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S-I.  Mass spectrum baseline subtraction and peak integration 

Three sample time-of-flight spectra, with their time axes converted to corresponding mass, are 

shown in Fig. S1. The first step in processing them involves identifying and subtracting a constant 

baseline. As illustrated in Fig. S2, the collected spectra extend far beyond the range shown above. 

It is safe to assume that the distant points contain no actual cluster signal and therefore represent 

the baseline. We extract the last thousand points from the record and use their average as the 

baseline. This value is then subtracted channel-by-channel from the data. A spectrum after baseline 

subtraction is shown in Fig. S3. 

Subsequently, two additional corrections are applied. The first is a Jacobian factor used in a 

transformation from the time-of-flight  variable to the mass variable. This involves a division of 

the spectrum by N1/2. The second one accounts for the cluster size dependence of the photoioniza- 

 

 

Fig. S1.  Raw time-of-flight spectra of CO2 clusters for three different experimental conditions. 

(Spectra are reproduced from data presented in Ref. S1.) The mass spectra in Fig. 2 of the main 

text are derived from these plots following the procedure described in this section. 
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tion cross section via an additional division by N. The net effect is a pointwise division of the 

spectra (such as that in Fig. S3) by N 3/2. The final outcome is illustrated in Fig. 2 in the main text.  

Further potential corrections, such as the detector conversion efficiency or other size dependent 

detection biases, were not included. It is crucial to emphasize that any smooth abundance 

variations are always removed in the next step, described in Section S-II, and therefore impact 

neither the stability functions derived there nor any subsequent portion of the analysis. This point 

follows rigorously from the analysis procedure, and has been verified for the present data. 

Following the above corrections, peaks are detected using Mathematica's FindPeaks 

function, with care taken to ensure that exactly one peak is identified for each (CO2)N cluster. Fig. 

S4 shows an example of peaks identified in a baseline-subtracted and corrected spectrum. 

Once the (CO2)N peak positions are identified, their intensities are determined by numerical 

integration of a linear interpolation of the data points between the region defined by the midpoints 

between consecutive peaks. Since there is some variability in where the maxima are determined in 

the mass spectrum, it is important to normalize the integrated intensity by the distance between the 

consecutive midpoints. Each integrated intensity is then assigned to an integer value of N 

corresponding to the cluster size. Variations of this method of peak integration were tried and 

found to yield similar results. A sample integrated mass spectrum is shown in Fig. S5. 

 

 
Fig. S2.  Full time-of-flight mass spectrum of CO2 clusters with points used to construct 

the baseline function visible in blue at the far end. This plot is an extension of Fig. S1(c). 

(Spectra are reproduced from data presented in Ref. S1.) 
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Fig. S3.  The spectrum from Fig. S1(c) after subtraction of the baseline determined from the 

region highlighted in Fig. S2. (Spectra are reproduced from data presented in Ref. S1.) 

 

 
Fig. S4.  Peaks identified in a segment of the mass spectrum from Fig. 2(c) in the main text. 
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S-II.  Cluster stability functions 

The peak-integrated mass spectra, IN, are used to generate the “cluster stability functions,” 

(𝐼𝑁/𝐼𝑁), which exhibit the size-to-size intensity variations deriving from intrinsic cluster 

properties. The function 𝐼𝑁 represents a smooth envelope of the abundance distribution. Since it 

depends on the source conditions, it is determined separately for each spectrum by means of 

smoothing the abundance function itself, as described below. 

The procedure used here has strong analogies to the determination of shell structure in the field 

of nuclear physics by means of the so-called Strutinski shell correction method. It is not limited to 

nuclei and has been applied to studies of cluster shell and supershell structure as well.S2,S3 

The smoothing is accomplished by convolution of the abundance spectrum with Gaussian 

functions, as given by Eq. (1) in the main text. The denominator of this equation normalizes the 

weight to unity. As mentioned in the main text, the Gaussians’ width is set to wN = 4N1/3. This N1/3 

variation is selected because it matches that of the structures appearing in the mass spectra. Setting 

the coefficient to 4 was found to provide sufficiently broad averaging without washing out the size 

variation of 𝐼𝑁. Other smoothing choices are possible, for example the use of spline functions.S3 

To avoid asymmetric averaging at the high mass end of the spectra, we fit the falling edge of 

the spectra to an exponentially decreasing function of the form αe–βN, extend the spectrum and use 

this for the determination of 𝐼𝑁. These extensions are smooth and therefore will not give rise to 

any spurious signals. We also attempted to fit the tail of the spectra to a pseudo-Voigt function 

with a sigmoidally varying width parameter,S4 and found similar results to using the decaying 

exponential function. The following analysis and the results in the main text utilize the fit to the 

exponentially decreasing function for simplicity.  

A single convolution of this type is not sufficient to remove all traces of the envelope function, 

and the procedure is therefore repeated twice more, using the preceding 𝐼𝑁 as the input spectrum. 

The iterative process leads to stability functions which oscillate about unity.  

Fig. S5 shows such a final envelope function 𝐼𝑁 superimposed onto the integrated mass 

spectrum. This plot is also shown in Fig. 4(c) in the main text, with further examples displayed in 

other panels of the figure.  

Fig. S6 shows an additional series of stability functions calculated for a subset of the 

experimental data by the pointwise division of IN by 𝐼𝑁.  
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Fig. S5.  Dots: integrated intensities of peaks identified in the spectrum of Fig. 2(c) of the 

main text (see also Fig. S4). Smooth solid curve: their envelope obtained by an iterative 

Gaussian convolution. 
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Fig. S6.  Stability functions for a data set corresponding to 403 mm nozzle-ionization distance 

and a range of CO2 concentrations in the nozzle expansion: (a) 0.38%, (b) 0.69%, (c) 0.77%, 

(d) 1.00%, (e) 1.54%, (f) 1.61%, (g) 2.31%, (h) 3.08%, (i) 3.85%, (j) 5.02%. 
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S-III.  Gspann parameter 

The Gspann parameter, defined as GN = ln(ωNt), derives from a comparison between an 

isolated cluster’s evaporative rate constant and its experimental flight time. In this way, it relates 

the maximum microcanonical temperature of an evaporative ensemble to its activation energy.S5,S6 

The rate constant’s frequency prefactor can be written as ωN = σN, where σN is the geometrical 

cross section for the capture of one CO2 molecule by a cluster of N–1 molecules, 
2

1/3

0 0( 1)N r N r   = − +  . Here r0 is the effective radius of one molecule [cf. Eq. (5) in the main 

text], related to the molecular number density n in the bulk by ( )1 3

04 / 3n r− = . The measured 

densityS7,S8 yields r0  2.2 Å. 

The parameter Ω can be with good accuracy related to the temperature-dependent bulk vapor 

pressure P of the cluster material as follows:S5,S9  

 ( )
1/2 /1

8

a T

BP mk T e −= . (S.1) 

Here kB is the Boltzmann constant, m is the molecular mass, and Ω and a are fitting parameters. 

Using the tabulated CO2 pressure data at low temperaturesS8,S10,S11 and plotting ( )ln P T  vs. 1/T 

(Fig. S7) we find from the intercept and the above value of r0 that 2

0r   2.3×1016 s-1.  

We can now compute the value of the Gspann parameter for each cluster N in each data set. 

The flight time t is derived from the specific set’s distance between the nozzle and the mass 

spectrometer’s ionization region, and the measured cluster beam velocity of 540 m/s. For the size 

range 10  N  500 we find that GN varies between 32 and 35.   

 

 

Fig. S7.  A plot of CO2 vapor pressures in the relevant temperature region. 
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S-IV.  Heat capacities 

Determination of cluster binding energies from the stability functions requires a knowledge of 

their heat capacities. These are taken from the molar heat capacityS10 of bulk CO2: C = 4.6kB per 

molecule at T  90 K.  

The temperature estimate above is based on using the relationS5,S6 TN  DN/GN and setting 

DNA, see Eq. (4) in the main text. While variation of the temperature with cluster size could 

potentially complicate matters, an earlier analysis for water clusters showed that it can be ignored 

to a good approximation.S12 

For use in Eq. (1) in the main text we extrapolate the aforementioned bulk heat capacity to 

finite clusters sizes by setting it to C(N–2) for a cluster of N molecules. The correction in 

parentheses corresponds to the subtraction of the six rotational and translational degrees of 

freedom of the whole cluster. 

By taking the average of the precursor (N+1 molecules) and detected (N molecules) clusters 

heat capacities, and remembering that the microcanonical heat capacity of isolated clusters in a 

beam is one kB less than the canonical valueS13 we obtain ( )3
2N BC C N k − − . 

In Eqs. (2) and (3) in the main text this is employed in dimensionless form, i.e., 

( )3
2

4.6 1.NC N − −  

 

S-V.  Dissociation energies 

As described in the main text, Eq. (3) is solved recursively by starting with the value of 
N NI I  

for the largest cluster in the data set, and proceeding downward in size. The energy ratio 

1 1N ND D+ +
 is assigned a starting value near unity, and the equation is iterated to find the energy 

ratios for all the lower sizes. The procedure converges quickly, and within the space of a few tens 

of molecules the solutions become insensitive to the precise seed value of the energy ratio. For 

maximum consistency, we select the seed as follows. It is set to values between 0.90 and 1.10 with 

an increment of 0.0001, and a corresponding set of energy ratios is computed for each of these 

values. The set which has the smallest average absolute deviation of 
N ND D  from unity for sizes 

N ≥ 100 is selected. We found that the seed values optimized in this way did not deviate from unity 

by more than a couple of percent.  

Fig. S8 shows the energy ratios 
N ND D  derived from the data in Fig. S6.  

 



S-10 

 

 

Fig. S8.  Dissociation energy ratios derived from the stability functions plotted in Fig. S6. 
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S-VI. Subshell closings 

Fig. S9(a) shows the aggregate set of energy ratios 
N ND D  from Fig. 6(d) in the main text in 

the region N ≥ 130. The points of steepest descent are found from this curve by computing the 

finite difference between successive points, followed by Gaussian smoothing and finally locating 

the minima, as shown in Fig. S9(b). These cluster sizes, corresponding to sequential facet 

fillings,S14 are listed in Table S1 and plotted in Fig. 8 in the main text. These values are the averages 

of minima candidates obtained by varying the smoothing kernel, and the stated uncertainties derive 

from the standard deviation of the candidates. A more complicated method involving 

differentiation of a third order interpolation of the 
N ND D  curve yielded equivalent results. 

 

 

Fig. S9.  (a) Energy ratios averaged over the complete data set [Fig. 6(b) in the main text].  

(b) Derivative of the plot in the top panel (black curve), its Gaussian smoothing (blue curve) and 

the minimum points of the latter (yellow dots), identifying the points of steepest descent and 

thereby the subshell closings. 
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Table S1.  Cluster sizes with subshell closings as determined from the derivative 

of the aggregate dissociation energy curve. 

k' Ns  k' Ns 

55 133 ± 1  69 287 ± 1 

56 143 ± 1  70 301 ± 1 

57 151 ± 1  71 317 ± 1 

58 160 ± 1  72 333 ± 2 

59 170 ± 1  73 346 ± 1 

60 179 ± 1  74 360 ± 1 

61 189 ± 1  75 377 ± 2 

62 200 ± 1  76 397 ± 2 

63 211 ± 1  77 414 ± 1 

64 222 ± 1  78 429 ± 1 

65 235 ± 1  79 446 ± 2 

66 252 ± 3  80 467 ± 3 

67 265 ± 1  81 488 ± 3 

68 274 ± 1      
 

 

 

S-VII.  Geometrical analysis of subshell closings 

Refs. S14-S16 discuss the observed oscillating pattern in cluster spectra due to geometrical 

packing of atoms or molecules. By considering a set of possible polyhedral structures (fcc cube, 

octahedron, decahedron, icosahedron, and cuboctahedron), Negishi et al.S14 concluded that only 

cuboctahedral clusters represent the mass spectrum of CO2 clusters on a satisfactory level. 

However, their analysis neglected shapes such as truncated octahedra and Ino (or Marks) 

decahedra, which are generally plausible structures for larger atomic clusters.S17-S20  

In what follows we present the geometrical estimates of subshell closings for cuboctahedral, 

Ino decahedral, and truncated octahedral clusters with k shells. (Sample clusters for each structure 

are illustrated in Fig. 8 in the main text and in Fig. S10.) 

Cuboctahedron. The total number of monomers in a cuboctahedron with k shells can be 

written asS21  

 3 2

cubo

10 11
( ) 5 1

3 3
N k k k k= − + − . (S.2) 

By means of subshell index k′ = Fk (F being the number of facets on a shell) the cube root of Ncubo 

can be developed as a series for large k′: 
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1/3

1/3

cubo 2/3

(10 / 3) 49 7
( 7) 1

90
N k

F Fk Fk

 
 − + + 

 
, (S.3) 

where the coefficient preceding the first term is about 0.1067 for F = 14. The last term of Eq. (S.3) 

is smaller than 0.05 for the cluster sizes studied here (k4). 

Ino decahedron. Ino decahedra are also characterized by the shell index k with an additional 

parameter p (a positive integer). Geometrically, k and p are the numbers of monomers on the edges 

between (100) and (111) facets and two (100) facets, respectively [see Fig. S10(b)]. The number 

of monomers in an Ino decahedron is given by 

 
3 2 2

Ino

5 5 8 5 5
( ) 1 1

6 2 3 2 2
N k k k k p k k

 
= − + + − + − 

 
. (S.4) 

When p = k, a regular Ino decahedron has the number of monomers as a cuboctahedron of k shells. 

But with F = 15 instead of 14, the cube root of NIno can be expressed to good accuracy by 

 
1/3

1/3

Ino

(10 / 3)
( 7.5)

15
N k − . (S.5) 

Thus the prefactor is about 0.100 and the residual term is about 0.05. However, the energetically 

more favorable clusters have p < k due to a reduced number of monomers on the costly (100) 

facets. For such Ino decahedra, the highest order term has again a coefficient of 0.100, but the 

residual terms for the studied cluster sizes are smaller than ∼0.025. 

Truncated octahedron. The composition of a truncated octahedron differs slightly from the 

other geometries, and for sake of simplicity an index n (≥ 0) is used instead of the shell index k.  

 

 

Fig. S10.  Examples of the three analyzed geometrical structures. The surface 

monomers are shown as dark spheres and the core monomers (with a coordination 

number of 12) as bright ones. The complete structure is shown on the left, and the 

cross-sectional view is given on the right. 
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The number of monomers in an “nth” regular truncated octahedron (TO) is 

 3 2

TO( ) 16 15 6 1N n n n n= + + + , (S.6) 

and the number of monomers with a coordination number of 12 (i.e., the number of core 

monomers) is 

 3 2

TO,12( ) 16 15 6 1N n n n n= − + − . (S.7) 

Based on these two equations and a simple geometrical inspection, the complete depletion of 

monomers from the surface of the nth truncated octahedron does not produce the (n–1)st 

octahedron but a cluster with NTO(n) − 30n2 − 2 monomers. Thus extra facets are effectively 

depleted during a full transition from n to (n–1) closed-shell cluster. After the 14 facets are 

depleted, the amount of excess surface monomers, ∆N, is 

 ( )2

TO,12 TO( ) ( 1) 18 5N N n N n n n = − − = − + . (S.8) 

The number of monomers on a subshell of the intermediate cluster can be taken as the average 

of subshell monomers of the two adjacent closed-shell clusters: 

 
( )

( )
22

2
30 2 30 1 2

2
2 14

n n
n n

+ + − +
=  −


. (S.9) 

Thus the number of effective facets between the intermediate cluster and the (n–1)st cluster is 

approximately ∆N/≈ 9. The total number of facets between two regular truncated octahedra is 

F = 23. For truncated octahedral clusters the cube root of NTO is approximately 

 ( )1/3

TO

0.02 0.07
0.110 7

n
N n

n

+
 + + , (S.10) 

where the index n' corresponds to k'-14. Thus Eq. (S.10) has a (k'–7) factor similar to Eqs. (S.3) 

and (S.5). Again the residual term is very small for the relevant cluster sizes (n2). 

The geometric analysis for each of the considered structures [Eqs. (S.3), (S.5), and (S.10)] 

suggests that the subshell index k' is scaled by a factor of F/2. This scaling can be explained as 

resulting from the imperfect indexing of the subshells of the smallest closed-shell cluster. This is 

demonstrated for the cuboctahedral clusters of k'≤14 in Fig. S11. Indeed, as shown in the main 

text, the positions of the subshell closings follow the “cuboctahedral indexing” of k'–7. 
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Fig. S11.  Subshell indexing of small cuboctahedral clusters. (a) Closed-shell cluster with 13 

monomers corresponding to k=1 (and k'=14). Removal of the four monomers on a (100) facet, 

indicated as light gray, results in a cluster with 9 monomers and subshell index k' = 13 [shown in 

(b)]. This procedure can be repeated for the subsequent clusters and their facets (being either 

layers or single monomers) until a single monomer remains (g). The shown sequence of subshell 

configurations (and the shown values of k') demonstrates that the shifting of k' by 7 results in 

correct subshell indexing, as for N=1 the index k'–7 = 1. 

 

 

 

S-VIII.  Simulation of a peeling-off process 

To test the predictive power of the prefactors of the highest-order terms for open-shell 

structures, we study Lennard-Jones (LJ) clusters with a simple simulation strategy. In our model, 

the surface monomers on a closed-shell cluster are peeled off one monomer at a time, and after 

each removal the cluster’s energy is minimized using a conjugate gradient algorithm. The 

monomer to be removed is primarily determined by its coordination number, and secondarily by 

the minimized energy of the cluster after the monomer removal. Thus the most undercoordinated 

monomer, whose removal results in the lowest configurational energy, is selected. Note that in this 

scheme only the surface monomers of the original closed-shell cluster are removed: after a 

complete depletion of surface monomers a new closed shell remains. The routine is then repeated 

for the new uncovered closed-shell cluster. A very similar approach was recently used to study the 

structural motifs of Au clusters.S20 

It should be also noted that the energy minimization scheme employed here conserves the basic 

geometry:  during the minimization the cluster is not able to collapse into the global minimum (or 

any other) structure. In the case of LJ clusters consisting of less than 1000 monomers, the global 

minima exhibit predominantly icosahedral structures.S22 This is the reason for employing a simple 

energy minimization instead of an extensive search in phase space using the Hamiltonian. 
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The stabilities of open-shell clusters are assessed based on the minimized cluster energies EN 

with the standard parametersS21 ∆ and ∆2: 

 b

2/3
( ) NE NE
N

N

−
 =  (S.11) 

and 

 2 1 1( ) 2N N NN E E E+ − = + − . (S.12) 

For a LJ crystal the bulk energy of the fcc lattice per monomer, Eb, is about -8.6 in standard LJ 

energy units. The most stable clusters should be located at the local minima and maxima of ∆(N) 

and ∆2(N), respectively. 

The selected starting closed-shell structures are as follows: a cuboctahedron with 561 

monomers (k = 6), an Ino decahedron with 409 monomers (k = 6 and p = 4), and a truncated 

octahedron with 586 monomers (n = 3). 

The obtained energy parameters ∆ and ∆2 for cluster sizes between N = 85 and 409 are shown 

in Figs. S12(a) and S12(b), respectively. As the peaks appearing in ∆2 are more distinct than the 

minima in ∆, these peak positions are considered as the subshell closings Ns. The obtained values 

of 1/3

sN  as a function of their order of appearance (corresponding to the subshell index k′) are shown 

in Fig. S11(c). Based on the peeling-off calculations, the geometrical predictions for the highest-

order term of N are able to accurately capture the oscillation between the most stable open-shell 

cluster sizes. However, fluctuations in the values of Ns preclude an accurate analysis of the 

residuals. 

We reiterate that the present model analysis is helpful for identifying the relationship between 

geometrical structures and the corresponding periodicities of shell and subshell closings. But it 

should not be used for a direct comparison of cluster configurations and their relative energies 

between model and experiment because the intermolecular interactions within CO2 clusters are not 

sufficiently accurately captured by a coarse-grained LJ model and the peeling-off simulations.  
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Fig. S12.  Results obtained from the peeling-off simulations of LJ clusters having either 

cuboctahedral, Ino decahedral or truncated octahedral geometries.  (a) Energy parameter 

∆ as a function of cluster size N.  (b) Energy parameter ∆2 for the same clusters. For 

clarity, the lines for cuboctahedral and Ino decahedral clusters are shifted by −5 and +5 

energy units, respectively. (c) Cube root of cluster sizes represented by the peaks 

appearing in ∆2, as a function of their order of appearance k′. The calculated slopes, s, are 

given in the legend. The points are arbitrarily shifted so that the largest considered k′ 

considered has a value of either 30, 40, or 50. The theoretical predictions (scubo = 0.107, 

sIno = 0.100, and sTO = 0.110) for these geometries are shown as dashed lines (again 

allocated according to the largest closing).  
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