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S1 Force-Field Validation

Methodology: Table S1 summarizes the compositions of reline-water mixtures studied.
PACKMOLY was used to randomly pack the molecules in cubic simulation boxes. The
parameters for reline components ([Ch]*, Cl7, and urea) were taken from CHARMM gen-
eral force-field? as used in our previous studies®* while water molecules were considered as
TIP3P model.” All the simulation have been carried out for ~60 ns in NPT ensemble using
GROMACS 5.1.1.% The temperature was maintained to 303 K using Nosé-Hoover thermo-
stat™ and the pressure was kept constant at 1 bar using Parrinello-Rahman barostat.*”
The equations of motion were integrated at a timestep of 1 fs. Periodic boundary conditions
were applied in all the directions. A cutoff distance of 1.2 nm was considered for short-range
interactions. The long-range electrostatics were evaluated using PME.™2 The last 10 ns
trajectory with frame saved at every 100 fs has been utilized to calculate density and X-ray
scattering structure function S(q). The X-ray structure functions have been calculated as

per the previous literature #1314

Table S1: Summary of the system compositions studied.

: o
System ?vit;;? Water (wt%) fiﬂp a/ifsl urea  water
rel-lw  93.5 6.5 1000 2000 1000
rel-2w  87.8 12.2 1000 2000 2000
rel-dw  78.3 21.7 1000 2000 4000
rel-10w  59.0 41.0 1000 2000 10000
rel-20w  41.9 58.1 1000 2000 20000
water 0.0 100 - - 1000

Results and Discussion: Figure S1 illustrates the comparison of bulk densities of reline-
water mixtures at varying compositions in presence of TIP3P water with the previously
reported SPC/E model.* A very good agreement is observed at all the studied concentra-

tions. Figure S2 displays the comparative plots of S(q)s of reline-water mixtures at varying
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concentrations. A good overlap can be noticed from the plots in presence of both the water
models. However, a slight difference in the S(q)s of pure SPC/E and TIP3P water can be
noted with respect to splitting of the principal peak, which is a known fact for TIP3P water
model.” Apart from this, Figure S2 also conveys that in corroboration with the SPC/E water
model, TIP3P water also shows the DES structural transition at and above 41 wt% of water
(rel-10w). The molecular arrangement of reline is changed from “water-in-reline” to an aque-
ous solution of reline components i.e. below 41 wt%, all the S(q)s are similar to that of pure
reline but at and above 41 wt% of water the S(q)s resemble pure water structure function.
Recently, this structural transition at 41 wt% has also been observed experimentally through

2D IR spectroscopy,t® which further validates the computational findings.
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Figure S1: Comparison plots for densities of reline-water mixtures in presence of SPC/E*
and TIP3P water models. Density data for SPC/E water model has been reprinted with
permission from ref.* Copyright 2018 American Chemical Society.
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Figure S2: Comparison of simulated X-ray structure functions for reline-water mixtures
using SPC/E# and TIP3P water model. X-ray scattering data for SPC/E water model has
been reprinted with permission from ref.# Copyright 2018 American Chemical Society.

Table S2: Summary of all the systems investigated for reversibility of structural
modulations.*

Denatured BSA conformation

System taken from water
R50 50/50 reline /water 50706
R75 75/25 reline/water 60072
R100 pure reline 36576

*BEach system was neutralized using 17 K¥ ions.

Table S3: Average percentage of BSA secondary structures for 350 ns reversibil-
ity runs calculated using DSSP algorithm. Last 100 ns trajectories were used
for the computation of average values.

System a-helix 3jp-helix coil turn bend

R50 60.1 3.0 183 82 10.3
R75 46.3 3.2 23.5 141 124
R100 52.8 8.3 189 14.0 108
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Figure S3: Time-dependent variations in radius of gyration (R,) on aqueous re-equilibration

of denatured protein conformations. Aqueous system data are also plotted for the compari-
SOn.
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Figure S4: Time evolution of percentage a-helical content for re-equilibration runs of dena-
tured protein systems.
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