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S1 Force-Field Validation

Methodology: Table S1 summarizes the compositions of reline-water mixtures studied.

PACKMOL1 was used to randomly pack the molecules in cubic simulation boxes. The

parameters for reline components ([Ch]+, Cl−, and urea) were taken from CHARMM gen-

eral force-field2 as used in our previous studies3,4 while water molecules were considered as

TIP3P model.5 All the simulation have been carried out for ∼60 ns in NPT ensemble using

GROMACS 5.1.1.6 The temperature was maintained to 303 K using Nosé-Hoover thermo-

stat7–9 and the pressure was kept constant at 1 bar using Parrinello-Rahman barostat.10

The equations of motion were integrated at a timestep of 1 fs. Periodic boundary conditions

were applied in all the directions. A cutoff distance of 1.2 nm was considered for short-range

interactions. The long-range electrostatics were evaluated using PME.11,12 The last 10 ns

trajectory with frame saved at every 100 fs has been utilized to calculate density and X-ray

scattering structure function S(q). The X-ray structure functions have been calculated as

per the previous literature.4,13,14

Table S1: Summary of the system compositions studied.

System
Reline
(wt%)

Water (wt%)
[Ch]+/Cl−

ion pairs
urea water

rel-1w 93.5 6.5 1000 2000 1000
rel-2w 87.8 12.2 1000 2000 2000
rel-4w 78.3 21.7 1000 2000 4000
rel-10w 59.0 41.0 1000 2000 10000
rel-20w 41.9 58.1 1000 2000 20000
water 0.0 100 - - 1000

Results and Discussion: Figure S1 illustrates the comparison of bulk densities of reline-

water mixtures at varying compositions in presence of TIP3P water with the previously

reported SPC/E model.4 A very good agreement is observed at all the studied concentra-

tions. Figure S2 displays the comparative plots of S(q)s of reline-water mixtures at varying
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concentrations. A good overlap can be noticed from the plots in presence of both the water

models. However, a slight difference in the S(q)s of pure SPC/E and TIP3P water can be

noted with respect to splitting of the principal peak, which is a known fact for TIP3P water

model.5 Apart from this, Figure S2 also conveys that in corroboration with the SPC/E water

model, TIP3P water also shows the DES structural transition at and above 41 wt% of water

(rel-10w). The molecular arrangement of reline is changed from “water-in-reline” to an aque-

ous solution of reline components i.e. below 41 wt%, all the S(q)s are similar to that of pure

reline but at and above 41 wt% of water the S(q)s resemble pure water structure function.

Recently, this structural transition at 41 wt% has also been observed experimentally through

2D IR spectroscopy,15 which further validates the computational findings.
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Figure S1: Comparison plots for densities of reline-water mixtures in presence of SPC/E4

and TIP3P water models. Density data for SPC/E water model has been reprinted with
permission from ref.4 Copyright 2018 American Chemical Society.
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Figure S2: Comparison of simulated X-ray structure functions for reline-water mixtures
using SPC/E4 and TIP3P water model. X-ray scattering data for SPC/E water model has
been reprinted with permission from ref.4 Copyright 2018 American Chemical Society.

Table S2: Summary of all the systems investigated for reversibility of structural
modulations.∗

System
Denatured BSA conformation
taken from

water

R50 50/50 reline/water 50706
R75 75/25 reline/water 60072
R100 pure reline 36576

∗Each system was neutralized using 17 K+ ions.

Table S3: Average percentage of BSA secondary structures for 350 ns reversibil-
ity runs calculated using DSSP algorithm. Last 100 ns trajectories were used
for the computation of average values.

System α-helix 310-helix coil turn bend

R50 60.1 3.0 18.3 8.2 10.3
R75 46.3 3.2 23.5 14.1 12.4
R100 52.8 8.3 18.9 14.0 10.8
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Figure S3: Time-dependent variations in radius of gyration (Rg) on aqueous re-equilibration
of denatured protein conformations. Aqueous system data are also plotted for the compari-
son.
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Figure S4: Time evolution of percentage α-helical content for re-equilibration runs of dena-
tured protein systems.
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