hence, our MD simulation results for the Phe_{70} cap fluctuations, together with the proton transfer direct towards the exploration of possibilities and energetics involved in forming nucleophile (TyrO^{-}), which may further lead to disulfide scission.

FIG. S2: Time evolution for the distance between $\mathrm{Tyr}_{40 / 42}$ and Asp_{68} separated into multiple sections based on time. $\mathrm{Tyr}_{40}-\mathrm{Asp}_{68}$ distance for time (a) 0-150ns, (b) $150-400 \mathrm{~ns}$ and $\mathrm{Tyr}_{42}-\mathrm{Asp}_{68}$ distance from (c) 0-150ns (d) 150-400ns are given. Snapshots corresponding to selected simulation time are also shown in insight. One of the Asp 68 oxygen is coloured orange for identification. Strong hydrogen bond interaction can be seen between Tyr_{42} and Asp_{68} residues.

FIG. S3: Normalized distribution for the distance between $\operatorname{Tyr}_{40 / 42}$ and Asp $_{68}$ separated into two-time sections; (a) 0-150ns and (b) 150-400ns.

C. Distance between $\mathrm{Asp}_{68} \mathrm{O}^{-}$and $\mathrm{Tyr}_{71} \mathrm{OH}$

Tyr_{71} can transfer its proton to Asp_{68} and generate $\mathrm{Tyr}_{71} \mathrm{O}^{-}$nucleophile. So, the distance between the residues is plotted to determine whether Tyr_{71} can be a potential nucleophile generating residue (fig. S4). As seen from the plot, these residues approach down to \approx $4 \AA$ Åonly. The formation of TyrO^{-}by the proton transfer between Tyr_{71} and Asp_{68} is very rare, and therefore, for further investigations, Tyr_{71} is excluded from the QM region.

FIG. S4: (a) Time evolution for the distance between $\mathrm{Tyr}_{71} \mathrm{OH}$ and $\mathrm{Asp}_{68} \mathrm{O}_{1 / 2}{ }^{-}$and (b) corresponding normalized distribution. As can be seen, $\mathrm{Asp}_{68} \mathrm{O}^{-}$is far away from $\mathrm{Tyr}_{71} \mathrm{OH}$ for proton abstraction, and so $\operatorname{Tyr}_{71} \mathrm{O}^{-}$nucleophile is not a possibility.

D. $\mathbf{A s p}_{68} \mathbf{O}^{-}$as a nucleophile

Chances of direct attack by Asp_{68} as a nucleophile in breaking the disulfide bond is also examined (fig. S5). As the closest distance between Asp_{68} and $\mathrm{Cys}_{103} \mathrm{~S}$ is $\approx 4 \AA$, chances of Asp_{68} to perform a direct attack on Cys_{103} and break the disulfide bond can be ruled out.

FIG. S5: (a) Time evolution for the distance between $\mathrm{Cys}_{103} \mathrm{~S}$ and Asp_{68} (b)
Corresponding normalized distribution. Possibilities for Asp $_{68}$ to attack the disulfide bond is minimal here.

E. Defining QM region

Residues, as shown in fig. $S 6$ in native $n D s b D_{O x}$ and ten water molecules from the first solvation shell ($4 \AA$ cut-off) are incorporated in the QM region. The boundary between the QM and MM region is separated using hydrogen atoms, and at most care has been given to place hydrogen between $\mathrm{C}-\mathrm{C}$ single bond. Same residues are included when defining the QM region in dTyr_{42}, together with thirteen water molecules from the first solvation shell.

FIG. S6: Native structure of $n D_{s b D}$ Ox (left) (PDB ID: 1L6P). Enlarged on the right are the residues along with ten water molecules included in the QM region. Link atoms separating the boundary between QM and MM are shown as orange balls.

S3. PRESENCE OF CAP-LOOP NEAR THE ACTIVE SITE

A. Opening of Phe_{70} Cap

The active site (including $\mathrm{Cys}_{103}{ }^{-} \mathrm{Cys}_{109}$ disulfide bond) is enclosed in a cap loop made up of $\mathrm{Asp}_{68^{-}} \mathrm{Glu}_{69}-\mathrm{Phe}_{70}-\mathrm{Tyr}_{71}-\mathrm{Gly}_{72}-\mathrm{Lys}_{73}$ residues [41-43]. Among the loop residues, Phe $_{70}$ forms a cap to Cys_{109} and protects the disulfide from nucleophilic and solvent attack [43]. Conformational changes in the cap loop region have a key role in the flexibility of
$n \operatorname{nsbD}_{\mathrm{Ox}}$ and its function [44]. The change from a closed to open conformation for Phe_{70} cap can be characterized by the distance from the centre of mass of Phe_{70} ring to the sulphur of $\mathrm{Cys}_{103}\left(\mathrm{~d}_{\text {Phe }_{70}-C y s_{103}}\right)$ and $\mathrm{Cys}_{109} \mathrm{~S}\left(\mathrm{~d}_{\text {Phe }}^{70}\right.$-Cys $\left.s_{109}\right)$. If $\mathrm{d}_{\text {Phe }}{ }_{70}-$ Cys s_{109} is less than $5 \AA$, the cap is considered closed conformation or else open. [44] X-ray structure for $n D s b D_{\text {Ox }}$ holds Phe $_{70}$ cap in a closed conformation (distance $=3.5 \AA$). Nevertheless, our simulations show a fluctuating behaviour for the cap, in which during the majority of simulation time cap remains in the open state. It is visible from (i) time evolution plot for $\left(\mathrm{d}_{\text {Phe }_{70}-\text { Cys }}^{103 / 109}\right.$ $)$ distance (fig. S7a) (ii) normalized distribution plot for the same (fig. S7b). Snapshots at different time frames demonstrating Phe $_{70}$ cap opening are also included here fig. S8.

FIG. S7: Fluctuation of Phe $_{70}$ cap with respect to $\mathrm{Cys}_{103 / 109} \mathrm{~S}$ distance. (a)Time evolution for the distance (b) Corresponding normalized distribution plot. It is clear that Phe ${ }_{70}$ cap moves from a closed to open conformation during the simulation.

FIG. S8: Snapshots at different time frames from MD simulation showing Phe ${ }_{70}$ Cap opening.

S4. $\mathrm{TYR}_{40 / 42} \mathrm{O}^{-}$AS NUCLEOPHILE

MD simulations indicate the possibility of proton abstraction by Asp_{68} from $\operatorname{Tyr}_{40 / 42}$ residues to form TyrO^{-}nucleophile. The fate of these nucleophiles after their formation is analyzed. For this, MD simulations are conducted on dTyr_{40} and dTyr_{42}. Following are the observations from the MD data.

A. Opening of Phe_{70} Cap - Distance Analysis

Based on the distance cut-off for $\mathrm{Phe}_{70}-\mathrm{Cys}_{109}$ in section S 3 , the cap's opening is evaluated in $\mathrm{dTyr}_{40}, \mathrm{dTyr}_{42}$ systems fig. S9. It is clear that Phe_{70} cap is flexible for dTyr_{42} (blue), similar to native $n D s b D_{\text {Ox }}$ (green), but remains closed for dTyr_{40} (red).

FIG. S9: (a) Variation in Phe $_{70}$ cap - Cys $_{109}$ distance with time for $n D s b D_{\text {Ox }}$ (green), dTyr_{42} (blue) and dTyr_{40} (red) systems (b) Corresponding normalized distribution. When the distance is less than $5 \AA$, which indicates a closed Phe_{70} cap conformation.

B. Opening of Phe_{70} Cap - Torsional Angle Analysis

To measure the presence of local frustration near the active site, χ_{1} torsional angle $(\mathrm{N}-\mathrm{CA}-\mathrm{CB}-\mathrm{SG})$ for $\mathrm{Cys}_{103 / 109}$ are measured (fig. S10). χ_{1} in gauche ($\approx 60^{\circ}$) suggests that $\mathrm{Cys}_{103 / 109}$ of both dTyr_{40} and dTyr_{42} maintain local frustration like the disulfide of
$n \operatorname{DsbD}_{\mathrm{Ox}}$.

FIG. S10: (a) χ_{1} torsional angle and (b) corresponding normalized distribution for Cys_{103} (c) χ_{1} torsional angle and (d) corresponding normalized distribution for Cys_{109} in $n D s b D_{\mathrm{Ox}}, \mathrm{dTyr}_{40}$ and dTyr_{42}. Values at $\approx 60^{\circ}$ and $\approx 180^{\circ}$ refer to gauche, trans conformations respectively.
χ_{1} torsional angle ($\mathrm{N}-\mathrm{CA}-\mathrm{CB}-\mathrm{CG}$) in Phe_{70} is measured (fig. S11). Dominant peak at $\approx 180^{\circ}$ (trans) χ_{1} for $n D s b D_{O x}$ shows a completely open cap, while the presence of two equal peaks at $\approx 60^{\circ}$ (gauche), $\approx 180^{\circ}$ (trans) for $\mathrm{dTyr}_{40}, \mathrm{dTyr}_{42}$ indicate flexible cap.

C. Stability of $\mathrm{Tyr}_{40 / 42} \mathrm{O}^{-}$nucleophile generated

Now that the formation of $\mathrm{Tyr}_{40 / 42} \mathrm{O}^{-}$are possible, their fate as a nucleophile is explored. In the case of $\mathrm{Tyr}_{40} \mathrm{O}^{-}$, it always stays near the proximity of $\mathrm{Asp}_{68} \mathrm{OH}$, increasing the chances

FIG. S11: χ_{1} torsional angle for Phe_{70} in $n \mathrm{nsbD}_{\mathrm{Ox}}, \mathrm{dTyr}_{40}$ and dTyr_{42}. Values at $\approx 60^{\circ}$ and $\approx 180^{\circ}$ refers to gauche, trans conformations, respectively.
of reverse proton transfer and destabilizing the nucleophile (fig. S12a). At the same time, $\mathrm{Tyr}_{42} \mathrm{O}^{-}$drifts away from $\mathrm{Asp}_{68} \mathrm{OH}$. As a result, proton shuttling between the two residues is hindered, causing so formed $\operatorname{Tyr}_{42} \mathrm{O}^{-}$to stabilize through other means. It is seen that $\mathrm{Tyr}_{42} \mathrm{O}^{-}$approaches $\mathrm{Tyr}_{40} \mathrm{OH}$ for hydrogen bond interaction, but as seen from fig. S12b, happens very few times during the simulation. Thus, $\operatorname{Tyr}_{40} \mathrm{O}^{-}$is minimal, whereas the drifted $\mathrm{Tyr}_{42} \mathrm{O}^{-}$can be stabilized either by hydrogen bonding interactions with $\mathrm{Tyr}_{40} \mathrm{OH}$ or through the solvent medium.

FIG. S12: (a) Distance between $\mathrm{Tyr}_{40} \mathrm{O}^{-}-\mathrm{Asp}_{68} \mathrm{OH}$ and $\mathrm{Tyr}_{42} \mathrm{O}^{-}-\mathrm{Asp}_{68} \mathrm{OH}$. A strong hydrogen bond interaction between $\mathrm{Tyr}_{40} \mathrm{O}^{-}-\mathrm{Asp}_{68} \mathrm{OH}$ points towards reverse proton transfer. $\mathrm{Tyr}_{42} \mathrm{O}^{-}$comes closer to $\mathrm{Asp}_{68} \mathrm{OH}$, but flies away later. (b) Distance between $\mathrm{Tyr}_{40} \mathrm{O}^{-}-\mathrm{Tyr}_{42}$ and $\mathrm{Tyr}_{42} \mathrm{O}^{-}-\mathrm{Tyr}_{40}$.

D. Solvation around $\mathrm{Tyr}_{40 / 42} \mathrm{O}^{-}$residues

Since the opening of the Phe_{70} cap increases the solvation around the active site and nearby residues, [41, 42] chances of $\operatorname{Tyr}_{42} \mathrm{O}^{-}$through water is studied. For this, no. of water molecules (cut-off distance $4 \AA$) for the respective residues in are compared with that of the native protein (fig. S13). Tyr_{42} is comparatively more solvated, increasing the chances of $\mathrm{Tyr}_{42} \mathrm{O}^{-}$stabilization through the surrounding water medium.

FIG. S13: No. of water molecules around (a) Tyr_{40} in $n D s b D_{0 x}$ and $d \operatorname{Tyr}_{40}$ (b) Tyr_{42} in $n D s b D_{0 x}$ and dTyr_{42}. Here water molecules from the first solvation shell ($4 \AA$ distance) are only counted. It is well clear that Tyr_{42} is comparatively well solvated.

E. Solvation around $\mathrm{Cys}_{103} / 109$ residues

No. of water molecules around $\mathrm{Cys}_{103 / 109}$ from first solvation shell ($4 \AA$ distance) is counted fig. S14. It is well clear that Cys_{109} is more solvated than Cys_{103} as the later residue is buried inside the cap loop. Solvation around the disulfide is least for dTyr_{40} compared to dTyr_{42} and $n D s b D_{\mathrm{Ox}}$, and this is expected as the Phe_{70} cap is in a closed state. The disulfide is maximally solvated in native $n D s b D_{0 x}$, which shows the highest cap opening events rate. The cap flexibility affects the solvation around the disulfide bond.

FIG. S14: No. of water molecules around (a) Cys_{103} (b) Cys_{109} in $n D s b D_{\mathrm{Ox}}, \mathrm{dTyr}_{40}$ and dTyr_{42}. Here water molecules within $4 \AA$ distance is only counted. It is well clear that Cys $_{109}$ is highly solvated than Cys_{103}.

S5. SOLVENT ACCESSIBLE SURFACE AREA (SASA)

FIG. S15: Residues for which pKa values calculated for (A) Asp ${ }_{4 / 68}, \operatorname{Tyr}_{40 / 42}$ and $\mathrm{Cys}_{103 / 109}$ in $\mathrm{nDsbD}_{\mathrm{Ox}}$ (Oxidised N-terminal DsbD) and (B) cAsp_{455} in $\mathrm{cDsbD}_{\mathrm{Ox}}$ (Oxidised C-terminal DsbD)

FIG. S16: Evolution of Solvent accessible surface area (SASA) with time calculated for residues $\mathrm{Asp}_{4 / 68}, \mathrm{Tyr}_{40 / 42}$ and $\mathrm{Cys}_{103 / 109}$ in $n \operatorname{nsbD}_{\mathrm{Ox}}(\mathrm{A})$ and cAsp_{455} in $\mathrm{cDsbD} \mathrm{Ox}(\mathrm{B})$. Comparison with deeply buried cAsp ${ }_{455}$ clearly shows that $\mathrm{Tyr}_{40 / 42}, \mathrm{Cys}_{103}$ are deeply buried while Asp_{68} is partially buried in $n \mathrm{nsbD}_{\mathrm{Ox}}$.

SASA for Residues						
Protein	Residue	SASA Calculated (\AA^{2})				Nature of the residue from Exp.[45]
		CIB-server[46]	PDBePISA [47]	STRIDE[48]	GETAREA[49]	
1RGG	Asp1	146.63	141.53	161.70	145.70	Exposed
	Asp17	82.47	83.35	93.10	81.82	Exposed
	Asp79	12.55	12.83	15.80	13.07	Buried
	Asp84	64.26	60.67	62.90	63.63	Exposed
$6 \mathrm{LYZ}^{[51]}$	Asp18	50.44	52.19	61.70	50.65	Exposed
	Asp48	85.74	83.12	81.30	83.82	Exposed
$1 \mathrm{XQ}^{[52]}$	Asp2	88.47	NA	107.30	88.50	Exposed
	Asp98	132.50	NA	153.80	132.93	Exposed
1 UBQ	Asp32	127.98	129.22	147.00	127.58	Exposed
	Asp39	82.71	81.38	85.30	82.30	Exposed
	Asp58	84.52	85.30	91.30	83.55	Exposed
1QKP[54, 55]	Asp96	0.00	0.00	0.40	0.00	Buried
4KQ8	Asp309	8.08	14.61	9.70	10.70	Buried
1XOA[56]	Asp26	0.00	NA	0.00	0.00	Buried
2FWE2FWE[57]	Asp455	4.70	7.40	4.00	5.55	Buried
1L6P	Asp4	161.63	164.83	179.10	161.05	NA
	Tyr40	3.16	4.33	4.60	3.30	NA
	Tyr42	3.71	5.70	3.80	3.38	NA
	Asp68	14.69	14.97	7.40	15.51	NA
	Cys103	0.11	0.34	0.20	0.12	NA
	Cys109	31.89	32.31	31.00	30.84	NA

TABLE S1: Comparison of SASA for buried and exposed residues in different proteins and $n D s b D_{\text {Ox }}$, calculated using available web-servers. Nature of the residues as obatined from the experiments are also included.[45] It can be seen that buried residues are having lower SASA values and hence their pKa is expected to be higher than the normal range. [58, 59] For $n D s b D_{\mathrm{Ox}}$, there are no available experimental data, but SASA predicts an abnormally
higher pKa for $\mathrm{Asp}_{68}, \mathrm{Tyr}_{40 / 42}$ and $\mathrm{Cys}_{103 / 109}$ residues.

S6. SCHEME FOR DISULFIDE SCISSION BY NUCLEOPHILE

FIG. S17: Scheme for the disulfide cleavage by the nucleophile. Path IA: $\operatorname{Tyr}_{42} \mathrm{O}^{-}$ formation followed by $\mathrm{S}_{\mathrm{N}}{ }^{2}$ mechanism. Path IB: $\mathrm{Tyr}_{42} \mathrm{O}^{-}$formation followed by α-elimination.Path IIA: OH^{-}formation followed by $\mathrm{S}_{\mathrm{N}}{ }^{2}$ mechanism. Path IIB: OH^{-} formation followed by α-elimination.

S7. PATH I: DIRECT PROTON TRANSFER

The nucleophile $\mathrm{Tyr}_{42} \mathrm{O}^{-}$can be generated by the direct proton transfer from Tyr_{42} to Asp $_{68}$ (fig. S18A). As both oxygen atoms of Asp_{68} can capture a proton from Tyr_{42}, these possibilities are included in the CV definition (fig. S18B). CV values expected for reactant and products are shown in fig. S19.

FIG. S18: (a) Reaction scheme for Path I: direct proton transfer (b) Corresponding definition for CV. Encircled in blue and orange are those atoms included in CV1 and CV2 respectively.

CV1	CV2	Structure
-0.5	-0.5	
+0.5	-0.5	
-0.5	+0.5	

FIG. S19: CV values and the corresponding states expected during QM/MM MTD on Path I.

FIG. S20: Evolution of CV with time for Path I. CV1 and CV2 are shown as blue and orange lines, respectively. Images given in the inset are for the reactant (A) and the product (B) state. Formation of $\mathrm{Tyr}_{42} \mathrm{O}^{-}$can be visualized along CV1.

FIG. S21: Minimum Energy Path (MEP) connecting reactant and product for Path I. There is only a single minimum, and that belongs to the reactant(1). The shoulder peak represents the product (2). Here, free energy (from reactant minima to the shoulder) $\Delta F \approx 7 \mathrm{kcal} / \mathrm{mol}$.

S8. PATH II: DIRECT PROTON TRANSFER FOLLOWED BY OH ${ }^{-}$ FORMATION

$\mathrm{Tyr}_{42} \mathrm{O}^{-}$is solvated, and so there is a possibility that the nucleophile formed in Path I can abstract a proton from nearby water to form OH^{-}, the second nucleophile (fig. S22a), named as Path II. CV defined according to the scheme is given (fig. S22b). Expected CV values and corresponding structures are shown in fig. S23.

FIG. S22: (a) Reaction scheme for Path II: $\mathrm{Tyr}_{42} \mathrm{O}^{-}$from Path I abstracts a proton from neighbouring water to form OH^{-}. (b) CV definition for Path II. Encircled in blue and orange are those atoms defined in CV1 and CV2, respectively.

CV1	CV2	Structure
-0.5	-0.5	
+0.5	-0.5	
+0.5	+0.5	

FIG. S23: Values expected for CV in the reactant and product states for Path II.

FIG. S24: Time evolution of CV for Path II. CV1 and CV2 are represented by blue and orange lines, respectively. Images in the insight represent reactant (A) and product states for a given CV value. Clearly, five of the walkers show $\operatorname{Tyr}_{42} \mathrm{O}^{-}$(B) formation only, while walker 4 shows the OH^{-}formation (C), but as seen, it has only transient existence.

FIG. S25: Minimum Energy Path (MEP) for Path II resembles Path I. Formation of OH^{-} is not identified in MEP. Here, $\Delta F \approx 10 \mathrm{kcal} / \mathrm{mol}$.

S9. $\mathrm{TYR}_{42} \mathrm{O}^{-}$ATTACK ON DISULFIDE

FIG. S26: Normalized distribution for the distance between $\operatorname{Tyr}_{40} \mathrm{O}^{-}-\mathrm{Cys}_{103} \mathrm{~S}$ and $\mathrm{Tyr}_{42} \mathrm{O}^{-}$ - $\mathrm{Cys}_{109} \mathrm{~S}$.

S10. STATIC CALCULATION ON DISULFIDE CLEAVAGE

A. Static Calculation on Path IA: $\mathrm{S}_{\mathrm{N}} 2$ by TyrO^{-}

FIG. S27: QM Calculation for Path IA: $\mathrm{Tyr}_{42} \mathrm{O}^{-}$formation followed by $\mathrm{S}_{\mathrm{N}} 2$ involved disulfide cleavage

TABLE S2: Coordinates for reactant (1), transition state (TS1), and product (5) for α-elimination by TyrO^{-}
B. Static Calculation on Path IB: α-elimination by TyrO^{-}

S11. STABILIZATION OF TYR $\mathbf{4}_{2} \mathrm{O}^{-}$

As it can be seen that a water wire facilitates proton transfer between far away $\mathrm{Tyr}_{42} \mathrm{O}^{-}$ and $\mathrm{Asp}_{68} \mathrm{QM} / \mathrm{MM}$ metadynamics simulations were conducted. $\mathrm{Tyr}_{42} \mathrm{O}^{-}$abstracts a proton from nearby water to form OH^{-}, later OH^{-}propagates through water network to take a proton from $\mathrm{Asp}_{68} \mathrm{OH}$ to finally form Asp_{68} as the product (fig. S28a). Definition of CV based on the reaction scheme is given in (fig. S28b).

FIG. S28: (a) Reaction scheme for solvent assisted proton transfer between $\mathrm{Tyr}_{42} \mathrm{O}^{-}$, $\mathrm{Asp}_{68} \mathrm{OH}$ to form Tyr_{42} and Asp_{68}. (b) Definition of CV as per the scheme. CV1 shows abstraction of a proton by $\mathrm{Tyr}_{42} \mathrm{O}^{-}$from water to form $\mathrm{Tyr}_{42}, \mathrm{OH}^{-}$and CV2 represents the donation of a proton to nearby water by $\mathrm{Asp}_{68} \mathrm{OH}$ to finally form Asp_{68}.

FIG. S29: Values expected for CV in the reactant and product states for solvent assisted proton transfer between $\mathrm{Tyr}_{42} \mathrm{O}^{-}$and $\mathrm{Asp}_{68} \mathrm{OH}$.

FIG. S30: Evolution of CVs' with time for $\mathrm{Tyr}_{42} \mathrm{O}^{-}$stability. Blue lines represent CV1 and orange CV2. Structure for reactant(2) here is A. To distinguish hydrogen atoms involved in the CVs, they are highlighted. \mathbf{B} shows the formation of OH^{-}with positive CV 1 . Here, walkers: 1, 7 , and 8 form OH^{-}only. When CV2 alone is positive, it indicates the formation of $\mathrm{H}_{3} \mathrm{O}^{+}(\mathbf{C})$, which is formed by the majority of the walkers. As it can be seen for walkers: 2 and 3, both CV1 and CV2 have +0.5 , forming product(1) (D) - four water network and (E) - six water network.

FIG. S31: Snapshot showing four water network.

S12. REFERENCES

[1] H. M. Berman, Nucleic Acids Res. 28, 235 (2000).
[2] Schrödinger, LLC, "The PyMOL molecular graphics system, version 1.8," (2015).
[3] E. Lindahl, B. Hess, and D. van der Spoel, J. Mol. Model. 7, 306 (2001).
[4] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lindahl, SoftwareX 1-2, 19 (2015).
[5] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).
[6] K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis, R. O. Dror, and D. E. Shaw, Proteins: Struct. Funct. Bioinf. 78, 1950 (2010).
[7] B. Hess, H. Bekker, H. J. Berendsen, and J. G. Fraaije, J. Comp. Chem. 18, 1463 (1997).
[8] T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).
[9] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen, J. Chem. Phys. 103, 8577 (1995).
[10] W. Humphrey, A. Dalke, and K. Schulten, J Mol Graph. 14, 33 (1996).
[11] D. Case, I. Ben-Shalom, S. Brozell, D. Cerutti, T. Cheatham, III, V. Cruzeiro, T. Darden, R. Duke, D. Ghoreishi, M. Gilson, H. Gohlke, A. Goetz, D. Greene, R. Harris, N. Homeyer, Y. Huang, S. Izadi, A. Kovalenko, T. Kurtzman, T. Lee, S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, D. Mermelstein, K. Merz, Y. Miao, G. Monard, C. Nguyen, H. Nguyen, I. Omelyan, A. Onufriev, F. Pan, R. Qi, D. Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C. Simmerling, J. Smith, R. SalomonFerrer, J. Swails, R. Walker, J. Wang, H. Wei, R. Wolf, X. Wu, L. Xiao, D. York, and P. Kollman, AMBER 2018, University of California, San Francisco (2018).
[12] C. U. Stirnimann, A. Rozhkova, U. Grauschopf, R. A. Böckmann, R. Glockshuber, G. Capitani, and M. G. Grütter, J. Mol. Biol. 358, 829 (2006).
[13] G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007).
[14] M. Parrinello and A. Rahman, Int. J. Appl. Phys. 52, 7182 (1981).
[15] D. Marx and J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge University Press, 2009).
[16] J. Hutter, M. Iannuzzi, F. Schiffmann, and J. VandeVondele, Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15 (2013).
[17] B. G. Lippert, J. H. Parinello, and Michele, Mol. Phys. 92, 477 (1997).
[18] A. D. Becke, Phys. Rev. A 38, 3098 (1988).
[19] C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
[20] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010).
[21] S. Grimme, S. Ehrlich, and L. Goerigk, Journal of Computational Chemistry 32, 1456 (2011).
[22] J. VandeVondele and J. Hutter, J. Chem. Phys. 127, 114105 (2007).
[23] S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996).
[24] C. Hartwigsen, S. Gœedecker, and J. Hutter, Phys. Rev. B 58, 3641 (1998).
[25] J. Hostaš and J. Řezáč, J. Chem. Theory and Comput. 13, 3575 (2017).
[26] P. Dopieralski, J. Ribas-Arino, P. Anjukandi, M. Krupicka, and D. Marx, Nat. Chem. 9, 164 (2017).
[27] P. Dopieralski, J. Ribas-Arino, P. Anjukandi, M. Krupicka, and D. Marx, Angew. Chem. Int. Ed. 55, 1304 (2016).
[28] P. Dopieralski, J. Ribas-Arino, P. Anjukandi, M. Krupicka, J. Kiss, and D. Marx, Nat. Chem. 5, 685 (2013).
[29] J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser, and C. Simmerling, J. Chem. Theory and Comput. 11, 3696 (2015).
[30] F. Maseras and K. Morokuma, J. Comp. Chem. 16, 1170 (1995).
[31] N. Reuter, A. Dejaegere, B. Maigret, and M. Karplus, J. Phys. Chem. A 104, 1720 (2000).
[32] M. J. Field, P. A. Bash, and M. Karplus, J. Comp. Chem. 11, 700 (1990).
[33] T. Laino, F. Mohamed, A. Laio, and M. Parrinello, Journal of Chemical Theory and Computation 1, 1176 (2005).
[34] T. Laino, F. Mohamed, A. Laio, and M. Parrinello, J. Chem. Theory and Comput. 2, 1370 (2006).
[35] S. Nosé, J. Chem. Phys. 81, 511 (1984).
[36] S. Nose, Mol. Phys. 52, 255 (1984).
[37] A. Laio and M. Parrinello, Proc. Natl. Acad. Sci. 99, 12562 (2002).
[38] P. Raiteri, A. Laio, F. L. Gervasio, C. Micheletti, and M. Parrinello, 110, 3533 (2006).
[39] W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 56, 2257 (1972).
[40] F. Neese, WIREs Comput. Mol. Sci 8, e1327 (2018).
[41] P. W. Haebel, D. Goldstone, F. Katzen, J. Beckwith, and P. Metcalf, EMBO J. 21, 4774 (2002).
[42] C. W. Goulding, M. R. Sawaya, A. Parseghian, V. Lim, D. Eisenberg, and D. Missiakas, Biochemistry 41, 6920 (2002).
[43] D. A. Mavridou, E. Saridakis, P. Kritsiligkou, A. D. Goddard, J. M. Stevens, S. J. Ferguson, and C. Redfield, J. Biol. Chem. 286, 24943 (2011).
[44] L. S. Stelzl, D. A. Mavridou, E. Saridakis, D. Gonzalez, A. J. Baldwin, S. J. Ferguson, M. S. Sansom, and C. Redfield, Elife 9, e54661 (2020).
[45] G. R. Grimsley, J. M. Scholtz, and C. N. Pace, Prot. Sci. 18, 247 (2009).
[46] "Centre for Information Biology,Ochanomizu Universityaccessible surface area and accessibility calculation for protein,2012," http://cib.cf.ocha.ac.jp/bitool/ASA/, accessed:2022-02-5.
[47] E. Krissinel and K. Henrick, J. Mol. Biol. 372, 774 (2007).
[48] M. Heinig and D. Frishman, Nucleic Acids Res. 32, W500 (2004).
[49] R. Fraczkiewicz and W. Braun, J. Comp. Chem. 19, 319 (1998).
[50] J. Sevcik, Z. Dauter, V. Lamzin, and K. Wilson, 52, 327 (1996).
[51] R. Diamond, J. Mol. Biol. 82, 371 (1974).
[52] T. S. Ulmer, A. Bax, N. B. Cole, and R. L. Nussbaum, J. Biol. Chem. 280, 9595 (2005).
[53] S. Vijay-Kumar, C. E. Bugg, and W. J. Cook, J. Mol. Biol. 194, 531 (1987).
[54] K. Edman, P. Nollert, A. Royant, H. Belrhali, E. Pebay-Peyroula, J. Hajdu, R. Neutze, and E. M. Landau, Nature 401, 822 (1999).
[55] T. K. Harris and G. J. Turner, IUBMB Life 53, 85 (2002).
[56] M.-F. Jeng, A. P. Campbell, T. Begley, A. Holmgren, D. A. Case, P. E. Wright, and H. J. Dyson, Structure 2, 853 (1994).
[57] C. U. Stirnimann, A. Rozhkova, U. Grauschopf, R. A. Böckmann, R. Glockshuber, G. Capitani, and M. G. Grütter, J. Mol. Biol. 358, 829 (2006).
[58] A. K. Shaytan, K. V. Shaitan, and A. R. Khokhlov, Biomacromolecules 10, 1224 (2009).
[59] T. Meyer, G. Kieseritzky, and E.-W. Knapp, Proteins: Struct. Funct. Genet. 79, 3320 (2011).

[^0]: * padmesh@iitpkd.ac.in

