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S1. METHODS

A. Molecular Mechanics- Molecular Dynamics Simulations

The native structure for the 124 residue nDsbDoy (PDB ID: 1L6P) is collected from Protein
Data Bank [1], and missing atoms for Argg and Lys;3 are added using PYMOL [2]. Classical
Molecular Dynamics (MD) simulations are performed using GROMACS-2016.3 [3, 4]. for
understanding the behaviour of the catalytic disulfide bond and its surrounding residues.
Considering that 1L6P is a globular protein of size &~ 6nm, the protein-water system is en-
closed in a cubic box of length 8nm. Protein is then solvated with TIP3P modelled [5] 16336
water molecules and neutralized for residual charges using 10 Na™ and 5 C1~ ions. Following
the protocol below, the protein-water system is simulated for 400ns with 2fs time step and
Amber99sb-ildn force field [6]. Periodic boundary condition is applied along the three axes
and all bonds are constrained using LINCS algorithm [7]. 1.0 nm cut-off is defined for both
short-range Coulomb and van der Waals interactions. Long-range electrostatic interactions
are accounted using the Particle-mesh Ewald method [8, 9]. Trajectory coordinates are
recorded for every 200fs, later visualized and analyzed using VMD 1.9.3 software [10]. MD
simulations are also conducted on native nDsbDoy with (i) de-protonated Tyryo and proto-
nated Aspgg (dTyryg) (ii) de-protonated Tyrye and protonated Aspes (dTyrye) in a similar
fashion. As TyrO™ is not a natural state for amino acid, partial charges and topology
parameters are derived from tleap tool in Ambertools18 [11]. 400ns MD simulations is also
performed with cDsbDgy (PDB ID: 2FWE)[12] using the same method described as above
and with the following changes; protein is enclosed in a cubic box of size 10nm, solvated
with 32145 TIP3P water molecules and neutralized with 10 Na* and 4 Cl~ ions.

The protocol for all MD simulations conducted here are as follows: (i) Energy minimization
of the neutralized protein-water system with Steepest Descent algorithm (ii) Equilibration
in NVT ensemble at 300K for 1 ns, followed by 1 ns equilibration in NPT ensemble at 1 bar
pressure (iii) Final production run with V-rescale thermostat [13] and Parrinello-Rahman

barostat [14] for 400ns.



B. QM/MM Molecular Dynamics

System conformation favourable for the reactions is identified from the MD trajectory and
is taken as the input for QM /MM MD simulations [15] implemented in CP2K 6.1 code [16].
The inputs are converted into CP2K readable format with tleap package of AmberTools18
[11], keeping atom positions and simulation box size intact. Topology files obtained so were
corrected for solvent-protein Lennard-Jones interaction potential terms and later energeti-
cally minimized. The side chain of Tyryg, Tyrss, Aspes, Glnigr, Cysies, Cysige, and the water
molecules from the first solvation shell (4A cut-off) around these residues are included in the
QM region (fig. S6). These atoms are then placed inside a cubic box of length 2.6nm with a
reflective wall along all the sides. QM energies are calculated based on Density Functional
Theory (DFT) with Gaussian Plane Wave method (GPW) [17] (BLYP-D3 functional [18-
21], DZVP basis set [22] and Goedecker-Teter-Hutter (GTH) pseudo-potential [23, 24] with
300Ry cut-off). For energy calculations on larger systems such as proteins, BLYP-D3/DZVP
is on par with CCSD results [25]. Also, BLYP density functional has been earlier adopted
in exploring the disulfide chemistry [26-28]. MM region for the present calculations are
modelled by Amberff14SB force-field[29] and TIP3P water model. QM/MM boundary is
separated with IMOMM [30] link atom approach [31, 32] with hydrogen as the linking atom.
Electrostatic interaction between QM and MM region is defined using Gaussian Expansion
of Electrostatic Potential (GEEP) method [33, 34]. QM/MM system is then equilibrated
for 5ps with 0.5 fs time step at 300K using Nosé—Hoover thermostat chain [35, 36], in NVT

ensemble.

C. Metadynamics

Free Energy Surface (FES) for the reactions are explored with QM/MM MD metadynamics
(MTD) simulations [37]. As we are looking at a rare event, MTD simulations are run in
parallel with eight walkers [38]. This helps sample all possible conformation in the Collective
Variable (CV) space for the reaction under study. History dependent Gaussian potential of
height 0.25kcal/mol and width 0.15 is deposited with the CV every 300 steps (150fs). Here,
CV is defined as the difference in coordination number (ACN (O,, Oq4, H)) for acceptor (O,)



and donor (O,) oxygen atom, with respect to the hydrogen atom which is being transported

(eq. (52)).
CV =ACN(O04,04,H) = CN(Oy, H) — CN(Oq4, H) (S1)

CN(Og4, H) and CN(O,, H) are calculated using eq. (S2).

(52)

where ‘dpy’ is the distance between oxygen and hydrogen atom; ‘dy’ is the equilibrium bond
length between the respective atoms, taken here as 0.98 A. If the proton is located near
the acceptor, then the CV (ACN(O,, Oq4, H)) will have a positive value otherwise negative.
Thus, a value close to 0.45 of any CV is considered the product state along that CV.

D. DFT Calculations

Energetics for static gas-phase nucleophile mediated disulfide cleavage reaction was com-
puted using BLYP-D3/6-31G* [18-21, 39] in ORCA quantum chemistry program suite [40].
Tyrs0 ", Cysips/09 residues as defined in the QM region only are incorporated for the
study. The inputs for the calculation is collected from the Tyrs;sO -Cys193C,H distance
scan performed using the QM/MM implementation in Gromacs 2016.3-ORCA combined
program. Valency for carbon is satisfied using hydrogen atoms. The reactants and products
are optimized within extreme tight SCF convergence criteria. The transition state was

confirmed from the imaginary frequency.



S2. NUCLEOPHILE GENERATING RESIDUES NEAR THE ACTIVE SITE
A. Proton Transfer From Tyrsp/42/710H To AspgsO~

The active site in nDsbDgx is surrounded by amino acid residues such as Tyryy, Tyrys,
Aspes and Tyrs, whose side chain can act as potential nucleophile generators (fig. S1).
Here, (TyrO ) nucleophile can be generated through proton abstraction by Aspgg from any

of the above tyrosine residues.

SPes

FIG. S1: Possible nucleophile generating residues near the disulfide bond of nDsbDg,. For

identification, one of the Aspgg oxygen is coloured orange.

B. Distance between AspggsO~ and Tyr40,420H

Possibilities of proton abstraction by Aspgs from Tyry/so to form TyrO ™ nucleophile is
analyzed here. For this, the evolution of distance with time and corresponding normalized
distributions are plotted (figs. S2 and S3). Based on the simulations, distance analysis
between the residues are separated into two sections (i) 0 - 150ns and (ii) 150-400ns. The
majority of the time up to 150ns, as both Tyry,42 residues are far away from Aspgs, there is

no significant hydrogen bond interaction. Thus in the distribution plot (fig. S3a) major peak



is due to 4-8A distance. In rare cases, Aspgs comes closer only to Tyry (t=60ns, fig. S2a).
After 150ns, it can be seen that both oxygen’s of Aspgg forms a hydrogen bond to Tyrys; the
trend being retained for ~25ns and repeated over time. Nevertheless, at ~200ns, Tyryy and
Tyryo together share hydrogen bond interactions with Aspgs. The same can be interpreted
from the distribution as well. The dominant peak at ~2A comes from TyrysOH - AspgsO -,
whereas Tyryo—Aspgs distance contributes only one-third of the area (fig. S3b). Thus, it
can be concluded that near the active site of nDsbDgy, strong hydrogen bond interaction
exists between the side chains of Tyrs,—Aspgg residues and proton abstraction from Tyry,
by Aspgs, can generate TyrO ™ nucleophile. Tyry also has a minor contribution towards the
formation of TyrO, but the possibilities are minimal. Hence, our MD simulation results for
the Pheyy cap fluctuations, together with the proton transfer direct towards the exploration
of possibilities and energetics involved in forming nucleophile (TyrO ), which may further

lead to disulfide scission.
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FIG. S2: Time evolution for the distance between Tyryo 4o and Aspeg separated into
multiple sections based on time. Tyryo—Aspgs distance for time (a) 0-150ns, (b) 150-400ns
and Tyrgs—Aspgs distance from (c) 0-150ns (d) 150-400ns are given. Snapshots
corresponding to selected simulation time are also shown in insight. One of the Aspgs
oxygen is coloured orange for identification. Strong hydrogen bond interaction can be seen

between Tyrsy and Aspgg residues.
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FIG. S3: Normalized distribution for the distance between Tyryp/42 and Aspgs separated
into two-time sections; (a) 0-150ns and (b) 150-400ns.
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C. Distance between AspggsO~ and Tyry;;OH

Tyry; can transfer its proton to Aspgs and generate Tyry;1O~ nucleophile. So, the distance
between the residues is plotted to determine whether Tyr7;; can be a potential nucleophile
generating residue (fig. S4). As seen from the plot, these residues approach down to =
4Aonly. The formation of TyrO~ by the proton transfer between Tyry; and Aspgs is very

rare, and therefore, for further investigations, Tyry; is excluded from the QM region.
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FIG. S4: (a) Time evolution for the distance between Tyr7;OH and AspesO1/2~ and (b)
corresponding normalized distribution. As can be seen, AspgsO ™ is far away from Tyr;;OH

for proton abstraction, and so Tyr;;O~ nucleophile is not a possibility.

D. AspgsO ™ as a nucleophile

Chances of direct attack by Aspgs as a nucleophile in breaking the disulfide bond is also
examined (fig. S5). As the closest distance between Aspgs and CysigsS is ~ 4A, chances of
Aspgs to perform a direct attack on Cysjgz and break the disulfide bond can be ruled out.
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Corresponding normalized distribution. Possibilities for Aspgs to attack the disulfide bond

is minimal here.
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E. Defining QM region

Residues, as shown in fig. S6 in native nDsbDo, and ten water molecules from the first
solvation shell (4A cut-off) are incorporated in the QM region. The boundary between the
QM and MM region is separated using hydrogen atoms, and at most care has been given
to place hydrogen between C—C single bond. Same residues are included when defining the

QM region in dTyrys, together with thirteen water molecules from the first solvation shell.

FIG. S6: Native structure of nDsbDoy (left) (PDB ID: 1L6P). Enlarged on the right are
the residues along with ten water molecules included in the QM region. Link atoms

separating the boundary between QM and MM are shown as orange balls.

S3. PRESENCE OF CAP-LOOP NEAR THE ACTIVE SITE

A. Opening of Phe;g Cap

The active site (including Cysjoz- Cysigg disulfide bond) is enclosed in a cap loop made up
of Aspes- Glugg - Phezg - Tyrs - Glyze - Lysys residues [41-43]. Among the loop residues,
Pherq forms a cap to Cysjgg9 and protects the disulfide from nucleophilic and solvent attack

[43]. Conformational changes in the cap loop region have a key role in the flexibility of
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nDsbDo, and its function [44]. The change from a closed to open conformation for Pher,
cap can be characterized by the distance from the centre of mass of Pheyq ring to the sulphur
of Cysios (dpherg—Cysios) and Cys100S (dphero—Cysige)- 1 APherg—Cysige 1 less than 5A, the
cap is considered closed conformation or else open. [44] X-ray structure for nDsbDg, holds
Phery cap in a closed conformation (distance=3.5A). Nevertheless, our simulations show
a fluctuating behaviour for the cap, in which during the majority of simulation time cap
remains in the open state. It is visible from (i) time evolution plot for (dpneso—cCysigs100)
distance (fig. S7a) (ii) normalized distribution plot for the same (fig. S7b). Snapshots at

different time frames demonstrating Phe7y cap opening are also included here fig. S8.
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FIG. S7: Fluctuation of Phezy cap with respect to Cysyg3/109S distance. (a)Time evolution

for the distance (b) Corresponding normalized distribution plot. It is clear that Phe;q cap

moves from a closed to open conformation during the simulation.
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(c)
t=122 ns

FIG. S8: Snapshots at different time frames from MD simulation showing Phe;y Cap

opening.
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S4. TYR40/420~ AS NUCLEOPHILE

MD simulations indicate the possibility of proton abstraction by Aspss from Tyryg/42 residues
to form TyrO™ nucleophile. The fate of these nucleophiles after their formation is analyzed.
For this, MD simulations are conducted on dTyrs, and dTyrs. Following are the observa-

tions from the MD data.

A. Opening of Pheyg Cap - Distance Analysis

Based on the distance cut-off for Phezy - Cysig9 in section S3, the cap’s opening is evaluated
in dTyryg, dTyry systems fig. S9. It is clear that Phes cap is flexible for dTyrss(blue),

similar to native nDsbDgy (green), but remains closed for dTyryo (red).

nDsbD
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FIG. S9: (a) Variation in Pheyy cap - Cysjge distance with time for nDsbDoy(green),
dTyrye (blue) and dTyryy(red) systems (b) Corresponding normalized distribution. When

the distance is less than 5A, which indicates a closed Pher, cap conformation.

B. Opening of Phe7y Cap - Torsional Angle Analysis

To measure the presence of local frustration near the active site, x; torsional angle
(N-CA-CB-8G) for Cysigz/100 are measured (fig. S10). x; in gauche (=60°) suggests
that Cysigs/109 of both dTyryy and dTyry, maintain local frustration like the disulfide of
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FIG. S10: (a) x; torsional angle and (b) corresponding normalized distribution for Cys;s
(¢) x1 torsional angle and (d) corresponding normalized distribution for Cysigg in

nDsbDoy, dTyry and dTyrg. Values at ~60° and ~180° refer to gauche, trans

conformations respectively.

X1 torsional angle (N-CA—-CB-CGQG) in Phey is measured (fig. S11). Dominant peak at
~180° (trans) x; for nDsbDoy shows a completely open cap, while the presence of two equal

peaks at ~60° (gauche), ~180° (trans) for dTyryg, dTyrys indicate flexible cap.

C. Stability of Tyrs0/420  nucleophile generated

Now that the formation of Tyr4/400 " are possible, their fate as a nucleophile is explored. In

the case of Tyry O, it always stays near the proximity of AspgsOH, increasing the chances
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FIG. S11: x; torsional angle for Phe7y in nDsbDgy, dTyrs and dTyry. Values at ~60°

and ~180° refers to gauche, trans conformations, respectively.

of reverse proton transfer and destabilizing the nucleophile (fig. S12a). At the same time,
Tyrys O drifts away from AspgsOH. As a result, proton shuttling between the two residues
is hindered, causing so formed Tyrs O to stabilize through other means. It is seen that
Tyry O~ approaches TyrygOH for hydrogen bond interaction, but as seen from fig. S12b,
happens very few times during the simulation. Thus, Tyry O~ is minimal, whereas the
drifted Tyrs O™ can be stabilized either by hydrogen bonding interactions with Tyr,OH or

through the solvent medium.
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FIG. S12: (a) Distance between Tyry O - AspgsOH and Tyr; O™ - AspgsOH. A strong
hydrogen bond interaction between Tyry O - AspgsOH points towards reverse proton
transfer. TyrysO~ comes closer to AspgsOH, but flies away later. (b) Distance between

Tyry O - Tyrge and Tyrgp O - Tyryg.
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D. Solvation around Tyr40/420~ residues

Since the opening of the Phey cap increases the solvation around the active site and nearby
residues,[41, 42] chances of Tyr;sO~ through water is studied. For this, no. of water
molecules (cut-off distance 4A ) for the respective residues in are compared with that of
the native protein (fig. S13). Tyrys is comparatively more solvated, increasing the chances

of Tyry;sO~ stabilization through the surrounding water medium.

Solvation around Tyr,q residue Solvation around Tyr,, residue
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FIG. S13: No. of water molecules around (a) Tyryg in nDsbDgy and dTyryg (b) Tyrys in
nDsbDo, and dTyrs,. Here water molecules from the first solvation shell (4A distance) are

only counted. It is well clear that Tyr, is comparatively well solvated.

E. Solvation around Cysjo3/109 residues

No. of water molecules around Cysio3/109 from first solvation shell (4A distance) is counted
fig. S14. It is well clear that Cysgg is more solvated than Cyso3 as the later residue is buried
inside the cap loop. Solvation around the disulfide is least for dTyryy compared to dTyry,
and nDsbDg,, and this is expected as the Phe;y cap is in a closed state. The disulfide is
maximally solvated in native nDsbDg,, which shows the highest cap opening events rate.

The cap flexibility affects the solvation around the disulfide bond.
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FIG. S14: No. of water molecules around (a) Cysjgz (b) Cysigg in nDsbDgy, dTyryy and
dTyrs. Here water molecules within 4A distance is only counted. It is well clear that

Cysigg is highly solvated than Cysigs.
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S5. SOLVENT ACCESSIBLE SURFACE AREA (SASA)

(B)

FIG. S15: Residues for which pKa values calculated for (A) Aspa/es, Tyra0/42 and
Cys103/100 in nDsbDoy (Oxidised N-terminal DsbD) and (B) cAspass in ¢cDsbDoy (Oxidised
C-terminal DsbD)
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FIG. S16: Evolution of Solvent accessible surface area (SASA) with time calculated for

residues Aspy/es, Tyrag/se and Cysioz/io9 in nDsbDox(A) and cAspass in cDsbDoy (B).

Comparison with deeply buried cAspyss clearly shows that Tyt 42, Cysios are deeply

buried while Aspgg is partially buried in nDsbDo;.
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SASA for Residues
SASA Calculated (A?)
Protein Residue Nature of the residue from Exp.[45]
CIB-server[46] | PDBePISA[47] | STRIDE[48] | GETAREA [49]

[50] Aspl 146.63 141.53 161.70 145.70 Exposed
IRGG Aspl7 82.47 83.35 93.10 81.82 Exposed
AspT79 12.55 12.83 15.80 13.07 Buried
Asp84 64.26 60.67 62.90 63.63 Exposed
6LYZ[51] Aspl8 50.44 52.19 61.70 50.65 Exposed
Asp48 85.74 83.12 81.30 83.82 Exposed
1XQ8[52] Asp2 88.47 NA 107.30 88.50 Exposed
Asp98 132.50 NA 153.80 132.93 Exposed
(53] Asp32 127.98 129.22 147.00 127.58 Exposed
1UBQ Asp39 82.71 81.38 85.30 82.30 Exposed
Asp58 84.52 85.30 91.30 83.55 Exposed
1QKP[54, 55] Asp96 0.00 0.00 0.40 0.00 Buried
4KQ8 Asp309 8.08 14.61 9.70 10.70 Buried
1XOA[56] Asp26 0.00 NA 0.00 0.00 Buried
2FWE2FWE[57]| Asp455 4.70 7.40 4.00 5.55 Buried

Asp4 161.63 164.83 179.10 161.05 NA

Tyr40 3.16 4.33 4.60 3.30 NA

1L6P Tyr42 3.71 5.70 3.80 3.38 NA

Asp68 14.69 14.97 7.40 15.51 NA

Cys103 0.11 0.34 0.20 0.12 NA

Cys109 31.89 32.31 31.00 30.84 NA

TABLE S1: Comparison of SASA for buried and exposed residues in different proteins and
nDsbDgy, calculated using available web-servers. Nature of the residues as obatined from
the experiments are also included.[45] It can be seen that buried residues are having lower
SASA values and hence their pKa is expected to be higher than the normal range.[58, 59|
For nDsbDgy, there are no available experimental data, but SASA predicts an abnormally

higher pKa for ASpﬁg, Tyr4g/42 and Cyslog/log residues.
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S6. SCHEME FOR DISULFIDE SCISSION BY NUCLEOPHILE

Path IA: Tyr420" formation followed by Disulfide Cleavage via SN2

ASD g ASP ¢
Asp g H
H OH \
oH N\
Py )/'\ o o)/\ 0
0 C |-1 0 o H
_ _ Cys
H/O o) —C¥S 103 o—s’ 103
H —CyS 103 S\ -
0 X s_ 5 -CyS 10
C Ve, Yo
Cys 109 Tyr,
Tyra, 2
1 2 4
Path IB: Tyrq20" formation followed by Disulfide Cleavage via a-elimination
Asp
Asp g5 H 68
ASp 6g \ H
o OH '}
J~o H )/N My * o% L
0 C - b o ~ H
" > E—
H O H Cys 103 OH 4 Y5203
H “Y s
\o H Cys o3 CS\ ST_Cys g9
Y d\/cys 109
/©/ S\¢ ¢ Wiz L
T4 ~YS 109
1 2 5

Path IIA: OH™ formation from Tyr420~ followed by Disulfide Cleavage via SN2

As
. Ju Asp Asp Per
OH
o )/N on " )/N OH )/\ Cys
[} - H [} - 0 / YS 103
( 5 5, 0 /“H' - © {H - HO—S
H - OH —Cys
H —CyS 103 0 s CyS103 S Y03 OH
(0} S \ \ _
— \—~Cys Cysigg
Cys YS 109 Tyr
Tyr,, e Wra “ Tyr 4,
1 2 3 6

Path 1IB: OH- formation from Tyr420" followed by Disulfide Cleavage via a-elimination

As
ASp g ASp g ASp gg P 6}\
OH H
)~o. )\OH H )/'\OH \
o] H g o] (o] H —_— ° 2
/o /-‘H/ - i H
H - OH
0 W CyS10s H CyS 103 OH //—Cys 103
X HYCYS 103 oy 2é s
S S Cys S-CyS 109
S\S Cys T 5. _CySigo TV, S CYS 100
T, - 100 Tyry,, Tyr 4,
1 2 3 5

FIG. S17: Scheme for the disulfide cleavage by the nucleophile. Path TA: Tyr,,O~
formation followed by Sx? mechanism. Path IB: Tyr,,O~ formation followed by
a-elimination.Path ITA: OH ™ formation followed by Sx? mechanism. Path IIB: OH ™

formation followed by a-elimination.
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S7. PATH I: DIRECT PROTON TRANSFER

The nucleophile TyrysO™ can be generated by the direct proton transfer from Tyry, to
Aspgs (fig. S1I8A). As both oxygen atoms of Aspgs can capture a proton from Tyrys, these
possibilities are included in the CV definition (fig. S18B). CV values expected for reactant

and products are shown in fig. S19.

As
(@) (b) Pes
ASP 65 ASP g 9, cvi
H
O)\CO' H O)\OH H cv2 b CI)
\ o H/
(o} ,
H - H NS ‘
H O
i
Y42 e
2 2 Vs
CV1=CN(Aspgg01,H)-CN(Tyr420,H)
CV2=CN(Aspgg02,H)-CN(Tyra20,H)

FIG. S18: (a) Reaction scheme for Path I: direct proton transfer (b) Corresponding
definition for CV. Encircled in blue and orange are those atoms included in CV1 and CV2

respectively.

Cvl CV2 Structure
Aspeg
0y 0y H
-0.5 -0.5 H s
(o]
Tyr42©
Aspgg
OZ}OI'HH
+0.5 -0.5 H’°
o
H-02 & H
-0.5 +0.5 W
o
ST

FIG. S19: CV values and the corresponding states expected during QM /MM MTD on
Path 1.
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FIG. S20: Evolution of CV with time for Path I. CV1 and CV2 are shown as blue and
orange lines, respectively. Images given in the inset are for the reactant (A) and the

product (B) state. Formation of Tyr;sO ™ can be visualized along CV1.
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There is only a single minimum, and that belongs to the reactant(1). The shoulder peak

represents the product (2). Here, free energy (from reactant minima to the shoulder)

AF =~ Tkcal/mol.
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S8. PATH II: DIRECT PROTON TRANSFER FOLLOWED BY OH™

FORMATION

Tyryp O is solvated, and so there is a possibility that the nucleophile formed in Path I can
abstract a proton from nearby water to form OH ', the second nucleophile (fig. S22a), named
as Path II. CV defined according to the scheme is given (fig. S22b). Expected CV values

and corresponding structures are shown in fig. S23.

(a)

ASp ¢

o

\

TYr 42

1

H
,0
H

Asp ¢

)‘OH H

(0]

E—

Y 42

TYr 4

(b)

Aspeg

b2

Ccvl

cv2

Tyr4;

H

CV1=CN(AsppgO1,H)-CN(Tyr420,H)
CV2=CN(WatO,H) - CN(Tyrg20,H)

FIG. S22: (a) Reaction scheme for Path II: Tyry,sO from Path I abstracts a proton from
neighbouring water to form OH . (b) CV definition for Path II. Encircled in blue and
orange are those atoms defined in CV1 and CV2, respectively.
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FIG. S23: Values expected for CV in the reactant and product states for Path II.
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FIG. S24: Time evolution of CV for Path II. CV1 and CV2 are represented by blue and

orange lines, respectively. Images in the insight represent reactant (A) and product states

for a given CV value. Clearly, five of the walkers show Tyr;;O ™ (B) formation only, while

walker 4 shows the OH™ formation (C), but as seen, it has only transient existence.
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FIG. S25: Minimum Energy Path (MEP) for Path II resembles Path I. Formation of OH"
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S9. TYR4O0  ATTACK ON DISULFIDE

Tyrgp0” - Cysyg3S
Tyrgp0” - CysqgoS

o
-
L5

Normalised Distribution
2 °
S 4

2 ) 6 8 10 12
Distance (A)

FIG. S26: Normalized distribution for the distance between Tyrs O -Cysi03S and Tyrs O™
- Cys1095.

S10. STATIC CALCULATION ON DISULFIDE CLEAVAGE

A. Static Calculation on Path IA: Sn2 by TyrO™

Distance Scan
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© 60 -
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20t
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FIG. S27: QM Calculation for Path IA:TyryssO ™ formation followed by Sy2 involved

disulfide cleavage
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S11. STABILIZATION OF TYR420™

As it can be seen that a water wire facilitates proton transfer between far away Tyry O~
and Aspgs QM /MM metadynamics simulations were conducted. Tyry;sO abstracts a proton
from nearby water to form OH™, later OH™ propagates through water network to take a
proton from AspgsOH to finally form Aspgs as the product (fig. S28a). Definition of CV

based on the reaction scheme is given in (fig. S28b).

As
Aspgg ASpPgg Aspgg P 6s

0 oH”?)/H o7 o HgH o7 o o m
\ \ o/H
(O, o Ho— H H
P F ou o %
H o

Tyr 4, Tyr 4, Tyr 45 Tyr
42

3 ! CV1 = CN(WatOH, H) - CN(Tyr420, H)

CV2 = CN(Aspgg02, H) - CN(WatOH, H)

FIG. S28: (a) Reaction scheme for solvent assisted proton transfer between TyrssO
AspesOH to form Tyrys and Aspgs. (b) Definition of CV as per the scheme. CV1 shows
abstraction of a proton by Tyr;sO  from water to form Tyrs, , OH  and CV2 represents
the donation of a proton to nearby water by AspgsOH to finally form Aspgs.
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FIG. S29: Values expected for CV in the reactant and product states for solvent assisted
proton transfer between Tyr; O~ and AspgsOH .
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ion of Tyr.;OH via Water Network WALKER1

FIG. S30: Evolution of CVs’” with time for Tyr, O~ stability. Blue lines represent CV1 and
orange CV2. Structure for reactant(2) here is A. To distinguish hydrogen atoms involved
in the CVs, they are highlighted. B shows the formation of OH~ with positive CV1. Here,
walkers: 1, 7, and 8 form OH™ only. When CV2 alone is positive, it indicates the
formation of H3O" (C), which is formed by the majority of the walkers. As it can be seen
for walkers: 2 and 3, both CV1 and CV2 have +0.5, forming product(1) (D) - four water

network and (E) - six water network.



FIG. S31: Snapshot showing four water network.
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