Unimolecular and water reactions of oxygenated and unsaturated Criegee intermediates under atmospheric conditions

--- Electronic Supporting Information ----L. Vereecken, A. Novelli, A. Kiendler-Scharr, A. Wahner

Contents

A. Literature SCI rate coefficients	2
1. Selected literature data for unimolecular reactions	2
2. Rate coefficients for the reaction of SCI with H2O	4
3. Rate coefficients for the reaction of SCI with (H ₂ O) ₂	6
4. Additional rate coefficient and energetic data on CI unimolecular reactions	7
B. Internal rotation of substituents	13
C. Stereoisomerisation	14
D. 1,3-H-migration in E-R ₂ CHOO (anti-RCHOO)	16
E. Alkyl-1,4-H-migration forming vinyl hydroperoxides (VHP)	17
F. Vinyl-1,4- and acyl-1,4-H-migration forming cumulene hydroperoxides	19
G. Allyl-1,4- and allyl-1,6-H-migration forming β-unsaturated VHP	20
H. Vinyl-, allyl-, and β-oxo-1,5-H-migration	21
I. Hydroperoxide-1,5-H-migration	22
J. Hydrotrioxide-1,6-H-migration forming peracid $+ {}^{1}O_{2}$	23
K. 1,3-Ring closure forming dioxirane	24
L. 1,5-Ring closure forming cyclic peroxides	26
M. Intramolecular secondary ozonide (SOZ) formation	27
N. 1,2-insertion in –OH forming cyclic ethers	28
O. 1,2-insertion in –OOH forming cyclic peroxides	29
P. 1,2-insertion in –C(=O)OH forming cyclic esters or CO ₂ +alkene	30
Q. Impact of specific substitutions	31
1. Impact of cyclic substituents on unimolecular reaction rates	31
2. Elimination of HCOO from RCHOO	32
3. H-migration from oxygenated groups to the carbonyl oxide moiety	32
4. Impact of a syn-β-epoxide substituent	33
R. The reaction of CI with H ₂ O	35
S. Structure-Activity relationships: substituent naming conventions	37
T. Structure-Activity Relationships (SARs) for SCI unimolecular reactions	38
U. Structure-Activity Relationships (SARs) for SCI + H ₂ O reactions	48
V. Structure-Activity Relationships (SARs) for SCI + (H ₂ O) ₂ reactions	56
W. Counterexamples of SAR extrapolation to multi-functionalized SCI	64
1. OH substituents in β-unsaturated SCI	64
2. Combining two oxygenated substituents	65
3. SCI with two oxygenated α-substituents	66
X. Raw quantum chemical data	67
Y. References	68

A. Literature SCI rate coefficients

1. Selected literature data for unimolecular reactions

Table 1: Selected literature data based on recent experimental work and high-level (often post-CCSD(T)) theoretical work for unimolecular reactions. Barrier height E_b in kcal mol⁻¹, rate coefficient k(T) near 298 K in s⁻¹. Only the energetically most favorable reaction path is considered here (1,3-ring closure for CH₂OO and *anti*-CH₃CHOO, 1,5-ring closure for Z-(CH=CH₂)(CH₃)COO), 1,4-H-migration for all other). See Vereecken and Francisco,¹ Vereecken et al.,² or section A.4 for a more extensive list of data.

CI	E_b	k(298 K)	<i>T /</i> K	Methodology ^a	Reference
CH ₂ OO		0.19±0.07	297	E: C ₂ H ₄ ozonolysis; titration CI with SO ₂	Berndt et al. 2015^3
	18.9	0.25	297	T: CHEAT1 modified ; RRKM	Berndt et al. 2015 ³
	19.0	0.3	298	T: W3X-L//CCSD(T)-F12 ; CVTST	Long et al. 2016 ⁴
	19.1	0.3	298	T: HEAT-345(Q) ; SCTST	Nguyen et al. 2015 ⁵
		< 11.6	293	E: RI ₂ photolysis ; cavity ring down	Chhantyal-Pun et al. 2016 ⁶
		8.8±13	298	E: C_2H_4 ozonolysis; Relative to $CI + SO_2$	Newland et al. 2015 ⁷
	19.0	0.3	298	T: CCSD(T)/aVTZ//M06-2X + CF	Vereecken et al., 2017 ^{8 b}
	19.6	0.036 ^b	298	T+E: $CCSD(T)//M06-2X + adj.$ to exp	Stone et al., 20189
	20.5			T: DLPNO-CCSD(T)	Peltola et al. 2020 ¹⁰
syn-CH ₃ CHOO	17.1	166	298	T: HEAT modified ; RRKM	Fang et al. 2016 ¹¹
	17.0	328	298	T: W3X-L//CCSD(T)-F12 ; CVTST	Long et al. 2016 ⁴
		122	298	T+E: mHEAT + RRKM + exp. $k(E)$	Fang et al. 2016 ¹²
		288±275	298	E: C ₄ H ₈ ozonolysis; Relative to $CI + SO_2$	Newland et al. 2015 ⁷
		76±25	298	E: C ₄ H ₈ ozonolysis	Fenske et al. 2000 ¹³
		20±10	≤293°	E: C ₄ H ₈ ozonolysis ; OH LIF	Novelli et al. 2014 ¹⁴
		> 3	297	E: C ₄ H ₈ ozonolysis; titration CI with SO ₂	Berndt et al. 2015 ³
	16.8	136	298	T: CCSD(T)/aVTZ//M06-2X + CF	Vereecken et al., 2017 ^{8 b}
anti-CH ₃ CHOO	15.6	55.4	298	T: W3X-L//CCSD(T)-F12 ; CVTST	Long et al. 2016 ⁴
		> 3	297	E: C ₄ H ₈ ozonolysis; titration CI with SO ₂	Berndt et al. 2015 ³
	15.7	53	298	T: $CCSD(T)/aVTZ//M06-2X + CF$	Vereecken et al., 2017 ^{8 b}
syn-C ₂ H ₅ CHOO	16.5	279	298	T: CCSD(T)-F12/CBS//B2PLYPD3 ; RRKM	Fang et al. 2016 ¹⁵
	16.5	205	298	T: CCSD(T)/aVTZ//M06-2X + CF	Vereecken et al., 2017 ^{8 b}
$(CH_3)_2COO$	16.2	369	298	T: HEAT modified ; RRKM	Fang et al. 2016 ¹¹
		276	298	T+E: mHEAT + RRKM + exp. $k(E)$	Fang et al. 2017 ¹⁶
		305±70	293	E: RI2 photolysis ; cavity ring down	Chhantyal-Pun et al. 2017 ⁶
		1000 ± 200^{d}	298	E: TME ozonolysis; Relative to $CI + SO_2$	Newland et al. 2015 ⁷
		269±82	283	E: TME ozonolysis; UV absorption	Smith et al. 2016 ¹⁷
		361±49	298	E: TME ozonolysis; UV absorption	Smith et al. 2016 ¹⁷
		628±60	310	E: TME ozonolysis; UV absorption	Smith et al. 2016 ¹⁷
		916±56	323	E: TME ozonolysis; UV absorption	Smith et al. 2016 ¹⁷
	15.9	400	298	T: QCISD(T)/CBS//B3LYP; SCTST	Smith et al. 2016 ¹⁷
		643±87	293	E: TME oznolysis; H ₂ SO ₄ CI-APi-TOF	Berndt et al. 2014 ¹⁸
	16.1	478	298	T: $CCSD(T)/aVTZ//M06-2X + CF$	Vereecken et al., 2017 ^{8 b}
	16.4	420	298	T: W3X-L//CCSD(T)-F12a/DZ-F12	Long et al. 2018 ¹⁹
	15.5	1070	298	T: CCSD(T)-F12a//M06-2X ; TST	Deng et al. 2018 ²⁰
E-(CH ₃)(CH=CH ₂)COO	18.0	33	298	T: ANL0-B2F	Barber et al. 2018 ²¹
		70±15	298	E: Photolysis + UV-absorption	Lin et al., 2020 ²²
Z- (CH=CH2) (CH3)COO	12.0	2140	298	T: ANL0-B2F	Barber et al. 2018 ²¹
Z-C ₃ H ₆ CHO-CHOO	9.7	1700	298	T: CCSD(T)-F12a ; MS-CVT/SVT	Long et al. 2019 ²³
Z-C5H8CHO-CHOO	8.0	790	298	T: CCSD(T)-F12a ; MS-CVT/SVT	Long et al. 2019 ²³
E-C ₃ H ₆ CHO-CHOO	14.3	190	298	T: CCSD(T)-F12a ; MS-CVT/SVT	Long et al. 2019 ²³
<i>E</i> -C ₃ H ₆ CHO-CHOO	13.4	78	298	T: CCSD(T)-F12a ; MS-CVT/SVT	Long et al. 2019 ²³
$Z-(C_7H_{10})$	16.3	631	298	T: CCSD(T)-F12a//M06-2X ; TST	Deng et al. 2018 ²⁰
$E-(C_7H_{10})$	15.0	68	298	T: CCSD(T)-F12a//M06-2X ; TST	Deng et al. 2018 ²⁰

^a Concise description of experimental (E:) and theoretical (T:) methodologies. See references for more details.

^b High-pressure limit

^c These measurements may have been affected by expansion cooling in the probe nozzle.

^d Relative rate converted using $k((CH_3)_2COO + SO_2) = 1.6 \times 10^{-10} \text{ cm}^3 \text{ molecules}^{-1} \text{ s}^{-1}$

Table 2: Intramolecular secondary ozonide (SOZ) formation in substituted carbonyl oxides, listing barrier heights E_b (kcal mol⁻¹), rate coefficient k (s⁻¹) at 298 K.

Carbonyl oxide	E_b	<i>k</i> (298K)	Reference
Z-n-OCHC4H8CHOO	5.1		Chuong et al. 2004 ²⁴
Z -n-OCHCH2CHOO	15.7		Kuwata et al. 2011 ²⁵
β-caryophyllene CI-1a	12.3	5.3	Nguyen et al. 2009 ²⁶
β-caryophyllene CI-1b	10.6	486	Nguyen et al. 2009 ²⁶
β-caryophyllene CI-2a	8.1	1100	Nguyen et al. 2009 ²⁶
β-caryophyllene CI-2b	13.3	7.4	Nguyen et al. 2009 ²⁶
α-phellandrene CI1a	13.6 ^a		Mackenzie-Rae et al. 2016 ²⁷
α -phellandrene CI1b	6.5 ^a		Mackenzie-Rae et al. 2016 ²⁷
α -phellandrene CI2a	4.2 ^a		Mackenzie-Rae et al. 2016 ²⁷
α -phellandrene CI2b	5.8 ^a		Mackenzie-Rae et al. 2016 ²⁷
α-phellandrene CI3a	14.4 ^a		Mackenzie-Rae et al. 2016 ²⁷
α-phellandrene CI3b	9.3 ^a		Mackenzie-Rae et al. 2016 ²⁷
α-phellandrene CI4a	6.7 ^a		Mackenzie-Rae et al. 2016 ²⁷
α-phellandrene CI4b	7.5 ^a		Mackenzie-Rae et al. 2016 ²⁷
Z-pinonaldehyde-K-oxide	13.5	8.7	Vereecken et al., 2017 ⁸
Z-pinonaldehyde-A-oxide	16.0	2.8×10 ⁻²	Vereecken et al., 2017 ⁸
E-n-OCHC3H6CHOO	14.1	0.9	Long et al., 2019 ²³
Z-n-OCHC ₃ H ₆ CHOO	2.5	7.1×10^{9}	Long et al., 2019 ²³
E-n-OCHC4H8CHOO	5.1	2.4×10^{7}	Long et al., 2019 ²³
Z-n-OCHC4H8CHOO	2.1	3.2×10^{8}	Long et al., 2019 ²³
Z-(CH ₂ CH ₂ COOH)CHOO	11.4	8.9×10^{2}	This work
Z-(CH ₂ CH ₂ CH ₂ COOH)CHOO	7.4	8.2×10^{4}	This work

^a $\Delta G^{≠}(298K)$ from a single-conformer analysis

R ₁	R ₂	E _b ^a	k(298K)	Ref.
Н	Н		$< 4 \times 10^{-15}$ (Exp)	Welz et al. 2012 ²⁸
			$10^{-12} - 10^{-15}$ (Exp)	Leather et al. 2012^{29}
			$(2.5 + 1) \times 10^{-17}$ (Exp)	Ouvang et al. 2013^{30}
			$< 9 \times 10^{-17}$ (Exp)	Stone et al. 2014^{31}
			$(3.2 + 1.2) \times 10^{-16}$ (Exp)	Berndt et al. 2015^3
			$(1.3 \pm 0.4) \times 10^{-15}$ (Exp)	Newland et al. 2015^7
		2.0	$1.66-5.60 \times 10^{-15}$	Anglada et al. 2013^3
		1.9	5.9×10^{-17}	Anglada et al. 2002^{33}
		43	5.8×10^{-18}	Ryzhkov and Ariya 2004 ³⁴
		2.8	3.69×10^{-16}	Lin et al. 2016^{35}
		2.0	3.05×10^{-15}	Anglada and Solé 2016 ³⁶
		2.2	2.32×10^{-18}	Chen et al. 2016^{37}
		3.5	2.62×10^{-16}	Long et al. 2016^4
		3.1	4.4×10^{-16}	Caravan et al. 2020^{38}
		5.1	3.6×10 ⁻¹⁶	Vin and Takahashi 2018 ³⁹
CH_2	н		$< 4 \times 10^{-15}$ (Eyn)	Taaties et al. 2013 ⁴⁰
CIIJ	11		$< 2 \times 10^{-16}$ (Exp)	Sheps et al. 2014^{41}
		53	$2 39_{-}3 23 \times 10^{-18}$	Anglada et al. 2011^{32}
		7.0	7.23×10^{-21}	Kuwata et al. 2010^{42}
		5.8	1.23×10^{-20}	Anglada et al. 2002^{33}
		1.0	7.33×10^{-21}	Ryzhkov and Ariva 2004^{34}
		7.0	1.08×10^{-19}	Lin et al. 2016^{35}
		6.0	2.80×10^{-18}	Anglada and Solá 2016 ³⁶
		0.0	2.09×10^{-19}	Long et al. 2016^4
		1.5	1.9×10^{-19}	Vin and Takahashi 2018 ³⁹
CU ₂ C ₂ U ₂ O	и	105¢	1.3×10	Find the result of 2012^{43} s
U12-C8П13О		10.5	$(1.0 \pm 0.4) \times 10^{-14}$ (Eyp)	Tanting et al. 2013
п	СП3		$(1.0 \pm 0.4) \times 10^{-14}$ (Exp)	Share at al. 20144
			$(2.4 \pm 0.4) \times 10^{-14}$ (Exp)	Newland et al. 20157
		1.2	$(2.5 \pm 2.1) \times 10^{-1}$ (Exp)	Anglada et al. 2013^3
		-1.2	$1.06-2.05 \times 10^{-1}$	Aligiada et al. 2010^4
		0.0	2.67×10^{-15}	Anglada et al. 2010^{12}
		-0.7	2.3×10^{-16}	Ryzhkov and Ariva 2004 ³⁴
		-5.5	4.0×10^{-14}	$Kyzikov alu Aliya 2004^{\circ}$
		0.5	3.4×10^{-13}	Lill et al. 2010^{-5}
		-1.2	1.55×10^{-5}	Anglada and Sole 2010 ¹⁴
		1.2	3.2×10^{-14}	Vin and Talahashi 2019 ³⁹
CU	CU		1.4×10^{-16} (Err)	2018^{3}
CH ₃	CH ₃		$< 1.5 \times 10^{10} (Exp)$	Newland et al. 2015 ⁷
		26	$(2.1 \pm 0.0) \times 10^{-10}$ (Exp)	New faile et al. 2013°
		5.0	3.87×10^{-19}	Anglada et al. 2011^{-2}
		4.0	7.5×10^{-5}	Anglada et al. 2002 ⁵⁵
		4.0	1.4×10^{-17}	Anglada and Salá 2014 ³⁶
		5.0	2.41×10^{-18}	Nin and Talachashi 2010 ²⁹
		5.0	2.3×10^{-17}	$1 \text{ III allo 1 akallasili, 2018}^{2}$
CU		5.9	1.1×0^{-1}	Long et al. 2018^{43} C
CH ₃	CH2-CH2-C6H9U	9.2		Jiang et al. 2013^{13} C
CH3	-cyc-C6H8-CH3	8.5		Jiang et al. 2013^{45}
E-nopinone oxide (bic		2.07	5 1 10-17	Lin et al. 2014^{10}
П	s-trans-CH=CH2		5.1×10^{-16}	Y in and Takanashi, 2018^{39}
	s-cis-CH=CH ₂	01	1.8×10^{10}	r in and Takanasni, 2018 ³⁷
CH ₃	s-trans-CH=CH ₂	ð.2	$(1.4 \text{ s}^{-1})^{\circ}$	Appliance and Anglada 2003 ⁷⁰
		0.8	2.93 × 10 ¹⁷	Anglada et al. 2010^{42}
		9.8	1.02×10^{-1}	Nuwata et al. 2010^{-2}
		0.8	5.55×10^{-7}	Aligiada and Sole 2010^{-5}
		0.0	\geq 4.0 \times 10 \sim (exp)	Caravan et al., 2020^{38}
		0.9	1.1 × 10 *	$Caravan et al. 2020^{30}$

Table 3: Barrier heights (kcal mol ⁻¹) and rate coefficients (cm ³ molecule ⁻¹ s ⁻¹) available in the literature on the CI +	H_2O
reaction. Relative position of R1 and R2 as in section S.	

CH ₃	s-cis-CH=CH ₂	6.8	(8.8 s ⁻¹) ^b	Aplincourt and Anglada 2003 ⁴⁶
		5.2	1.97×10^{-18}	Anglada et al. 2011^{32}
		7.6	3.43×10^{-20}	Kuwata et al. 2010^{42}
		5.2	2.91×10^{-18}	Anglada and Solé 2016 ³⁶
s-trans-CH=CH2	CH ₃	6.1	(49 s ⁻¹) ^b	Aplincourt and Anglada 2003 ⁴⁶
		4.7	1.39×10^{-18}	Anglada et al. 2011^{32}
		4.3	1.87×10^{-17}	Anglada and Solé 2016 ³⁶
		6.2	8×10^{-19}	Caravan et al. 2020^{38}
s-cis-CH=CH2	CH ₃	7.5	$(15 \text{ s}^{-1})^{\text{b}}$	Aplincourt and Anglada 2003 ⁴⁶
		5.8	8.31×10^{-18}	Anglada et al. 2011^{32}
		5.8	3.65×10^{-18}	Anglada and Solé 2016 ³⁶
Н	s-trans-C(CH ₃)=CH ₂	3.9	$(3.8 \times 10^3 \text{ s}^{-1})^{\text{b}}$	Aplincourt and Anglada 2003 ⁴⁶
		1.9	1.89×10^{-15}	Anglada et al. 2011^{32}
		1.9	2.91×10^{-15}	Anglada and Solé 2016 ³⁶
Н	s-cis-C(CH ₃)=CH ₂	2.1	$(4.6 \times 10^4 \text{ s}^{-1})^{\text{b}}$	Aplincourt and Anglada 2003 ⁴⁶
		0.2	1.36×10^{-14}	Anglada et al. 2011^{32}
		0.2	1.67×10^{-14}	Anglada and Solé 2016 ³⁶
Н	$C(CH_3)=CH_2$		1.2×10^{-15} (exp) ^d	Newland et al. 2016 ⁷
			$\sim 3 \times 10^{-17} (exp)^{e}$	Lin et al. 2021 ⁴⁷
Н	C≡CH		1.3×10^{-17}	Yin and Takahashi, 2018 ³⁹
s-trans-CH=CH2	Н		5.0×10^{-20}	Yin and Takahashi, 2018 ³⁹
s-cis-CH=CH2	Н		5.2×10^{-21}	Yin and Takahashi, 2018 ³⁹
s-trans-C(CH ₃)=CH ₂	Н	2.4	(5.8×10 ⁴ s ⁻¹) ^b	Aplincourt and Anglada 2003 ⁴⁶
		4.7	4.86×10^{-18}	Anglada et al. 2011 ³²
		4.7	6.87×10^{-18}	Anglada and Solé 2016 ³⁶
s-cis-C(CH ₃)=CH ₂	Н	3.9	(1.6×10 ⁴ s ⁻¹) ^b	Aplincourt and Anglada 2003 ⁴⁶
		6.8	5.58×10^{-19}	Anglada et al. 2011 ³²
		6.8	2.25×10^{-19}	Anglada and Solé 2016 ³⁶
C=CH	Н		6.7×10^{-21}	Yin and Takahashi, 2018 ³⁹
F	F	-8.0	4.6×10^{-9}	Anglada et al. 2011 ³²
Н	n-C12H23		$10^{-3} \times k_{acid}$ (Exp)	Tobias and Ziemann 200148
cyc-OCH2CH2O-COO		-7.1	7.06×10^{-11}	Anglada et al. 2011 ³²
cyc-CH=CH-COO		-4.0	1.23×10^{-11}	Anglada et al. 2011 ³²

^a Energy barrier relative to the separated reactants CI + H₂O. The reaction proceeds through a strong pre-reactive complex CI- H_2O which is not considered here.

^b Value in brackets is the unimolecular reaction of the CI--H₂O complex to the hydroxy-hydroperoxide.

^c Limonene, single-conformer analysis only ^d Bulk rate coefficient assigned to *E*-(C(CH₃)=CH₂)CHOO as it is the only (non-CH₂OO) isoprene-derived CI that is predicted to have a high rate coefficient with H₂O.

^e Rate coefficient was not determined, but the total loss to water and water dimer was observed to be a factor 4.5 to 7 below that predicted using the rate coefficients by Vereecken et al.⁸

R ₁	R ₂	E _b (H ₂ O) ₂ ^a	k(298K) (H ₂ O) ₂	Ref
Н	Н		$(6.5 \pm 0.5) \times 10^{-12} (Exp)$	Chao et al. 2015 ⁴⁹
			$(4.0 \pm 1.2) \times 10^{-12}$ (Exp)	Lewis et al. 2015 ⁵⁰
			$(7.4 \pm 0.6) \times 10^{-12}$ (Exp)	Smith et al. 2015 ⁵¹
			131× k(H ₂ O)	Ryzhkov and Ariya 2006 ⁵²
		-8.9	2.1×10^{-12}	Ryzhkov and Ariya 2004 ³⁴
		-6.6	5.4×10^{-12}	Lin et al. 2016 ³⁵
		-8.5	1.7×10^{-10}	Anglada and Solé 2016 ³⁶
		-10.0	2.7×10^{-11}	Chen et al. 2016 ³⁷
			2.3×10^{-12}	Yin and Takahashi, 2018 ³⁹
CH ₃	Н	-5.9	1.2×10^{-16}	Ryzhkov and Ariya 2004 ³⁴
		-3.2	2.6×10^{-14}	Lin et al. 2016 ³⁵
		-5.9	4.8×10^{-13}	Anglada and Solé 2016 ³⁶
			3.3×10^{-15}	Yin and Takahashi, 2018 ³⁹
Н	CH ₃	-10.1	2.0×10^{-12}	Ryzhkov and Ariya 2004 ³⁴
		-7.5	1.6×10^{-11}	Lin et al. 2016 ³⁵
		-9.9	5.9×10^{-10}	Anglada and Solé 2016 ³⁶
			$4.4 imes 10^{-12}$	Yin and Takahashi, 2018 ³⁹
CH ₃	CH ₃	-4.3	5.8×10^{-17}	Ryzhkov and Ariya 2004 ³⁴
		-6.1	3.7×10^{-13}	Anglada and Solé 2016 ³⁶
			3.4×10^{-16}	Yin and Takahashi, 2018 ³⁹
Н	s-trans-CH=CH2		3.3×10^{-15}	Yin and Takahashi, 2018 ³⁹
Н	s-cis-CH=CH2		3.3×10^{-14}	Yin and Takahashi, 2018 ³⁹
CH ₃	s-trans-CH=CH2	-1.5	9.2×10^{-16}	Anglada and Solé 2016 ³⁶
			\leq 3.0 × 10 ⁻¹⁴ (exp)	Caravan et al., 2020^{38}
CH ₃	s-cis-CH=CH2	-4.0	1.3×10^{-14}	Anglada and Solé 2016 ³⁶
			\leq 3.0 ×10 ⁻¹⁴ (exp)	Caravan et al., 2020^{38}
s-trans-CH=CH2	Н		4.1×10^{-20}	Yin and Takahashi, 2018 ³⁹
s-cis-CH=CH ₂	Н		1.2×10^{-16}	Yin and Takahashi, 2018 ³⁹
s-trans-CH=CH2	CH ₃	-4.3	4.7×10^{-14}	Anglada and Solé 2016 ³⁶
s-cis-CH=CH2	CH ₃	-2.4	5.4×10^{-15}	Anglada and Solé 2016 ³⁶
Н	s-trans-C(CH ₃)=CH ₂	-6.2	3.3×10^{-12}	Anglada and Solé 2016 ³⁶
Н	s-cis-C(CH ₃)=CH ₂	-8.0	2.2×10^{-11}	Anglada and Solé 2016 ³⁶
	$C(CH_3)=CH_2$		~ 6×10^{-14} (exp) ^b	Lin et al. 2021 ⁴⁷
Н	C=CH		2.5×10^{-15}	Yin and Takahashi, 2018 ³⁹
s-trans-C(CH ₃)=CH ₂	Н	-4.9	1.1×10^{-15}	Anglada and Solé 2016 ³⁶
s-cis-C(CH ₃)=CH ₂	Н	-2.0	2.4×10^{-15}	Anglada and Solé 2016 ³⁶
C≡CH	Н		4.0×10^{-17}	Yin and Takahashi. 2018 ³⁹

Table 4: Barrier heights (kcal mol⁻¹) and rate coefficients (cm³ molecule⁻¹ s⁻¹) available in the literature on the $CI + (H_2O)_2$ reaction. Relative position of R_1 and R_2 as in section S.

^a Energy barrier relative to the separated reactants $CI + (H_2O)_2$. The reaction proceeds through a strong pre-reactive complex CI-(H_2O)₂ which is not included here.

^b Rate coefficient was not determined, but the total loss to water and water dimer was observed to be a factor 4.5 to 7 below that predicted using the rate coefficients by Vereecken et al.⁸

4. Additional rate coefficient and energetic data on CI unimolecular reactions

There is significantly more experimental and theoretical data available on unimolecular reactions of CI than listed under section A.1. There is, however, significant variation across the literature data, owing to experimental uncertainties and difficulties, or the applications of lower levels of theory, which is why we have selected a subset of the data that we feel is among the best available. Still, it is useful to give an overview of all the available literature for reference purposes; the collected data is given in Table 5, in a format similar to an earlier review by Vereecken and Francisco¹ and Vereecken et al.⁸ The study on α -phellandrene ozonolysis by MacKenzie-Rae et al.²⁷ is not included in this overview. These authors reported $\Delta H(298K)$ and $\Delta G(298K)$ barrier heights, which include thermal correction based on a single conformer, i.e. not accounting for internal rotation, making the values less reliable. In all cases, it is recommended to consult (and reference) the original publication when using values from this table. Data from Vereecken et al.⁸ are also excluded, due to the large number of values.

Table 5: Barrier heights for unimolecular processes for stabilized Criegee Intermediates, and their rate coefficients when available. R_1 and R_2 orientation in the CI as indicated in sectionS. For most cases, the alkyl substituent is a methyl group; otherwise, the number of carbons in the substituent is indicated, for di-substituted CI this is the (R1,R2) carbon number; the prefix "c" indicates a cyclic substituent.

R 1	R2	Process	Barrier	k(298K)	Reference
			(kcal mol ⁻¹)	(s ⁻¹)	
Н	Н	O-loss	47.0		Cremer et al., 1993 ⁵³
			32.4		Anglada et al., 1996 ⁵⁴
			51.2		Nguyen et al., 2007 ⁵⁵
			49.2		Lehman et al., 2013 ⁵⁶
			$\leq 54^{a}$		Lehman et al., 2013 ⁵⁶
			$\leq 47^{a}$		Lehman et al., 2013 ⁵⁶
			16.5 (anion)		Karton et al. 2013 ⁵⁷
			54.2		Nguyen et al., 2015 ⁵⁸
			47.0		Dawes et al., 2015 ⁵⁹
			49.0 ± 0.3		Li et al., 2015 ⁶⁰
		ester channel	17.7		Gutbrod et al., 1996 ⁶¹
			24.0		Anglada et al., 1996 ⁵⁴
			19.9		Aplincourt and Ruiz-López, 200062
			20.7		Kroll et al., 2001 ⁶³
			20.6		Selçuki and Aviyente, 2001 ⁶⁴
			19.8	0.024	Zhang and Zhang, 2002 ^{65,66}
			23.8		Bach et al., 1992 ⁶⁷
				0.19 ± 0.07^{a}	Berndt et al., 2015^3
			18.9	$0.03-0.58^{f}$	Berndt et al., 2015^3
			18.2	0.3	Olzmann et al., 1997 ⁶⁸
			<19.7 ^g		Kalinowski et al., 2014 ⁶⁹
			19.2		Cremer et al., 1993 ⁵³
			18.9		Chen et al., 2002 ⁷⁰
			19.0		Li et al., 2014 ⁷¹
			22.8		Cremer et al., 1988 ⁷²
				$\leq 11.6\pm8.0^{a}$	Chhantyal-Pun et al., 2015 ⁷³
			19.6		Fang and Fu, 2002 ⁷⁴
			19.0		Nguyen et al. 2014 ⁷⁵
			19.1		Nguyen et al. 2015 ⁵
			18.7		Nguyen et al., 2015 ⁵⁸
			19.4		Nguyen et al., 2015 ⁵⁸
			-8.58±13 ^a	Newland et al., 2015^7	
			19.4	0.34 ⁱ	Chen et al., 2016 ³⁷
			19.0	0.31 ⁱ	Long et al., 2016 ⁴
			20.0	0.42	Yin and Takahashi, 2017 ⁷⁶
		1,3-H-shift	30.8		Gutbrod et al., 1996^{61}
			32.0	1.2×10 ⁻¹²	Zhang and Zhang, 2002 ^{65,66}
			30.8		Olzmann et al., 1997 ⁶⁸
			32.5		Chen et al., 2002 ⁷⁰

			31.8 30.7	8.2×10 ^{-9 i}	Nguyen et al., 2015 ⁵ Chen et al. 2016 ³⁷
			31.6		Long et al. 2016^4
			33.0		Yin and Takahashi, 2017 ⁷⁶
		syn-anti isom	25.7		Anglada et al., 1996^{34}
			25.3		Hull, 1978''
		direct UCOOU	52.1		Chen et al. 2016^{37}
		uneet-medon	$(16.1)^{j}$		Nouven et al. 2015^{58}
			51.17		Yin and Takahashi. 2017 ⁷⁶
Alkvl	Н	O-loss	34.1		Anglada et al., 1996^{54}
) -		ester channel	23.8		Gutbrod et al. 1997 ⁷⁹
			28.4		Anglada et al., 1996 ⁵⁴
			24.0		Selçuki and Aviyente, 200164
			24.1		Kuwata et al., 2010^{42}
			23.6		Kuwata et al., 2011^{25}
			$21.3 (C2)^{\circ}$		Kuwata et al., 2011^{23}
			24.0 (C14)		Nguyen et al., 2009^{80}
			23.3		Long et al. 2016^4
			23.6		Yin and Takahashi. 2017 ⁷⁶
			22.9 (C2)		Yin and Takahashi, 2017 ⁷⁶
			24.4		Kuwata et al., 2018^{81}
			22.9 (C6)		Deng et al. 2018 ²⁰
		hydroperoxide	14.8		Gutbrod et al. 1997 ⁷⁹
			21.2		Anglada et al., 1996 ⁵⁴
			19.1 (C5)		Chuong et al., 2004^{24}
			16.7	24	Kroll et al., 2001^{03}
			17.9 12.7 (C2)°	24	Kuwata et al., 2010^{42}
			16.9		Kuwata et al. 2003^{82}
			10.9	76 ^a	Fenske et al., 2000^{13}
			18.7 (C14)	1.6	Nguyen et al., 2009^{80}
			15.7		Nguyen et al., 2009 ⁸⁰
			19.6		Zhang and Zhang, 2005 ⁸³
			17.1	166	Fang et al., 2016 ¹¹
			$\leq 16.0 \text{ eff.}^{a}$		Liu et al., 2014 ⁸⁴
			17.9		Liu et al., 2014^{85}
			17.4 (C2) 16.2		Liu et al., 2014^{65}
			10.5	20 ± 10.0^{a}	Novelli et al. 2015^{44}
				$288+275^{a}$	Newland et al. 2015^7
			16.4 (C6O)	2002270	Leonardo et al., 2011^{87}
			15.5 (C4O)		Leonardo et al., 2011^{87}
			. ,	3 ^a	Berndt et al., 2012 ⁸⁸
				2.5 ^a	Horie et al., 1997 ⁸⁹
				2.9 ^a	Horie et al., 1999 ⁹⁰
			16 5	<250 ^a	Taatjes et al., 2013^{40}
			10.5	ono i	Kidwell et al. 2016^{4}
			17.01	5∠0 ⁻ 124	Nouven et al. 2016^{92}
			1/,4	127 ¹	Fang et al., 2016^{12}
			16.7	182	Yin and Takahashi. 2017 ⁷⁶
			16.3 (C2)	552	Yin and Takahashi, 2017 ⁷⁶
			17.1 (CD3)	3	Green et al., 2017 ⁹³
			16.1	300	Kuwata et al., 2018^{81}
			16.3	241	Burd et al., 2018 ⁹⁴
			16.3 (C6)	631	Deng et al. 2018^{20}
			16.6 (C5O)	1700	Long et al. 2019^{23}
		ann anti isam	10.1 (CbU) 30.5	/90	Long et al. 2019^{-5}
		syn-anu isoin	30.5		Auguata et al. 2005^{95}
			38.0		Kuwata et al. 2003^{42}
			33.7		Kuwata et al., 2011^{25}

			32.6		Nguyen et al., 2009 ⁸⁰
			38.1		Nguyen et al., 2015 ⁵⁸
			25.1		Hull, 1978 ⁷⁷
			35.6		Cremer, 1979 ⁷⁸
			41.9		Yin and Takahashi, 2017 ⁷⁶
			40.6 (C2)		Yin and Takahashi, 2017 ⁷⁶
			37.4 (C6O)		Long et al. 2019^{23}
		Alkyl rotation	2.1		Bowman et al. 2015^{96}
		ringrioution	2.5		Vin and Takahashi 2017 ⁷⁶
н	Alkyl	O-loss	31.6		Anglada et al. 1996^{54}
11	7 tikyi	ester channel	20.6		Anglada et al. 1006^{54}
		ester channel	13.3(C5)		Chuong et al. 2004^{24}
			16.0		$K_{roll et al.} 2001^{63}$
			17.1		Solculi and Avivante 2001 ⁶⁴
			15.4	67.3	Kuwata et al. 2010^{42}
			16.6	07.5	Kuwata et al. 2010^2
			10.0		Kuwata et al., 2011
			15.0(C20)	53	Nouven et al. 2000^{80}
			10.0 (C14)	5.5	Nguyen et al., 2009
			13.3		There and Zhang 2005 ⁸³
			27.0 (C9) 15.62	55 1 i	Long et al. 2016 ⁴
			15.05	33.4 °	Vin and Takahashi 2017 ⁷⁶
			15.4	12.5	Y in and Takanashi, 2017^{76}
			15.3 (C2)	105	Yin and Takanashi, 2017^{70}
			15.0 (C6)	68 100	Deng et al. 2018^{20}
			14.0 (C50)	190	Long et al. 2019^{23}
		1.011	14.7 (C6O)	/8	Long et al. 2019^{23}
		acyl + OH	30.1		Kuwata et al., 2010^{-2}
		(1,3-H-shift)	29.2		Kuwata et al., 2011^{25}
			29.8		Kuwata et al., 2011^{23}
			27.6 (C14)		Nguyen et al., 2009^{80}
			32.5		Zhang and Zhang, 2005 ⁸³
			29.0		Long et al, 2016 ⁴
			28.5		Yin and Takahashi, 2017 ⁷⁶
			28.3 (C2)		Yin and Takahashi, 2017 ⁷⁶
		syn-anti isom	28.3		Anglada et al., 1996 ⁵⁴
			30.1		Kuwata et al. 2005 ⁹⁵
			34.5		Kuwata et al., 2010^{42}
			30.1		Kuwata et al., 2011^{25}
			28.9		Nguyen et al., 2009^{80}
			38.4		Yin and Takahashi, 2017 ⁷⁶
			37.4 (C2)		Yin and Takahashi, 2017 ⁷⁶
			35.4 (C5O)		Long et al. 2019 ²³
		Alkyl rotation	1.2		Bowman et al., 2015 ⁹⁶
			1.0		Yin and Takahashi, 2017 ⁷⁶
Alkyl	Alkyl	ester channel	18.7		Gutbrod et al., 1996 ⁶¹
			21.7		Kroll et al., 2001 ⁶³
			21.6		Selçuki and Aviyente, 200164
			21.7		Olzmann et al., 1997 ⁶⁸
			22.6 (C13,C1)		Nguyen et al., 2009 ⁸⁰
			21.1 (C1,C13)		Nguyen et al., 2009 ⁸⁰
			28.2 (cC8,C1)		Zhang and Zhang, 2005 ⁸³
			21.0		Leonardo et al., 2011 ⁸⁷
			20.8	3.3×10 ⁻³	Smith et al., 2016 ¹⁷
			20.8 (CD3)	3.0×10 ⁻³	Smith et al., 2016 ¹⁷
			20.8		Yin and Takahashi, 2017 ⁷⁶
			21.5		Kuwata et al., 2018 ⁸¹
			21.1		Long et al. 2018 ¹⁹
		hydroperoxide	13.6		Gutbrod et al., 1996 ⁶¹
		- •	16.0 ^a	6.4±9 ^{a,b}	Kroll et al., 2001 ⁶³
			14.8		Olzmann et al., 1997 ⁶⁸
			16.2	362	Fang et al., 2016 ¹¹
			18.6 (C14,C1)	0.57	Nguyen et al., 2009^{80}
			16.6 (C1.C14)	42	Nguyen et al., 2009^{80}
			10.3 (C1,C8)	25.9	Sun et al., 2011 ⁹⁷

			18.6 (cC8,C1)		Zhang and Zhang, 2005 ⁸³
			17.1		Liu et al., 2014 ⁸⁵
			≤16.0		Liu et al., 2014 ⁹⁸
			$E_A = 5.9 \pm 1.2^a$	361 ± 49^{a}	Smith et al., 2016 ¹⁷
			15.9 (E _A =8-9)	400	Smith et al., 2016 ¹⁷
				3.0±0.4 ^a	Newland et al., 2015 ⁷
				<65±65 ^a	Berndt et al., 2012 ⁸⁸
			(CD ₃)	<100	Smith et al., 2016 ¹⁷
			16.6 (CD ₃)	10.6	Smith et al., 2016 ¹⁷
			15.7 (C1,C3O)		Leonardo et al., 2011 ⁸⁷
			19.6 (C1,C6)		Leonardo et al., 2011 ⁸⁷
			16.0		Leonardo et al., 2011 ⁸⁷
			15.8		Li et al., 2016 ⁹⁹
				305 ± 70^{a}	Chhantyal-Pun et al., 2017 ⁶
				276 ¹	Fang et al., 2017 ¹⁶
			16.0	572	Yin and Takahashi, 2017 ⁷⁶
			15.5	794	Kuwata et al., 2018 ⁸¹
			15.5	913	Burd et al. 2018 ⁹⁴
			16.2	340	Drozd et al. 2017^{100}
			15.5	1070	Deng et al. 2018^{20}
			16.4	420	Long et al. 2018 ¹⁹
		alkyl rotation	1.2 (C1, C2)		Kuwata et al., 2005 ⁹⁵
			2.4 (C2, C1)		Kuwata et al., 2005 ⁹⁵
3-membered ring		ester channel	9.4 (cC3)		Anglada and Bofill, 1997 ¹⁰¹
		syn-anti isom	20.7		Anglada and Bofill, 1997 ¹⁰¹
6-membered ring		ester channel	17.1 (bicyclic)	1	Nguyen et al., 2009^{102}
			20.9 (bicyclic)		Nguyen et al., 2009^{102}
			19.7 (bicyclic)		Zhang and Zhang, 2005 ⁸⁵
			17.0 (bicyclic)	1	Wang and Wang 2017^{103}
		1 1 1	16.9 (bicyclic)	1	Wang and Wang 2017^{103}
		nyaroperoxiae	15.4 (bicyclic)	50	Nguyen et al., 2009^{102}
			16.4 (bicyclic)	2700	Zhang and Zhang, 2005 ⁶⁵
			14.3 (Dicyclic)	2700	Wang and Wang 2017 ¹⁰³
		avn anti isom	25.8 (Dicyclic)		Nauven et al. 2000^{102}
		ring opening	23.6 (bicyclic)		Nguyen et al. 2009^{102}
9-membered ring		ester channel	23.3 (bicyclic)		Nguyen et al. 2009^{80}
> membered mig		ester enamer	23.3 (bicyclic)		Nguyen et al. 2009^{80}
		hydroperoxide	20.3 (bicyclic)		Nguyen et al., 2009^{80}
Н	s-cis-CH=CH2	ester channel	14.3	311	Yin and Takahashi. 2017 ⁷⁶
		acvl + OH	31.4	-	Yin and Takahashi. 2017 ⁷⁶
		(1,3-H-shift)			······································
		syn-anti isom	38.1		Yin and Takahashi, 2017 ⁷⁶
-		vinyl rotation	6.4		Yin and Takahashi, 2017 ⁷⁶
-		1,4-ring closure	42.1		Yin and Takahashi, 2017 ⁷⁶
Н	s-trans-CH=CH ₂	ester channel	16.6		Yin and Takahashi, 2017 ⁷⁶
		acyl + OH	30.4		Yin and Takahashi, 2017 ⁷⁶
		(1,3-H-shift)			, , , , , , , , , , , , , , , , , , ,
		syn-anti isom	39.7		Yin and Takahashi, 2017 ⁷⁶
		vinyl rotation	8.7		Yin and Takahashi, 2017 ⁷⁶
CH ₃	s-cis-CH=CH2	ester channel	24.0		Gutbrod et al. 1997 ⁷⁹
			19.2		Kuwata et al., 2005 ⁹⁵
			19.5	0.018	Zhang and Zhang, 2002 ^{65,66}
		hydroperoxide	15.5		Gutbrod et al. 1997 ⁷⁹
			16.9	146	Kuwata et al., 2010^{42}
			17.4		Kuwata et al., 2005 ⁹⁵
			18.4	0.11	Zhang and Zhang, 2002 ^{65,66}
		syn-anti isom	21.8		Kuwata et al., 2005^{95}
~		vinyl rotation	5.9 (C1, C2H3)		Kuwata et al., 2005^{95}
CH ₃	s-trans-CH=CH ₂	ester channel	23.0		Gutbrod et al. 1997 ⁷⁹
			22.2	2.0. 10.4	Kuwata et al., 2005^{23}
		h	22.1	3.2×10 ⁻⁴	Δ L nang and Δ hang, 2002 ^{03,00}
		nydroperoxide	10.U 19.2	147	Guidrod et al. 1997^{12}
			10.0	14./	Kuwata et al., 2010 -

			18.0		Kuwata et al., 2005 ⁹⁵
			18.8	0.066	Zhang and Zhang, 2002 ^{65,66}
		syn-anti isom	26.0		Kuwata et al., 2005 ⁹⁵
		vinyl rotation	7.6 (C1, C2H3)		Kuwata et al., 2005 ⁹⁵
s-cis-CH=CH ₂	Н	ester channel	25.7		Yin and Takahashi, 2017 ⁷⁶
		syn-anti isom	41.2		Yin and Takahashi, 2017 ⁷⁶
		vinyl rotation	9.4		Yin and Takahashi, 2017 ⁷⁶
		ring closure	12.1	9312	Yin and Takahashi, 2017 ⁷⁶
s-trans-CH=CH ₂	Н	ester channel	19.5		Yin and Takahashi, 2017 ⁷⁶
		hydroperoxide	23.3		Yin and Takahashi, 2017 ⁷⁶
		vinyl (1,4-Hshift)			
		syn-anti isom	40.4		Yin and Takahashi, 2017 ⁷⁶
	CT I	vinyl rotation	9.2		Yin and Takahashi, 2017^{76}
s-c1s-CH=CH ₂	CH ₃	ester channel	22.0		Kuwata et al., 2005^{35}
			22.2		Zhang and Zhang, 2002 ⁰⁵
		syn-anti isom	20.6		Kuwata et al., 2005^{95}
		vinyl rotation	8.0		Kuwata et al., 2005^{95}
	CI I	ring closure	11.0		Kuwata et al., 2005^{95}
s-trans-CH=CH ₂	CH ₃	ester channel	16.8	0.60	Kuwata et al., 2005^{35}
			17.5	0.62	Zhang and Zhang, 2002 ^{05,00}
		hydroperoxide	18.8	6.0.10-1	Kuwata et al., 2005^{55}
		vinyl (1,4-Hshift)	21.9	6.9×10 ⁻⁴	Zhang and Zhang, 200 ^{60,85}
		syn-anti isom	23.1		Kuwata et al., 2005^{95}
		vinyl rotation	8.0		Kuwata et al., 2005^{55}
Н	s-c1s-C(CH3)=CH2	ester channel	24.1		Gutbrod et al. 1997
			14.5		Znang and Znang, 2002 ⁵⁵
		1.2 11 -1:6	15.9		Kuwata and Valin, 2008^{101}
		1,3-H-Shilt	31.0 21.6		Theng and Theng 200265
			31.0 22.6		Zhang and Zhang, 2002 ⁴⁴
		ann anti isam	32.0		Kuwata and Valin, 2008 ¹⁰⁴
и	the state of the s	syn-anti isom	18.2		Cuthred at al. 1007 ⁷⁹
п	s-trans-C(CH ₃)=CH ₂	ester channel	20.5	2.6	Zhang and Zhang 200265.66
			10.7	5.0	Zhang and Zhang, 2002
		12 U shift	10.4		Cuthred at al. 1007^{79}
		1,5-11-51111	31.1	1 4×10-10	Zhang and Zhang 2002 ^{65,66}
			31.2	1.4×10	Kuwata and Valin 2008 ¹⁰⁴
		syn_anti isom	21.2		Kuwata and Valin, 2008
s-cis-C(CH2)-CH2	н	ester channel	25.5		Zhang and Zhang 2002 ⁶⁵
3-013-C(CII3)-CII2	. 11	ester enamer	25.3		Kuwata and Valin 2008 ¹⁰⁴
		1 5-ring closure	11.9		Kuwata and Valin, 2008 ¹⁰⁴
		syn-anti isom	20.4		Kuwata and Valin, 2008 ¹⁰⁴
s-trans-C(CH ₂)-CH ₂	н	ester channel	169	2.2	Zhang and Zhang 2002 ^{65,66}
5 trans e(e113)=e112		ester entanner	16.3	2.2	Kuwata and Valin, 2008 ¹⁰⁴
		1.5-H-shift	36.2	2.2×10 ⁻¹¹	Zhang and Zhang, 2002 ^{65,66}
		-,	35.9		Kuwata and Valin, 2008^{104}
		syn-anti isom	18.6		Kuwata and Valin, 2008 ¹⁰⁴
СНО	Н	1.4+1.2-ring closure	19.2 ^k		Cremer et al., 2001 ¹⁰⁵
		1.4-ring closure	23.6 ^k		Cremer et al., 2001^{105}
		1.5-ring closure	36.6 ^k		Cremer et al., 2001^{105}
		1,4-H-shift	20.6 ^k		Cremer et al., 2001 ¹⁰⁵
		ester channel	16.9 ^k		Cremer et al., 2001 ¹⁰⁵
		$O(^{1}D)$ loss	53.0 ^k		Cremer et al., 2001 ¹⁰⁵
		O(3P) loss	52.0 ^k		Cremer et al., 2001 ¹⁰⁵
		syn-anti isom	17.3 ^k		Cremer et al., 2001 ¹⁰⁵
Н	СНО	ester channel	21.8 ^k		Cremer et al., 2001 ¹⁰⁵
		O(1D) loss	55.5 ^k		Cremer et al., 2001 ¹⁰⁵
		$O(^{3}P)$ loss	54.5 ^k		Cremer et al., 2001 ¹⁰⁵
		syn-anti isom	20.0 ^k		Cremer et al., 2001 ¹⁰⁵
s-syn-OH	Н	1,4-H-migration	barrierless ^d		Selçuki and Aviyente, 2000 ¹⁰⁶
		-	barrierless ^d		Lei et al., 2020 ¹⁰⁷
s-anti-OH	Н	ester channel	18.8		Selçuki and Aviyente, 2000106
s-anti-OCH ₃	Н	ester channel	18.1		Selçuki and Aviyente, 200164
s-syn-OCH ₃	Н	ester channel	12.5		Selçuki and Aviyente, 200164

Н	s-syn-OH	ester channel	8.0	Selçuki and Aviyente, 2000 ¹⁰⁶
Н	s-anti-OH	ester channel	7.9	Selçuki and Aviyente, 2000 ¹⁰⁶
Н	s-anti-OCH3	ester channel	7.50	Selçuki and Aviyente, 200164
Н	s-syn-OCH ₃	ester channel	7.93	Selçuki and Aviyente, 200164
Н	Cl	syn-anti isom	1.1	Ljubić and Sabljić, 2002 ¹⁰⁸
Н	F	O-loss	27.2	Ljubić and Sabljić, 2005 ¹⁰⁹
		ester channel	11.3	Ljubić and Sabljić, 2005 ¹⁰⁹
			7.9	Cremer et al., 1988 ⁷²
		1,3-H-shift	22.6	Ljubić and Sabljić, 2005 ¹⁰⁹
		syn-anti isom	1.7	Ljubić and Sabljić, 2002 ¹⁰⁸
Cl	Н	syn-anti isom	2.8	Ljubić and Sabljić, 2002 ¹⁰⁸
F	Н	ester channel	20.0	Ljubić and Sabljić, 2005 ¹⁰⁹
			17.1	Cremer et al., 1988 ⁷²
		syn-anti isom	3.4	Ljubić and Sabljić, 2002 ¹⁰⁸
Н	CN	ester channel	20.9	Selçuki and Aviyente, 200164
CN	Н	ester channel	22.6	Selçuki and Aviyente, 200164
CN	CN	ester channel	22.8	Selçuki and Aviyente, 200164
[not applicable]	=O	ester channel	barrierless	Keßel et al., 2017 ¹¹⁰
=C=O	[not applicable]	cycl. + frag. ^h	< 1 kcal mol ⁻¹	Keßel et al., 2017 ¹¹⁰
C≡CH	Н	ester channel	22.3	Yin and Takahashi, 2017 ⁷⁶
		syn-anti isom	41.0	Yin and Takahashi, 2017 ⁷⁶
Н	C≡CH	ester channel	17.3	Yin and Takahashi, 2017 ⁷⁶
		acyl + OH	29.9	Yin and Takahashi, 2017 ⁷⁶
		(1,3-H-shift)		
		syn-anti isom	40.4	Yin and Takahashi, 2017 ⁷⁶

^a experimental data

^b at 100 Torr

^c alkyl substituent is -CH₂-CHO

^d rearranges to performic acid, HC(O)OOH ^e 1,5-H-shift of methyl hydrogen. ^f Range includes fall-off and variation of barrier height.

^g Reported value is without ZPE corrections, which decrease the barrier height

^h cyclizes to a transient 4-membered ring, which decomposes spontaneously to CO₂ + CO

ⁱ T-dependent data available

^j Methodologically flawed result; see Harding and Klippenstein,⁸² Chen et al.,⁸³ and Vereecken et al.⁸ for further information.

^k ΔH(298K)

¹Value obtained by combining experimentally observed energy-specific k(E), with RRKM rate coefficient calculations.

B. Internal rotation of substituents

For internal rotation around the single bond in the conjugated π -systems of β -unsaturated CI, we find energy barriers of up to 9 kcal mol⁻¹ (see Table 6), of a similar value as those reported in the literature earlier.^{8,46,95,104,111,112} The rates of internal rotation are typically significantly faster by several orders of magnitude than the chemical isomerisations considered in this work, indicating that the *s*-*cis* and *s*-*trans* isomers will be in near-equilibrium and should be considered as a single pool of reactants rather than separable species. Some fast reaction classes, such as 1,5-ring closure of allyl-1,6-H-migration, can have comparable rate coefficients and may be affected by the rate of internal rotation. However, as these reactions have no relevant competing reactions, we do not investigate this aspect in more detail.

Table 6: Barrier heights (kcal mol⁻¹) and rate coefficients (s⁻¹) for *s-cis* \leftrightarrow *s-trans* internal rotation in β -unsaturated CI, i.e. rotation along the central single bond in conjugated systems. The isomerisation reaction is listed for rotation from the more stable conformer towards the less stable orientation; the reverse rotation has a lower barrier and higher reaction rates.

carbonyl oxide	Eb	k(298K)
E-(CH ₂ CH ₃)(CH=CH ₂)COO	7.6	3.1×10 ⁷
Z-(CH=CH ₂)(CH ₂ CH ₃)COO	8.2	8.2×10^{6}
E-(iC ₃ H ₇)(CH=CH ₂)COO	5.2	5.0×10^{8}
Z-(CH=CH ₂)(iC ₃ H ₇)COO	7.9	1.4×10^{7}
Z-(E-CH=CHCH ₃)(CH ₃)COO	9.3	1.5×10^{6}
Z-(Z-CH=CHCH ₃)(CH ₃)COO	4.3	3.8×10 ⁹
Z-(C(=CH ₂)CH ₂ OH)CHOO	7.4	2.9×10^{8}
Z-(Z-CH=CHCH2OH)CHOO	6.1	1.4×10^{8}

C. Stereoisomerisation

The E/Z-stereoisomerisation in carbonyl oxides occurs either by rotation of the outer oxygen around the (partial) double bond, or by an in-plane transition by straightening of the COO bond. We have examined the barrier height for stereoisomerization for a few oxygenated compounds to investigate the impact of the substituent and any possible H-bonding. Similar to other studies (see Table 5 and Vereecken et al.⁸), however, we find very high energy barriers for these processes (Table 7), confirming once more that E/Z-stereoisomerisation is a negligibly slow process in Criegee intermediates. The rate coefficients were not calculated but are expected to be $k(298K) \le 10^{-10} \text{ s}^{-1}$, by analogy with Vereecken et al.⁸

Table 7: Stereo-isomerisation in carbonyl oxides by in-plane transition or by internal rotation (out-of-plane) of the outer oxygen, listing barrier heights E_b (kcal mol⁻¹), rate coefficient k (s⁻¹) at 298 K, and parameters for a Kooij equation fit $k(T)=A\times(T/K)^n\times\exp(-E_a/T)$ for the temperature range 200-450 K.

Carbonyl oxide	E _b	<i>k</i> (298K)	A / s ⁻¹	n	E_a / K	Remarks
OH-bearing substituent						
E-(CH ₃)(CH ₂ OH)COO	34.1					
Z-(CH ₂ OH)(CH ₃)COO	37.4					
<i>E</i> -(CH ₂ CH ₂ CH ₂ CH ₂ OH)CHOO	(35.2)					M06-2X/aug-cc-pVTZ energy barrier
Ether substituents						
E-(CH ₃)(CH ₂ OCH ₃)COO	36.6					
Z-(CH ₂ OCH ₃)(CH ₃)COO	38.4					

The two stereoisomers of an asymmetric carbonyl oxide can have strongly different reactivity, not only in reaction rate but also in dominant and accessible reaction classes. The energetically highest-lying isomer often reacts faster by releasing some of its higher potential energy in the transition state, leading to lower effective barrier heights. Relative energies of the stereoisomers are shown in Table 8, supplementing the list in Vereecken et al.⁸ The relative energy depends on many factors, such as electroactivity of the substituent, conjugation, and H-bonding. For many of the compounds listed in Table 8 there is a large difference in energy between the various conformers for a given isomer, with a strong preference to avoid steric hindrance, and to form strong H-bonds. Vereecken et al. analyzed the relative energy of the isomers using a group additivity paradigm; we refrain from doing the same here as the data set is too sparse relative to the number of substituents considered.

Carbonyl oxide	Z isomer	E isomer
OH-bearing substituent		
(CH ₂ OH)CHOO	0.00	6.62
(CH ₂ OH)(CH ₃)COO	0.00	3.32
(C(CH ₃) ₂ OH)CHOO	0.00	6.05
(CH ₂ CH ₂ OH)CHOO	0.00	4.93
(CH ₂ CH ₂ CH ₂ OH)CHOO	0.00	5.76
(CH ₂ CH ₂ CH ₂ OH)(CH ₃)COO	0.00	3.46
(CH ₂ CH ₂ CH ₂ CH ₂ OH)CHOO	0.00	2.01
alkoxy-bearing substituent		
(OCH ₃)CHOO	3.94	0.00
(OCH ₃)(CH ₃)COO	0.22	0.00
(CH ₂ OCH ₃)(CH ₃)COO	0.00	1.80
OOH-bearing substituent		
(OOH)CHOO	0.00	15.08
(OOH)(CH ₃)COO	0.00	11.53
(CH ₂ OOH)CHOO	0.00	5.49
(CH ₂ OOH)(CH ₃)COO	0.00	1.64
(CH ₂ CH ₂ OOH)CHOO	0.00	6.63
(CH ₂ CH ₂ CH ₂ OOH)CHOO	0.00	3.21
Carboxylic acid substituent		
(CH ₂ COOH)CHOO	0.00	7.87
(CH ₂ CH ₂ COOH)CHOO	0.00	4.82
(CH ₂ CH ₂ CH ₂ COOH)CHOO	0.00	2.98
OOOH substituent		
(OOOH)CHOO	0.00	1.07
(OOOH)(CH ₃)COO	3.71	0.00
ONO ₂ -bearing substituent		
(ONO ₂)CHOO	0.00	1.84
(CH ₂ ONO ₂)(CH ₃)COO	0.00	2.35
Cyclic substituent (similar to 3-carene	e)	
(CH ₂ -cycC ₃ H ₅)CHOO	0.00	3.59
(CH ₂ -cycC ₃ H ₅)(CH ₃)COO	0.00	0.12
unsaturated substituents		
(CH ₂ CH ₃)(CH=CH ₂)COO	2.25	0.00
(CH=CH ₂)(iC ₃ H ₇)COO	0.00	0.11

Table 8: Energy (kcal mol⁻¹) of carbonyl oxide stereoisomers relative to lowest-energy isomer.

D. 1,3-H-migration in *E*-R₂CHOO (*anti*-RCHOO)

1,3-H-migration of a *syn*-H-atom, followed by OH elimination to form an acyl radical, is typically a slow reaction (see Table 5 and Vereecken et al.⁸). For most of the compounds studied in this work (Table 9), we similarly find high energy barriers and low reaction rates. The barriers for anti-substituents -OOH, -OOOH, and $-ONO_2$, however, are surprisingly low, with reaction rates exceeding 10 s⁻¹. For these compounds, however, we find that the 1,3-ring closure is faster by orders of magnitude, and we again conclude that 1,3-H-migration reactions are not important in any CI.

Table 9: 1,3-H-migration in *E*-RCHOO carbonyl oxides, listing barrier heights E_b (kcal mol⁻¹), rate coefficient k (s⁻¹) at 298 K, and parameters for a Kooij equation fit $k(T)=A\times(T/K)^n\times\exp(-E_a/T)$ for the temperature range 200-450 K.

Carbonyl oxide	Eb	<i>k</i> (298K)	A / s ⁻¹	n	E_a / K	Remarks
Cyclic substituent (similar to 3-car	ene)					
E-(CH ₂ -cycC ₃ H ₅)CHOO	28.4	2.0×10 ⁻⁶	7.23E-133	47.55	-6050	
OH-bearing substituent						
E-(CH ₂ OH)CHOO	27.5	9.1×10 ⁻⁶	7.35E-128	45.78	-6074	
E-(CH ₂ CH ₂ OH)CHOO	28.7	1.7×10 ⁻⁶	2.72E-134	47.99	-6238	
E-(CH ₂ CH ₂ CH ₂ OH)CHOO	29.5	5.6×10 ⁻⁶	1.07E-128	46.17	-5835	
E-(CH ₂ CH ₂ CH ₂ CH ₂ OH)CHOO	30.2	7.0×10 ⁻⁷	9.69E-132	47.73	-4655	
E-(C(CH ₃) ₂ OH)CHOO	28.5	1.3×10 ⁻⁶	1.76E-134	48.00	-6249	
OOH-bearing substituent						
E-(OOH)CHOO	17.8	2.6×10^{1}	3.32E-71	27.10	-3326	$OH + CO_2 + OH$ products
E-(CH ₂ OOH)CHOO	27.7	3.7×10 ⁻⁶	7.47E-132	47.02	-6444	
E-(CH ₂ CH ₂ OOH)CHOO	29.2	5.5×10 ⁻⁶	1.96E-127	45.75	-5685	
Carboxylic acid substituent						
E-(CH ₂ C(=O)OH)CHOO	29.6	9.7×10 ⁻⁷	9.06E-138	49.18	-6429	
E-(CH ₂ CH ₂ C(=O)OH)CHOO	28.4	3.1×10 ⁻⁶	8.56E-132	47.17	-6080	
ONO ₂ -bearing substituent						
E-(ONO ₂)CHOO	18.4	3.9×10^{1}	2.95E-73	27.94	-3430	
OOOH-substituent						
E-(OOOH)CHOO	18.7	1.3×10^{1}	6.45E-75	28.43	-3412	HOOOCOOH carbene product ^a

^a The carbene is expected to further decompose in a stepwise or concerted reaction, possibly to $HO_2 + OCOOH$ or directly to $HO_2 + CO_2 + OH$.

E. Alkyl-1,4-H-migration forming vinyl hydroperoxides (VHP)

The rate coefficient predictions across the relevant range of substituents are listed in Table 10. For CI where the vinyl hydroperoxide product after 1,4-H-migration has two stereoisomers, we list the total VHP formation. Vereecken et al.⁸ examined the yield of Z- versus E-VHP product and found that the formation of Z-VHP is always a minor channel contributing < 5 % at 298K. The results indicate that, as for stereoisomerism, the rate coefficients are influenced by both the R₁ and R₂ substituents. We find rate coefficients in the range of 10⁰ to 10³ s⁻¹, in line with earlier predictions for this reaction class.⁸ The rate coefficients show strong non-Arrhenius behavior due to extensive tunneling, which increases the rate coefficient by one to two orders of magnitude at room temperature, and is the main driver for reaction at lower temperatures.

Table 10: Alkyl-1,4-H-migration in carbonyl oxides, listing barrier heights E_b (kcal mol⁻¹), rate coefficient k (s⁻¹) at 298 K, and parameters for a Kooij equation fit $k(T)=A\times(T/K)^n\times\exp(-E_a/T)$ for the temperature range 200-450 K.

Carbonyl oxide	Ξb	<i>k</i> (298K)	A / s ⁻¹	n	E_a / K	Remarks
Cyclic substituent (similar to 3-carene)						
E-(CH ₃)(CH ₂ -cycC ₃ H ₅)COO	16.1	3.4×10^{2}	1.32E-59	23.52	-2213	
Z-(CH ₂ -cycC ₃ H ₅)(CH ₃)COO	15.0	1.5×10^{3}	1.47E-52	21.14	-1867	
Z-(CH ₂ -cycC ₃ H ₅)CHOO	16.1	2.9×10^{2}	5.11E-59	23.24	-2240	
OH-bearing substituent						
Z-(CH ₂ OH)CHOO	18.2	3.9×10^{1}	5.39E-71	27.27	-3022	
Z-(CH ₂ CH ₂ OH)CHOO	17.9	3.6×10^{1}	2.25E-69	26.78	-2704	
Z-(CH ₂ CH ₂ CH ₂ OH)CHOO	19.1	2.0×10^{1}	5.15E-77	29.69	-2840	
Z-(CH ₂ CH ₂ CH ₂ CH ₂ OH)CHOO	17.5	1.4×10^{2}	4.94E-57	22.74	-1500	
E-(CH ₃)(CH ₂ OH)COO	16.4	2.9×10^{2}	8.11E-61	23.92	-2308	
Z-(CH ₂ OH)(CH ₃)COO	18.2	2.0×10^{1}	9.76E-74	28.23	-3070	
Z-(CH ₂ CH ₂ CH ₂ OH)(CH ₃)COO	20.3	2.7×10^{0}	1.91E-86	32.96	-3166	
E-(CH ₃)(CH ₂ CH ₂ CH ₂ OH)COO	17.2	5.7×10^{2}	1.25E-55	22.25	-1801	
Ether substituents						
E-(CH ₃)(CH ₂ OCH ₃)COO	16.6	1.1×10^{2}	2.26E-63	24.68	-2483	
Z-(CH ₂ OCH ₃)(CH ₃)COO	17.0	2.8×10^{2}	4.45E-66	25.81	-2713	
OOH-bearing substituent						
Z-(CH ₂ OOH)CHOO	16.4	2.6×10^{2}	8.64E-63	24.51	-2629	
Z-(CH ₂ CH ₂ OOH)CHOO	19.7	1.9×10^{1}	2.16E-76	29.63	-2506	
Z-(CH ₂ CH ₂ CH ₂ OOH)CHOO	19.6	1.6×10^{1}	1.56E-83	32.10	-3155	
E-(CH ₃)(OOH)COO	15.9	4.3×10^{2}	1.35E-56	22.55	-1862	
E-(CH ₃)(CH ₂ OOH)COO	16.2	8.3×10^{1}	8.73E-63	24.41	-2462	
Z-(CH ₂ OOH)(CH ₃)COO	15.5	6.6×10^{2}	2.72E-57	22.69	-2240	
Aldehyde substituent						
(CH=O) ₂ COO	18.9	4.3×10^{0}	6.15E-78	29.11	-3997	
ONO ₂ -bearing substituent						
E-(CH ₃)(ONO ₂)COO	14.9	2.3×10^{3}	7.77E-51	20.63	-1675	
E-(CH ₃)(CH ₂ ONO ₂)COO	15.6	4.8×10^{2}	1.44E-58	23.12	-2282	
Z-(CH ₂ ONO ₂)(CH ₃)COO	14.8	2.2×10^{3}	4.01E-56	22.41	-2271	
Alkoxy substituents						
E-(CH ₃)(OCH ₃)COO	16.9	6.9×10^{1}	1.16E-63	24.88	-2212	
OOOH-substituent						
E-(CH ₃)(OOOH)COO	15.4	7.4×10^{2}	1.75E-55	22.21	-1843	
Carboxylic acid substituent						
Z-(CH ₂ C(=O)OH)CHOO	15.1	2.4×10^{3}	1.97E-52	21.35	-1550	
Z-(CH ₂ CH ₂ C(=O)OH)CHOO	17.7	3.7×10^{1}	3.12E-68	26.35	-2671	
Z-(CH ₂ CH ₂ CH ₂ C(=O)OH)CHOO	14.8	6.3×10^{2}	1.46E-58	22.98	-2595	
$E-(CH_3)(CH_2C(=O)OH)COO$	16.7	3.1×10^{2}	1.60E-62	24.56	-2422	
Unsaturated substituents						
E-(CH ₂ CH ₃)(CH=CH ₂)COO	17.9	3.0×10^{1}	1.36E-68	26.38	-2809	
E-(iC ₃ H ₇)(CH=CH ₂)COO	18.1	1.1×10^{1}	4.09E-72	27.42	-3149	
E-(iC ₃ H ₇)(CH ₂ CH=CH ₂)COO	18.0	7.6×10^{0}	9.11E-72	27.32	-2980	
E-(CH ₃)(CH ₂ CH=CH ₂)COO	16.4	4.3×10^{2}	2.92E-61	24.07	-2479	
Multifunctionalized CI						
Z-(CH(OOH)CH ₂ OH)(CH ₃)COO	18.4	1.2×10^{1}	1.80E-73	28.38	-2476	

F. Vinyl-1,4- and acyl-1,4-H-migration forming cumulene hydroperoxides

The rate coefficient predictions across the relevant range of substituents are listed in Table 11. In most cases we find high barriers, in agreement with earlier work by Kuwata et al.⁹⁵ and Vereecken et al.,⁸ and low rate coefficients despite strong rate enhancement by tunneling. For two compounds we see barriers below 20 kcal mol⁻¹ and reaction rates at 298 K up to 30 s⁻¹. However, for *Z*-(*Z*-CH=CHCH₃)(CH₃)COO, the 1,5-ring closure reaction is faster by many orders of magnitudes, while for (CH=O)₂COO the 1,3-ring closure is faster by 1 order or magnitude. Based on this, we again conclude that these two reaction classes are non-competitive.

Table 11: Vinyl- and acyl-1,4-H-migration in carbonyl oxides, listing barrier heights E_b (kcal mol ⁻¹), rate coefficient k (s ⁻¹)
at 298 K, and parameters for a Kooij equation fit $k(T)=A\times(T/K)^n\times\exp(-E_a/T)$ for the temperature range 200-450 K.

0 1 1 1	Г	1(00012)	4 / -1		F / I Z	D 1
Carbonyl oxide	Eb	<i>K</i> (298K)	A / S^{1}	n	E_a / \mathbf{K}	Remarks
Unsaturated substituents						
Z-(CH=CH ₂)(CH ₂ CH ₃)COO	21.3	1.0×10 ⁻¹	7.82E-90	33.57	-3477	
Z-(CH=CH ₂)(iC ₃ H ₇)COO	20.9	2.9×10 ⁻¹	3.65E-88	33.00	-3607	
Z-(E-CH=CHCH ₃)(CH ₃)COO	21.3	7.2×10 ⁻²	4.26E-88	33.11	-2969	
Z-(Z-CH=CHCH ₃)(CH ₃)COO	17.6	2.9×10^{1}	1.04E-68	26.60	-2490	
Aldehyde substituent						
(CH=O) ₂ COO	18.9	4.3×10^{0}	6.15E-78	29.11	-3997	

G. Allyl-1,4- and allyl-1,6-H-migration forming β-unsaturated VHP

Table 12 and Table 13 list barrier height and rate coefficients for allyl-H-migration. As found in earlier work,⁸ we see that these reactions are very fast, especially for 1,6-H-migrations where the ring strain in the transition state is minimal. The double bond enhances the reaction significantly compared to traditional alkyl 1,4-H-migrations. Table 13 shows two hydroxy-substituted compounds where we find that, compared⁸ to having an H-atom or alkyl substituent, the –OH substituent increases the rate of reaction by a factor 2 to 200 by lowering the C–H bond strength of the migrating H-atoms as well as by H-bonding with the carbonyl oxide moiety.

Table 12: Allyl-1,4-H-migration in γ -unsaturated carbonyl oxides forming conjugated vinyl hydroperoxides, listing barrier heights E_b (kcal mol⁻¹), rate coefficient k (s⁻¹) at 298 K, and parameters for a Kooij equation fit $k(T)=A \times (T/K)^n \times \exp(-E_a/T)$ for the temperature range 200-450 K.

Carbonyl oxide	E_b	<i>k</i> (298K)	A / s^{-1}	п	E_a / \mathbf{K}	Remarks
Z-(CH ₂ CH=CH ₂)(iC ₃ H ₇)COO	13.1	7.1×10^{3}	1.27E-44	18.35	-1605	
Z-(CH ₂ CH=CH ₂)(CH ₃)COO	13.5	7.0×10^{3}	2.97E-45	18.69	-1459	

Table 13: Allyl-1,6-H-migration in β -unsaturated carbonyl oxides forming conjugated vinyl hydroperoxides, listing barrier heights E_b (kcal mol⁻¹), rate coefficient k (s⁻¹) at 298 K, and parameters for a Kooij equation fit $k(T)=A\times(T/K)^n\times\exp(-E_a/T)$ for the temperature range 200-450 K.

Carbonyl oxide	E _b	<i>k</i> (298K)	A / s^{-1}	n	E_a / K	Remarks
Z-(Z-CH=CHCH ₃)(CH ₃)COO	6.5	2.5×10^{8}	4.80E-05	5.44	512	
Z-(Z-CH=CHCH2OH)CHOO	8.9	8.7×10^{6}	6.78E-08	6.37	1141	
Z-(Z-CH=CHCH2CH2OH)CHOO	6.9	1.3×10^{8}	3.57E-03	4.63	611	

H. Vinyl-, allyl-, and β-oxo-1,5-H-migration

1,5-H-migrations in β -unsaturated CI are not favorable, as the reaction leads to a transient high-energy singlet biradical intermediate that then recombines barrierlessly to a strained ring, or undergoes other isomerisations to form a closed-shell product such as an H-migration of a neighboring OH group (see scheme above). The rate coefficients calculated in this work are listed in Table 14; as also found in Vereecken et al.⁸ the rate coefficients are low, k(298 K) < 10⁻² s⁻¹, and these reaction classes are not competitive.

Table 14: 1,5-H-migrations in β -unsaturated carbonyl oxides, listing barrier heights E_b (kcal mol⁻¹), rate coefficient k (s⁻¹) at 298 K, and parameters for a Kooij equation fit $k(T)=A\times(T/K)^n\times\exp(-E_a/T)$ for the temperature range 200-450 K.

Carbonyl oxide	E_b	<i>k</i> (298K)	A / s^{-1}	п	E_a / K	Reaction type
Z-(C(=O)CH ₂ OH)CHOO	22.0	8.5×10 ⁻³	3.05E-96	35.34	-4128	β-oxo-γ-OH-1,5-H-shift
Z-(C(=CH2)CH2OH)CHOO	37.0	1.5×10 ⁻¹¹	3.66E-186	64.90	-9654	Allyl-1,5-H-migration

I. Hydroperoxide-1,5-H-migration

CI with an α -OOH substituent can undergo a 1,5-H-migration, leading to a product identical to the reactant; this reaction is perhaps best described as an isomorphic tautomerization. As listed in Table 15, the H-migration is essentially barrierless, with the small potential energy barrier disappearing after ZPE corrections. The reaction is aided by the strong H-bond between the hydroperoxide moiety and the carbonyl oxide group, where the dominant conformer of *syn*-OOH-CI is always that with the H-bonded 6-membered ring. This very fast rearrangement has no impact on the chemical fate of the CI, other than scrambling of isotope-specific isomers, though theoretical calculations must account for the doubling of the accessible quantum states in rate and entropy calculations. Given the low impact of this reaction class beyond entropic effects we did not investigate it in more detail.

Table 15: 1,5-H-migration in hydroperoxide carbonyl oxides. Listed is the barrier height for tautomerization (kcal mol⁻¹)

Carbonyl oxide	E_b
Z-(OOH)CHOO	-0.94
Z-(OOH)(CH ₃)COO	-0.86

J. Hydrotrioxide-1,6-H-migration forming peracid + $^{1}O_{2}$

Carbonyl oxides with an α -OOOH substituent are formed in the ozonolysis of α -unsaturated hydrotrioxides. While no studies are available on such compounds, vinyl-hydrotrioxides (C=COOOH), are considered in chemical models implementing the reaction of OH radicals with vinylperoxides, C=COO[•] + •OH, as implied by the recent work of Fittschen et al.^{113–119} Theoretical work by our group¹¹⁶ has shown that stabilization of the hydrotrioxide is a strong function of the size of the RO₂, with ROOOH compounds with 4 or more non-H-atoms in the R-group expected to be mostly thermally stabilized. As the chemistry and impact of hydrotrioxides remains very uncertain, it is worthwhile to examine the impact of the substituent on ozonolysis and CI chemistry. We find that the 1,6-Hmigration to the carbonyl moiety is barrierless (Table 16), after which the product spontaneously eliminates a singlet O₂ molecule. Though ¹O₂ has a high enthalpy of formation, the overall reaction remains highly exothermic by over 50 kcal mol⁻¹. Given these characteristics, it seems likely that the hydrotrioxide substituent already reacts during the decomposition of the primary ozonide which, combined with the impact of H-bonding on this decomposition, will affect the ozonolysis of vinyl-hydrotrioxides. The peracid product could also be chemically activated, decomposing promptly. Elimination of singlet ¹O₂ likely requires multi-reference methodologies to characterize accurately; we have not done so at this time as the rate limiting initial stage comprises an H-migration which is likely sufficiently well described at our level of theory.

Table 16: 1,6-H-migration in hydrotrioxide carbonyl oxides. Listed is the barrier height E_b and the product energy E_{prod} (kcal mol⁻¹)

Carbonyl oxide	E_b	E_{prod}
Z-(OOOH)CHOO	Barrierless	-51.6
Z-(OOOH)(CH ₃)COO	Barrierless	-51.1

K. 1,3-Ring closure forming dioxirane

1,3-ring closure is one of the few unimolecular CI reaction classes that are available to all CI. In most cases it is not the dominant channel, especially for compounds that have H-migration reactions or other ring closure reactions accessible. Table 17 shows the list of reactions characterized in the current study, and indeed for many compounds the reaction rate is too slow to compete with other unimolecular or bimolecular (water) reactions. Notable exceptions are the CI with a *syn*-H-atom substituent, or with α -hetero-atom substituents such as –OH, –OR, –OOH, –OOOH, –C(=O)R, or –ONO₂, where both *syn*- and *anti*-substitution can greatly enhance the 1,3-ring closure and can lead to rate coefficient at 298 K exceeding 10² s⁻¹, up to 10⁹ s⁻¹. The expected fate of the hot dioxiranes formed is ring opening and decomposition. In this work, we do not investigate this subsequent chemistry nor the observable end products. Vereecken et al.⁸ also studied this reaction class in terms of group additivity ; as the data points are sparse compared to the combinatorial number of substitution patterns covered in this work we refrain from continuing this analysis at this time.

Carbonyl oxide	E _b	<i>k</i> (298K)	A / s ⁻¹	n	E_a / K	Remarks
Cyclic substituent (simlar to 3-care	ne)	• •				
E-(CH ₃)(CH ₂ -cycC ₃ H ₅)COO	20.8	2.8×10-3	4.26E+08	1.50	10210	
Z-(CH ₂ -cycC ₃ H ₅)(CH ₃)COO	20.1	1.9×10 ⁻²	5.76E+09	1.19	9899	
E-(CH ₂ -cycC ₃ H ₅)CHOO	15.4	4.8×10^{1}	3.03E+09	1.23	7441	
Z-(CH ₂ -cycC ₃ H ₅)CHOO	22.8	3.7×10 ⁻⁴	5.65E+05	2.51	10560	
OH-bearing substituent						
E-(CH ₂ OH)CHOO	14.6	1.3×10^{2}	1.32E+09	1.28	6985	
Z-(CH ₂ OH)CHOO	19.6	2.3×10 ⁻²	3.04E+09	0.97	9271	
E-(CH ₂ CH ₂ OH)CHOO	12.7	3.9×10^{2}	1.04E+06	1.87	5530	
Z-(CH ₂ CH ₂ OH)CHOO	22.3	3.6×10 ⁻⁴	1.91E+05	2.49	10225	
E-(CH ₂ CH ₂ CH ₂ OH)CHOO	12.9	3.2×10^{3}	7.25E+14	-0.98	6124	
Z-(CH ₂ CH ₂ CH ₂ OH)CHOO	21.7	6.3×10 ⁻⁴	1.74E+08	1.43	10277	
Z-(CH ₂ CH ₂ CH ₂ OH)(CH ₃)COO	19.6	1.2×10^{-2}	2.09E+09	1.04	9484	
E-(CH ₃)(CH ₂ CH ₂ CH ₂ OH)COO	16.7	9.8×10 ⁻¹	1.33E+15	-1.30	8178	
E-(CH ₂ CH ₂ CH ₂ CH ₂ OH)CHOO	13.9	3.6×10^{2}	1.33E+21	-2.93	7766	
Z-(CH ₂ CH ₂ CH ₂ CH ₂ OH)CHOO	23.5	1.1×10^{-4}	2.65E+08	1.70	11393	
E-(CH ₃)(CH ₂ OH)COO	20.0	2.3×10 ⁻²	1.14E+11	0.63	9793	
Z-(CH ₂ OH)(CH ₃)COO	17.3	8.2×10^{-1}	3.70E+10	0.69	8487	
Z-(C(CH ₃) ₂ OH)CHOO	20.0	2.1×10 ⁻²	1.94E+06	2.24	9280	
E-(C(CH ₃) ₂ OH)CHOO	15.0	4.7×10^{1}	4.87E+09	1.08	7331	
$Z-(C(CH_3)_2OH)(CH_3)COO$	18.0	4.5×10 ⁻¹	1.67E+10	0.96	8883	
$Z-(C(=O)CH_2OH)CHOO$	17.2	1.6×10^{0}	6.59E+03	3.05	7660	
Ether substituents						
E-(CH ₃)(CH ₂ OCH ₃)COO	20.0	5.7×10 ⁻³	6.45E+07	1.61	9638	
Z-(CH ₂ OCH ₃)(CH ₃)COO	19.6	1.0×10^{-1}	1.18E+11	0.80	9635	
OOH-bearing substituent						
Z-(OOH)CHOO	14.0	6.7×10^{1}	1.86E+09	0.91	6646	
Z-(OOH)(CH ₃)COO	11.9	3.7×10^{3}	5.97E+10	0.49	5772	
Z-(CH ₂ OOH)CHOO	16.4	1.1×10^{-2}	3.28E+06	2.15	9471	

Table 17: 1,3-ring closure in carbonyl oxides, listing barrier heights E_b (kcal mol⁻¹), rate coefficient k (s⁻¹) at 298 K, and parameters for a Kooij equation fit $k(T)=A\times(T/K)^n\times\exp(-E_a/T)$ for the temperature range 200-450 K.

	10.5	$2.9.10^{-2}$	2 2 CE . 00	1.20	0500
Z-(CH ₂ UUH)(CH ₃)CUU	19.5	2.8×10^{-4}	2.20E+09	1.20	9322 10429
	22.2	5.9×10 *	7.41E+00	1.99	10438
Z-(CH ₂ CH ₂ CH ₂ COOH)CHOO	21.9	4.4×10^{-4}	3.18E+03	3.11	9991
E-(OOH)CHOO	5.7	$1.7 \times 10^{\circ}$	9.34E+08	1.21	2564
E-(CH ₂ OOH)CHOO	15.0	9.7×10^{10}	3.26E+09	1.08	6998
E-(CH ₂ CH ₂ OOH)CHOO	12.4	3.7×10^{3}	2.38E+16	-1.66	5969
E-(CH ₃)(OOH)CHOO	9.7	4.2×10^{3}	4.82E+12	0.02	4871
E-(CH ₃)(CH ₂ OOH)COO	20.1	5.3×10-3	4.54E+08	1.23	9597
OOOH-substituent					
E-(OOOH)CHOO	5.8	2.6×10^{8}	6.07E+11	0.32	2842
E-(CH ₃)(OOOH)COO	9.7	3.8×10 ⁵	1.10E+13	-0.10	4947
Aldehyde substituent					
(CH=O) ₂ COO	14.9	4.2×10^{1}	2.40E+06	2.08	6796
ONO ₂ -bearing substituent		_			
E-(ONO ₂)CHOO	6.3	2.8×10^{8}	6.54E+12	0.08	3130
E-(CH ₃)(ONO ₂)COO	10.8	6.7×10^{4}	2.84E+12	0.09	5388
E-(CH ₃)(CH ₂ ONO ₂)COO	19.7	1.3×10 ⁻²	3.69E+07	1.76	9463
Z-(ONO ₂)CHOO	10.4	1.4×10^{5}	1.44E+07	1.93	4650
Z-(CH ₂ ONO ₂)(CH ₃)COO	18.4	2.1×10 ⁻¹	1.64E+07	1.99	8789
Alkoxy substitutents					
Z-(OCH ₃)CHOO	12.0	2.7×10^{3}	4.74E+09	0.81	5658
Z-(OCH ₃)(CH ₃)COO	9.5	1.1×10^{5}	5.65E+10	0.42	4637
Z-(OCH ₃)(OH)COO	4.1	2.1×10^{9}	2.27E+12	0.01	2092
E-(OCH ₃)CHOO	7.1	7.1×10^{7}	2.57E+12	0.25	3559
E-(CH ₃)(OCH ₃)COO	11.3	4.7×10^{4}	5.31E+11	0.47	5646
(OCH ₃) ₂ COO	7.1	1.7×10^{7}	2.99E+12	0.01	3616
Epoxide substituent					
Z-(cyc-CH ₂ OCH-)CHOO	21.9	5.6×10 ⁻⁴	3.53E+05	2.45	10199
Ester substituents					
Z-(C(=O)OCH ₃)CHOO	16.7	1.7×10^{0}	2.61E+04	2.71	7477
Carboxylic acid substituents					
Z-(C(=O)OH)CHOO	22.3	9.0×10 ⁻⁴	1.60E+05	2.73	10301
Z-(CH ₂ C(=O)OH)CHOO	25.1	6.1×10 ⁻⁶	1.02E+01	4.21	11412
Z-(CH ₂ CH ₂ C(=O)OH)CHOO	22.7	2.9×10 ⁻⁴	5.59E+04	2.86	10552
Z-(CH ₂ CH ₂ CH ₂ C(=O)OH)CHOO	19.6	1.1×10 ⁻³	9.83E-12	7.61	7398
<i>E</i> -(CH ₂ C(=O)OH)CHOO	15.3	4.2×10^{1}	1.31E+07	1.97	7123
E-(CH ₃)(CH ₂ C(=O)OH)COO	21.9	1.9×10 ⁻³	4.04E10	0.93	10716
E-(CH ₂ CH ₂ C(=O)OH)CHOO	15.0	4.8×10^{1}	2.48E+08	1.53	7205
Unsaturated substituents					
E-(CH ₂ CH ₃)(CH=CH ₂)COO	19.8	2.6×10 ⁻²	3.16E+11	0.55	9913
Z-(CH=CH ₂)(CH ₂ CH ₃)COO	17.5	5.8×10 ⁻¹	1.65E+09	1.11	8368
$E-(iC_3H_7)(CH=CH_2)COO$	17.3	4.4×10 ⁻¹	6.01E+09	0.87	8431
$Z-(CH=CH_2)(iC_3H_7)COO$	16.7	1.9×10^{0}	2.27E+09	1.09	8077
Z-(E-CH=CHCH ₃)(CH ₃)COO	18.0	4.3×10 ⁻¹	1.26E+09	1.28	8677
$Z-(Z-CH=CHCH_3)(CH_3)COO$	18.3	2.2×10 ⁻¹	2.70E+09	1.18	8933
Z-(CH ₂ CH=CH ₂)(iC ₃ H ₇)COO	19.0	4.8×10 ⁻²	1.43E+05	2.68	8992
$Z-(CH_2CH=CH_2)(CH_3)COO$	19.7	1.5×10 ⁻²	2.40E+05	2.61	9369
E-(iC ₃ H ₇)(CH ₂ CH=CH ₂)COO	19.7	1.8×10^{-2}	1.59E+10	0.87	9677
E-(CH ₃)(CH ₂ CH=CH ₂)COO	20.7	6.0×10 ⁻³	8.01E+08	1.42	10053
Multifunctionalized CI					
Z-(CH(OOH)CH ₂ OH)(CH ₃)COO	19.4	5.1×10 ⁻²	6.11E+09	1.19	9630
$Z_{-}(C(=CH_2)CH_2OH)CHOO$	19.5	4.7×10^{-2}	8.86E+05	2.44	9132
Z-(C(=CH ₂)CH ₂ CH ₂ OH)CHOO	20.4	6.1×10 ⁻²	6.35E+09	1.45	10014
2 (3(-0112)01120112011)01100	2001	0.1.1.10	0.001107	1.10	10011

L. 1,5-Ring closure forming cyclic peroxides

Syn-β-unsaturated CI can undergo a 1,5-ring closure reaction, where similar to the work by Kuwata et al.^{95,104}, Vereecken et al.⁸ and Barber et al.²¹ we find low reaction barriers and high rate coefficients exceeding 10^2 s⁻¹ at 298 K (see Table 18). For nearly all *syn*-β-unsaturated CI, this reaction is the dominant loss process unless an allyl-1,6-H-migration is accessible. This reaction is therefore particularly important in the ozonolysis of conjugated π -systems, such as isoprene, myrcene, α -terpinene, ocimene, and other terpenoids. The dioxole product of this reaction, i.e. a cyclic peroxide with a 5-membered ring, is expected^{21,95,104} to break the O–O bond, where the resulting singlet diradical will re-arrange to either a carbonyl-epoxide or a dicarbonyl. Recent work by Vansco et al.¹²⁰ observed reaction products that are readily formed through this dioxole formation and subsequent decomposition, supporting the theoretical studies.

Table 18: 1,5-Ring closure in β -unsaturated carbonyl oxides, listing barrier heights E_b (kcal mol⁻¹), rate coefficient k (s⁻¹) at 298 K, and parameters for a Kooij equation fit $k(T)=A\times(T/K)^n\times\exp(-E_a/T)$ for the temperature range 200-450 K.

Carbonyl oxide	Eb	<i>k</i> (298K)	A / s ⁻¹	n	E_a / \mathbf{K}	Remarks
Z-(CH=CH ₂)(CH ₂ CH ₃)COO	11.9	1.2×10^{4}	9.77E+10	0.50	5584	
Z-(CH=CH ₂)(iC ₃ H ₇)COO	11.9	1.1×10^{4}	1.68E+11	0.44	5668	
Z-(E-CH=CHCH ₃)(CH ₃)COO	10.8	4.2×10^{4}	3.96E+11	0.30	5287	
Z-(Z-CH=CHCH ₃)(CH ₃)COO	9.4	2.7×10^{5}	6.95E+10	0.45	4469	
$Z-(C(=CH_2)CH_2OH)CHOO$	15.2	1.6×10^{2}	1.52E+11	0.79	7510	
Z-(C(=CH ₂)CH ₂ CH ₂ OH)CHOO	15.0	8.5×10^{2}	6.78E+14	-0.21	7806	
Z-(Z-CH=CHCH ₂ OH)CHOO	8.8	9.2×10^{5}	5.12E+17	-1.92	4792	
Z-(Z-CH=CHCH2CH2OH)CHOO	10.1	1.6×10^{5}	2.20E+13	-0.50	4735	

M. Intramolecular secondary ozonide (SOZ) formation

Intramolecular cycloaddition of the carbonyl oxide moiety on a carbonyl group leads to bicyclic secondary ozonides. We have characterized for the first time a number of transition states where this process occurs with the carbonyl part of a carboxylic acid group. As for carbonyl-based SOZ formation (Table 2), the process is strongly affected by ring strain, and the entropic hindrance by the loss of degrees of freedom for internal rotation. Based on the scarce literature data (Table 2), Vereecken and Francisco¹ suggested that SOZ would probably only be important if the intervening number of carbon atoms would be 6 or more, i.e. $O=CC_{n\geq4}C=O^+O^-$ compounds. Recently, Long et al.²³ showed that the process can still be competitive with only 5 intervening carbons, i.e. $O=CC_3C=O^+O^-$ compounds. In this work, we show that acid-substituted CI can also undergo SOZ formation, and that the reaction can be competitive even with only 4 intervening carbons, i.e. $O=C(OH)C_2C=O^+O^-$ compounds. For the 2 CI listed in Table 19, the thermal SOZ formation is similar in rate or faster than the alternative unimolecular reactions such as 1,4-H-migration, or ring closure by 1,2-insertion into the acidic OH group. As such, this reaction can be a dominant pathway if the ring strain is not too large. In bimolecular SCI + acid reactions, SOZ formation was identified as one of the fastest reaction channels with the lowest energy barrier, but the 1,4-insertion pathway was found to be barrierless and faster.¹²¹ Hence, acid-based intramolecular SOZ formation might be competitive only as long as the transition state ring size geometrically prevents the 1,4-insertion mechanism from occurring.

Due to the entropic hindrance of the bicyclization, chemically excited CI often do not yield SOZ,^{1,80,122} as the higher internal energy makes the difference in barrier height between the processes less important than for thermal SCI, and other processes are often entropically more favorable. It is thus not clear *a priori* how much SOZ is formed from ozonolyis of alkenes. After ozonolysis of a cycloalkene, where all CI are formed with high internal energy, combining the carbonyl oxide and carbonyl groups formed in the ozonolysis to form a SOZ often leads to low yields, except for larger molecules like sesquiterpenes where the effect of chemical activation is reduced by dissipation of the excess energy over a large set of degrees of freedom, i.e. where most CI are thermalized to SCI. For ozonolysis of a non-cycloalkene with pre-existing carbonyl or acids substituents the probability of SOZ formation is higher as the fragmentation of the primary ozonide leads to a higher yield of stabilized (or less energized) CI, favoring the lowest-barrier process even if entropically less permissive.

Table 19: Secondary ozonide formation in acid-substituted carbonyl oxides, listing barrier heights E_b (kcal mol⁻¹), rate coefficient k (s⁻¹) at 298 K, and parameters for a Kooij equation fit $k(T)=A\times(T/K)^n\times\exp(-E_a/T)$ for the temperature range 200-450 K.

Carbonyl oxide	E _b	<i>k</i> (298K)	A / s ⁻¹	n	E_a / K	Remarks
Z-(CH ₂ CH ₂ C(=O)OH)CHOO	11.4	8.9×10^{2}	5.32E+15	-1.70	5877	
Z-(CH ₂ CH ₂ CH ₂ C(=O)OH)CHOO	7.4	8.2×10^{4}	6.15E+15	-2.28	3596	

N. 1,2-insertion in –OH forming cyclic ethers

The bimolecular reactions of SCI with alcohols has been studied both experimentally and theoretically,^{48,123–129} but are found to be relatively slow under atmospheric conditions. In this work, we study for the first time the intramolecular insertion of carbonyl oxides in a hydroxy substituent (Table 20). The products of these reactions are cyclo-ethers (called epoxides for 3-membered rings) with an α -hydroperoxide substituent. The reactions are competitive, with a barrier height that is decreasing for larger product ring sizes, such that the reaction remains important even for fairly remote hydroxy substituents (though obviously the less favorable reaction entropy for longer distances will reduce the reaction rate). The reactions are exothermic, which may lead to prompt product decomposition of the weak hydroperoxide bond (D_e(O–OH) ~ 40 kcal mol⁻¹). Interestingly, for a long enough substituent chain length, the insertion can occur with hydroxylated substituents in both *syn-* and *anti*position (see Table 20). As discussed elsewhere, these insertion reactions can also be catalyzed by water molecules.

Table 20: 1,2-Insertion reaction in an –OH group with hydroperoxide-cycloether formation, listing barrier heights E_b and product energy E_{prod} (kcal mol⁻¹), rate coefficient k (s⁻¹) at 298 K, and parameters for a Kooij equation fit $k(T)=A\times(T/K)^n\times\exp(-E_d/T)$ for the temperature range 200-450 K. The ring closure can occur at any ring span.

	-	0		6		•	•			
Carbonyl oxide	Eb	Eprod	<i>k</i> (298K)	A / s^{-1}	n	E_a / K	Remarks			
2-OH-substitution, forming 3-membered ring (epoxide)										
Z-(CH ₂ OH)CHOO	14.3	-12.8	1.9×10^{2}	7.87E-05	5.28	4575				
Z-(CH ₂ OH)(CH ₃)COO	13.0	-10.1	7.7×10^{2}	1.38E+11	0.31	6186				
Z-(C(CH ₃) ₂ OH)CHOO	13.7	-9.9	8.1×10^{2}	6.22E+00	3.90	5172				
Z-(C(CH ₃) ₂ OH)(CH ₃)COO	13.4	-6.4	6.9×10^{2}	8.58E+10	0.56	6499				
3-OH-substitution, forming 4-member	3-OH-substitution, forming 4-membered ring									
Z-(CH ₂ CH ₂ OH)CHOO	15.1	-18.0	7.0×10^{0}	4.49E+13	-0.91	7251				
E-(CH ₂ CH ₂ OH)CHOO	18.6	-22.9	6.8×10 ⁻³	2.11E+15	-1.70	9108				
Z-(CH(OOH)CH ₂ OH)(CH ₃)COO	12.0	-16.1	4.7×10^{3}	1.05E+04	2.47	4432				
$Z-(C(=O)CH_2OH)CHOO$	11.4	-21.5	8.7×10^{3}	5.65E+06	1.67	4764				
Z-(C(=CH ₂)CH ₂ OH)CHOO	20.4	-12.4	3.7×10-3	3.38E+09	0.86	9672				
4-OH-substitution, forming 5-member	ed ring									
Z-(CH ₂ CH ₂ CH ₂ OH)CHOO	6.9	-32.3	1.0×10^{7}	4.30E+18	-2.41	3882				
E-(CH ₂ CH ₂ CH ₂ OH)CHOO	2.8	-38.1	4.4×10^{9}	9.79E+24	-5.09	1894				
Z-(CH ₂ CH ₂ CH ₂ OH)(CH ₃)COO	6.7	-29.7	1.5×10^{7}	1.01E+15	-1.13	3441				
E-(CH ₃)(CH ₂ CH ₂ CH ₂ OH)COO	6.3	-33.1	1.1×10^{7}	2.54E+24	-4.84	3685				
Z-(C(=CH ₂)CH ₂ CH ₂ OH)CHOO	10.4	-30.8	6.3×10^{4}	1.28E+18	-2.05	5657				
Z-(Z-CH=CHCH2OH)CHOO	7.4	-34.3	5.7×10^{6}	1.39E+21	-3.26	4339				
5-OH-substitution, forming 6-member	ed ring									
Z-(CH ₂ CH ₂ CH ₂ CH ₂ OH)CHOO	7.1	-35.7	1.7×10^{6}	4.47E+30	-7.02	4842				
E-(CH ₂ CH ₂ CH ₂ CH ₂ OH)CHOO	5.6	-37.7	5.0×10^{7}	8.32E+36	-8.94	4879				
Z-(Z-CH=CHCH2CH2OH)CHOO	7.6	-35.6	1.4×10^{6}	1.67E+19	-3.06	3775				

O. 1,2-insertion in –OOH forming cyclic peroxides

The bimolecular reactions of SCI with hydroperoxides has been studied both experimentally and theoretically,^{130–133} but are found to be relatively slow under atmospheric conditions. In this work, we study for the first time the intramolecular insertion of carbonyl oxides in a hydroperoxide substituent (Table 21). The products of these reactions are cyclo-peroxides with an α -hydroperoxide substituent. The reactions are competitive, with a barrier height that is decreasing for larger product ring sizes, such that the reaction remains important even for fairly remote hydroperoxide substituents (though obviously the less favorable reaction entropy for longer distances will reduce the reaction rate). The reactions are exothermic, which may lead to prompt product decomposition of the weak peroxide or hydroperoxide bond (D_e(O–O) ~ 40 kcal mol⁻¹). Interestingly, for a long enough substituent chain length, the insertion can occur with hydroperoxide substituents in both *syn-* and *anti*-position (see Table 21). As discussed elsewhere, these insertion reactions can also be catalyzed by water molecules.

Table 21: 1,2-Insertion reaction in an –OOH group with hydroperoxide-cycloperoxide formation, listing barrier heights E_b and product energy E_{prod} (kcal mol⁻¹), rate coefficient k (s⁻¹) at 298 K, and parameters for a Kooij equation fit $k(T)=A\times(T/K)^n\times\exp(-E_a/T)$ for the temperature range 200-450 K. The ring closure can occur at any ring span.

	-	0		0		. 0	-
Carbonyl oxide	Eb	Eprod	<i>k</i> (298K)	A / s^{-1}	n	E_a / \mathbf{K}	Remarks
2-OOH-substitution, forming 4-memb	ered ring						
Z-(CH ₂ OOH)CHOO	12.5	-22.0	7.2×10^{2}	6.99E+09	0.42	5505	
Z-(CH ₂ OOH)(CH ₃)COO	9.94	-20.9	9.8×10^{4}	2.45E+03	2.59	3300	
Z-(CH(OOH)CH ₂ OH)(CH ₃)COO	10.3	-20.4	8.5×10^{4}	3.46E-10	6.99	2004	
E-(CH ₂ OOH)CHOO	19.0	-27.3	2.7×10-3	4.32E+13	-1.15	9168	
E-(CH ₃)(CH ₂ OOH)COO	22.1	-22.5	1.8×10 ⁻⁵	6.06E+11	-0.43	10626	
3-OOH-substitution, forming 5-memb	ered ring						
Z-(CH ₂ CH ₂ OOH)CHOO	7.0	-34.4	1.6×10^{7}	2.89E+17	-1.96	3708	
E-(CH ₂ CH ₂ OOH)CHOO	2.3	-44.2	8.9×10^{9}	4.19E+26	-5.74	1701	
4-OOH-substitution, forming 6-memb	ered ring						
Z-(CH ₂ CH ₂ CH ₂ OOH)CHOO	11.3	-32.3	1.7×10^{4}	1.16E+21	-3.12	6253	
E-(CH ₂ CH ₂ CH ₂ OOH)CHOO	8.6	-39.6	3.7×10^{5}	2.87E+20	-3.09	4969	

P. 1,2-insertion in -C(=O)OH forming cyclic esters or CO_2 +alkene

The bimolecular reactions of SCI with acids have been studied both experimentally and theoretically, 10,48,121,133-148 and are found to be very fast, with rate coefficients nearing the collision limit. In this work, we study for the first time the intramolecular insertion of carbonyl oxides in a carboxylic substituent (Table 22). The products of these reactions are lactones (cycloesters) with an α -hydroperoxide substituent, except for β -COOH substitution where the reaction forms CO₂ and an alkene (for both syn- and anti-substitution). The insertion reaction can occur with carboxylic substituents in both syn- and anti-position (see Table 22). Many of these reactions are competitive, with a barrier height that is most favorable for syn-β-COOH substitution due to the different reaction mechanism eliminating CO_2 , a process that is not accessible for differently sized ring products. The barrier, however, is sufficiently low at any ring size such that the reaction remains important even for remote carboxylic acid substituents (though obviously the less favorable reaction entropy for longer distances will reduce the reaction rate). For the distances examined here, the reaction proceeds by 1,2-insertion, which is not the most favorable mechanism for combining CI with acidic functions.¹²¹ If is expected that at even longer separations, 1,4-insertion reactions become possible, likely with even lower barrier heights as this mechanism allows for a barrierless process in bimolecular acid+SCI reactions. The reactions are exothermic, and may lead to chemical activation enabling prompt product decomposition of the weak hydroperoxide bond ($D_e(O-OH) \sim 40$ kcal mol⁻¹). As discussed elsewhere, these insertion reactions can also be catalyzed by water molecules.

Table 22: 1,2-Insertion read alkene formation, listing be equation fit $k(T)=A \times (T/K)^n \times$	ction in the arrier heig exp(- <i>E_a/T</i>)	e hydro ghts <i>E_b</i> for the	xy moiety of a (kcal mol ⁻¹), 1 temperature 1	an –C(=O)O rate coefficie range 200-45	H group ent <i>k</i> (s ⁻ 50 K. Th	with hy ¹) at 298 e ring clo	droperoxide-cycloester or CO ₂ + K, and parameters for a Kooij sure can occur at any ring span.		
Carbonyl oxide	Eb	Eprod	<i>k</i> (298K)	A / s ⁻¹	n	E_a / K	Remarks		
-COOH-substitution, forming 3-membered ring									
Carbonyl oxide 1-COOH-substitution, formir	Eb ng 3-memb	E _{prod}	k(298K)	A / s ⁻¹	n	E_a / K	Remarks		

1-COOH-substitution, forming 3	-memb	ered ring								
Z-(C(=O)OH)CHOO	9.6	-0.4	9.1×10^{5}	9.81E+10	0.79	4790				
2-COOH-substitution, forming CO ₂ + alkene										
Z-(CH ₂ C(=O)OH)CHOO	3.1	-28.5	4.0×10^{10}	1.14E+11	0.54	1232	Product: CO ₂ + CH ₂ =CHOOH ^a			
E-(CH ₂ C(=O)OH)CHOO	14.0	-37.4	2.2×10^{1}	6.40E+12	-0.53	6970	Product: CO ₂ + CH ₂ =CHOOH ^b			
E-(CH ₃)(CH ₂ C(=O)OH)COO	15.4	-27.6	2.0×10^{0}	3.59E+09	0.48	7162	Product: CO ₂ + CH ₂ =C(CH ₃)OOH ^b			
3-COOH-substitution, forming 5	-memb	ered ring								
Z-(CH ₂ CH ₂ C(=O)OH)CHOO	12.3	-32.4	5.0×10^{2}	1.69E+16	-1.68	6435				
E-(CH ₂ CH ₂ C(=O)OH)CHOO	10.7	-39.5	6.9×10^{3}	4.64E+04	1.92	3835				
4-COOH-substitution, forming 6	-memb	ered ring								
Z-(CH ₂ CH ₂ CH ₂ C(=O)OH)CHOO	11.3	-29.8	1.2×10^{3}	4.71E+13	-1.19	5241				
E-(CH ₂ CH ₂ CH ₂ C(=O)OH)CHOO	7.7	-36.1	4.1×10^{5}	6.46E+20	-3.74	4080				

^a IRC calculations show formation of CO_2 + alkene directly from the SCI, without cycloadduct formation. The transition state for CO_2 elimination from the potential cycloadduct is 13.8 kcal mol⁻¹ above the energy of the SCI, indicating that a concerted mechanism is more favorable.

^b Ring closure after H-migration (which would make it an insertion) is not possible due to ring strain, forcing the carboxylic group to break its internal H-bond and rotate the acidic H-atom away from the acidic carbonyl group; in this configuration neither of the acidic O-atoms can gain a suitable position to bond with the carbonyl oxide carbon atom.

Q. Impact of specific substitutions

1. Impact of cyclic substituents on unimolecular reaction rates

In our previous study,⁸ we examined the impact of cyclic substituents on CI chemistry, where the carbonyl oxide moiety is either implanted on a cyclic structure (as in nopinone oxide formed from β -pinene), or has a β -cyclic substituent (as in pinonaldehyde oxide from α -pinene). Deriving a SAR for such compounds is highly complex, as the rate coefficient can depend strongly on the ring position, size and ring strain, substitution, and the presence of multiple rings containing alkyl-, ether-, peroxide-, ester-, or other connections. The computational requirements to develop a reliable SAR for these compounds would be comparable in effort as investigating the relevant compounds themselves.

In this study, we briefly examine the impact of cycles that are located somewhat further from the carbonyl moiety. The main reaction channels available, i.e. 1,3-ring closure, 1,4-H-migration, and 1,5-ring closure in unsaturated CI, are not expected to be affected significantly by cycles in the substituents that are further than 2 carbons from the reaction site, i.e. δ -position or further. The main uncertainty remains then with substituents where the γ -carbon is part of a cyclic structure; an example compound in the atmosphere with such functionality is Δ^3 -carene, where the carbonyl oxide moiety is separated by a single $-CH_{2-}$ group from a highly strained three-membered ring. In Table 23, we list the unimolecular reactions for CI similar to those obtained from Δ^3 -carene; these reactions are also listed in the corresponding section in this work. Alongside these reactions we list theoretical predictions⁸ for regular alkyl substituents that are unaffected by ring strain.

As is easily seen, the highly strained three-membered ring in γ -position does not overly impact the reaction, with rate coefficients at 298K that are within a factor 3 of the SAR predictions, i.e. well within the expected reliability of the SAR. Larger rings, with concomitantly lower ring strain, will have an even lower impact on the reaction rates. We then conclude that cyclic structures beyond the β -carbon have little to no influence on CI chemistry. For these compounds, the results confirm the strategy proposed by Vereecken et al.⁸ to handle cyclic CI for which no direct data is available as non-cyclic species.

Vereecken et al. ⁸ are repeated here for convenience.										
Carbonyl oxide	Reaction	E_b	<i>k</i> (298K)	A / s ⁻¹	п	E_a / K				
E-(CH ₂ -cycC ₃ H ₅)CHOO	1,3-H-migration	28.4	2.0×10 ⁻⁶	7.23E-133	47.55	-6050				
E-(CH ₂ CH ₃)CHOO ⁸		28.2	4.0×10 ⁻⁶							
E-(CH ₃)(CH ₂ -cycC ₃ H ₅)COO	1,4-H-migration	16.1	3.4×10^{2}	1.32E-59	23.52	-2213				
E-(CH ₃)(CH ₂ CH ₃)COO ⁸		16.5	4.3×10^{2}							
Z-(CH ₂ -cycC ₃ H ₅)(CH ₃)COO		15.0	1.5×10^{3}	1.47E-52	21.14	-1867				
Z-(CH ₂ CH ₃)(CH ₃)COO ⁸		15.6	6.9×10^{2}							
Z-(CH ₂ -cycC ₃ H ₅)CHOO		16.1	2.9×10^{2}	5.11E-59	23.24	-2240				
Z-(CH ₂ CH ₃)CHOO ⁸		16.5	2.1×10^{2}							
E-(CH ₃)(CH ₂ -cycC ₃ H ₅)COO	1,3-ring closure	20.8	2.8×10 ⁻³	4.26E+08	1.50	10210				
E-(CH ₃)(CH ₂ CH ₃)COO ⁸		20.9	8.8×10 ⁻³							
Z-(CH ₂ -cycC ₃ H ₅)(CH ₃)COO		20.1	1.9×10^{-2}	5.76E+09	1.19	9899				
Z-(CH ₂ CH ₃)(CH ₃)COO ⁸		19.8	2.4×10 ⁻²							
E-(CH ₂ -cycC ₃ H ₅)CHOO		15.4	4.8×10^{1}	3.03E+09	1.23	7441				
E-(CH ₂ CH ₃)CHOO ⁸		15.6	7.4×10^{1}							
Z-(CH ₂ -cycC ₃ H ₅)CHOO		22.8	3.7×10 ⁻⁴	5.65E+05	2.51	10560				
Z-(CH ₂ CH ₃)CHOO ⁸		22.9	4.3×10 ⁻⁴							

Table 23: Reactions of selected carbonyl oxides with a strained cyclic substituent, listing barrier heights E_b (kcal mol⁻¹), rate coefficient k (s⁻¹) at 298 K, and parameters for a Kooij equation fit $k(T)=A\times(T/K)^n\times\exp(-E_d/T)$ for the temperature range 200-450 K. Corresponding CI with linear alkyl substituents are listed as reference compounds; their data from Vereecken et al.⁸ are repeated here for convenience.

2. Elimination of HCOO from RCHOO

HCOO elimination from an RCHOO CI has a high barrier, even with stabilization of the substituent product radical. For completeness, we calculated one example, where the α -hydroxy substituent stabilizes one of the product radical sites. The barrier for this process exceeds 35 kcal/mol, making the reaction negligible. Even stronger stabilization of the product radicals, *e.g.* through allyl delocalization of the radical electron over a double bond, is not expected to reduce the barrier to the extent that the reaction can be competitive with other loss processes. This reaction class is not considered further.

Table 24: HCOO elimination in oxygenated syn-RCHOO CI, listing barrier heights E_b (kcal mol⁻¹), rate coefficient k (s⁻¹) at 298 K, and parameters for a Kooij equation fit $k(T)=A\times(T/K)^n\times\exp(-E_a/T)$ for the temperature range 200-450 K.

, 1	0 1	. ,	· · ·	•	,	-	8
Carbonyl oxide	Eb	<i>k</i> (298K)	A / s^{-1}	n	E_a / K	Remarks	
Z-(CH ₂ OH)CHOO	36.1						

3. H-migration from oxygenated groups to the carbonyl oxide moiety

$$HOO_{CH_{2}} \xrightarrow{O_{C}} H-\text{migration} \xrightarrow{OO_{C}} OO_{C} \xrightarrow{C} C \xrightarrow{O} OO_{C} \xrightarrow{C} C \xrightarrow{O} OO_{C} \xrightarrow{C} C \xrightarrow{O} OO_{C} \xrightarrow{C} C \xrightarrow{O} OO_{C} \xrightarrow{C} OO_{C} \xrightarrow{O} OO_{C} \xrightarrow{C} O$$

H-migration of an oxygenated H-atom leads formally to a diradical with an α -OOH alkyl radical and an oxygenbased radical (shown above for an -OOH substituent). α -OOH alkyl radicals are known to be unstable,^{149,150} eliminating an OH radical without a barrier forming a carbonyl. With the oxygen-based radical in direct proximity of the departing OH group, a barrierless roaming radical-radical recombination reaction is the most favorable subsequent reaction, forming a carbonyl with a hydro-oxygenated group. We found transition states for this reaction class in several oxygenated CI and propose that such a reaction can occur for any H-migration span, and for most oxygenated groups with an H-atom examined here, i.e. -OH, -OOH, and -COOH. This reaction class is reminiscent of the concerted H-migration/ring closure reaction discussed in another sections, but contrary to those reactions the H-migration followed by a roaming OH-back-migration described here does not benefit energetically from a concerted H-shift and formation of a new C-O bond, thus leading to high barriers for reaction exceeding 20 kcal mol⁻¹ for –OOH groups and expected to be even higher for the more strongly bonded –OH and –COOH groups. As such, this reaction class is not expected to be competitive in any CI, especially against the related 1,2-insertion reaction (see section N, O and P) which is always faster. The exact product speciation and yield are thus less important here, and no detailed analysis is provided at this time. One exception is the 1,5-H-migration in syn- α -OOH-substituted CI (see section I), which is barrierless and is essentially a non-reaction, forming the identical syn- α -OOH-substituted CI (barring *e.g.* isotopic labeling).

Table 25: H-migration of an O-bonded hydrogen atom in an oxygenated CI, listing barrier heights E_b (kcal mol⁻¹), rate coefficient k (s⁻¹) at 298 K, and parameters for a Kooij equation fit $k(T)=A\times(T/K)^n\times\exp(-E_a/T)$ for the temperature range 200-450 K.

Carbonyl oxide	Eb	E_{prod}	<i>k</i> (298K)	A / s ⁻¹	n	E_a / K Product
OOH-bearing substituent						
Z-(CH ₂ OOH)CHOO	24.2		1.8×10 ⁻⁶	4.06E+12	-0.50	11744 HOOC•HCH2OO•
Z-(CH ₂ OOH)(CH ₃)COO	23.7		1.2×10 ⁻⁵	3.21E+04	2.53	10763 HOOC•(CH ₃)CH ₂ OO•

4. Impact of a syn-β-epoxide substituent

Epoxide moieties are known as reactive substituents that enable certain reaction classes that are typically not available to other compounds, by concerted opening of the strained three-membered ring. Unsaturated epoxides are expected to be formed in the OH-initiated oxidation of aromatic compounds, through several mechanisms that lead to the fragmentation of the 6-membered ring into an (epoxy)dicarbonylbutene and a C₂ fragment.¹⁵¹ The β -epoxy-CI formed from these compounds has several unusual reaction pathways available, but the only energetically viable pathway is a traditional 1,4-migration forming an epoxy-vinylhydroperoxide (see scheme below). The barrier for this process is significantly higher (~21 kcal mol⁻¹) than for an alkyl-1,4-H-migration (as low as 15 kcal mol⁻¹). Consequently, the unimolecular decay of *syn*- β -epoxy CI is expected to be slow. The reaction of the cyc(-CH₂OCH-)CHOO epoxy-CI with H₂O molecules is also rather slow, k(298K) ~ 8.8×10⁻¹⁸ cm³ molecule⁻¹ s⁻¹ (Table 27), similar to other alkyl *syn*-RCHOO CI.

The slow rate of unimolecular reactions and reaction with water this suggests that β -epoxy-CI are among the longerlived CI characterized thus far. Their yield in the atmosphere is limited, given the rather small emission factors for aromatics, and the expected low ozonolysis rates of the oxygenated unsaturated species forming these CI. There are some potential reaction pathways such as 1,5-ring closure reactions with concerted ring opening, for which we were unable to find a transition state. Though we do not expect these channels to be competitive, we should concede that the chemistry of β -epoxy-CI, and their atmospheric impact, is far from fully characterized at this time.

Table 26: Unimolecular reactions of an β -epoxy-CI, listing barrier heights E_b (kcal mol⁻¹), rate coefficient k (s⁻¹) at 298 K, and parameters for a Kooij equation fit $k(T)=A\times(T/K)^n\times\exp(-E_a/T)$ for the temperature range 200-450 K.

E.	k(208K)	A / e^{-1}	n	F / K	Ponction type
Еb	K(290K)	A / S	п	La / K	Reaction type
20.8	1.1×10^{-1}	1.36E-89	33.20	-3947	1,4-H-migration (VHP channel)
39.1	3.6×10 ⁻¹⁷	2.06E+11	0.36	19656	1,5-H-migration
22.0	5.6×10 ⁻⁴	1.36E-89	33.20	-3947	1,3-cyclisation (dioxirane channel)
32.9	3.6×10 ⁻¹²	2.59E+06	2.11	15843	1,4-cyclisation
Not four	nd		1,5-cyclisation on C-atom		
Not four	nd		1,5-cyclisation on O-atom		
	Eb 20.8 39.1 22.0 32.9 Not four Not four	$\begin{array}{c cccc} E_b & k(298K) \\ \hline 20.8 & 1.1 \times 10^{-1} \\ 39.1 & 3.6 \times 10^{-17} \\ 22.0 & 5.6 \times 10^{-4} \\ 32.9 & 3.6 \times 10^{-12} \\ Not found \\ Not found \\ \end{array}$	$\begin{array}{c ccccc} E_b & k(298K) & A / s^{-1} \\ \hline 20.8 & 1.1 \times 10^{-1} & 1.36E \cdot 89 \\ \hline 39.1 & 3.6 \times 10^{-17} & 2.06E + 11 \\ \hline 22.0 & 5.6 \times 10^{-4} & 1.36E \cdot 89 \\ \hline 32.9 & 3.6 \times 10^{-12} & 2.59E + 06 \\ \hline Not found \\ \hline Not found \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Eb $k(298K)$ A/s^{-1} n E_a/K 20.8 1.1×10^{-1} $1.36E-89$ 33.20 -3947 39.1 3.6×10^{-17} $2.06E+11$ 0.36 19656 22.0 5.6×10^{-4} $1.36E-89$ 33.20 -3947 32.9 3.6×10^{-12} $2.59E+06$ 2.11 15843 Not found Not found V V V

R. The reaction of CI with H₂O

Table 27: Rate constant predictions for the reaction of CI with H₂O monomers forming hydroxyl hydroperoxides, obtained after barrier height corrections in the theoretical data, listing barrier heights E_b (kcal mol⁻¹), rate coefficient k (cm³ molecule⁻¹ s⁻¹) at 298 K, and parameters for a Kooij equation fit $k(T)=A\times(T/K)^n\times\exp(-E_a/T)$ cm³ molecule⁻¹ s⁻¹ for the temperature range 200-450 K.

Carbonyl oxide	Eb	<i>k</i> (298K)	A / s ⁻¹	n E_a /	K Re	emarks
Alkyl-substituents	-	(· · · · · · /				-
$E-(C_2H_5)(iC_3H_7)COO$	4.9	3.3×10 ⁻¹⁸	8.90E-20	1.59	1631	
$Z - (iC_3H_7)(C_2H_5)COO$	3.6	2.0×10 ⁻¹⁷	1.21E-18	1.08	1000	
Unsaturated compounds						
$E_{-(C_2H_5)(CH=CH_2)COO}$	7.2	1.9×10 ⁻¹⁹	3.33E-17	0.82	2932	
$Z-(CH=CH_2)(C_2H_5)COO$	5.1	2.4×10^{-19}	1.12E-23	2.99	1423	
$E - (iC_3H_7)(CH = CH_2)COO$	5.1	1.1×10 ⁻¹⁸	6.69E-20	1.52	1734	
$Z-(E-CH=CHCH_3)CHOO$	8.2	4.3×10 ⁻²⁰	2.11E-20	1.98	3152	
$Z_{-}(Z_{-}CH=CHCH_{3})CHOO$	9.6	4.9×10^{-21}	7.36E-19	1.50	4031	
$Z_{-}(E_{-}CH=CHCH_{3})(CH_{3})COO$	6.3	7.1×10^{-19}	6.92E-22	2.45	2090	
$Z_{-}(Z_{-}CH=CHCH_{3})(CH_{3})COO$	47	3.9×10^{-18}	2.65E-22	2.34	1117	
$E_{i}(2 H_{2})(CH_{2}CH_{2}CH_{3})(CH_{2}CH_{3})$	33	1.7×10^{-18}	1.73E-20	1.65	751	
$Z_{-(CH_2CH_2CH_2CH_2)COO}$	3.9	5.4×10^{-18}	1.75E 20	3.14	890	
$E_{-(CH_2)(CH_2CH_2CH_2CH_2)(CO)}$	3.) 4 4	7.4×10^{-18}	6.90E-21	2.14	1495	
$Z_{-(CH_2CH_2CH_2CH_2)COO}$	4.4 4.4	7.4×10 7.8×10 ⁻¹⁸	3.44E-22	2.11	1246	
OH-bearing substituents	4.4	7.8×10	J.77L-22	2.50	1240	
Z-(CH ₂ OH)CHOO	18	5.2×10^{-18}	8 65E-19	1 30	1667	
$Z - (CH_2OH)(CH_2)COO$	4.0	3.2×10^{-17}	1.18E_21	2 33	1007	
$Z_{(iC_{1}H_{2}OH)(CH_{3})COO}$	4.3	2.1×10^{-17}	1.10E-21 1.24E-18	1 31	1553	
$Z - (iC_3H_6OH)(CH_2)COO$	4.5	0.4×10^{-18}	1.24E-10	2.12	1007	
	4.1	5.4×10	2.09E 14	0.76	620	
Z-(CH ₂ CH ₂ OH)CHOO	2.2	5.2×10^{-17}	5.08E-14	-0.70	020	
Z-(CH ₂ CH ₂ CH ₂ OH)CHOO	1.6	2.4×10^{-16}	0.55E-10	-2.12	810	
Z-(CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH)CHOO	1.0	1.1×10^{-10}	5.75E+00	-5.99	1190	
E-(CH ₂ OH)CHOO	-1.2	1.9×10 ⁻¹³	0.35E-18	1.11	-1181	
E-(CH ₃)(CH ₂ OH)COO	3.2	6.6×10^{-17}	3.74E-19	1.45	914	
$E - (iC_3H_6OH)CHOO$	-1.5	$/.0 \times 10^{-14}$	7.57E-21	1.88	-1593	
E-(CH ₂ CH ₂ OH)CHOO	-2.2	6.4×10^{-13}	4.45E-29	4.46	-3513	
E-(CH ₂ CH ₂ CH ₂ OH)CHOO	-1.3	1.4×10^{-13}	8.32E-28	4.17	-2689	
E-(CH ₂ CH ₂ CH ₂ CH ₂ OH)CHOO	0.5	1.0×10^{-14}	1.19E-31	5.84	-1/15	
Ether-substituents		19				
E-(CH ₃)(CH ₂ OCH ₃)COO	4.5	9.2×10-18	2.12E-19	1.56	1533	
Z-(CH ₂ OCH ₃)(CH ₃)COO	4.9	1.2×10^{-17}	2.72E-18	1.35	1852	
OOH-bearing substituents		a a da 19		< 2 0	101	
Z-(CH ₂ OOH)(CH ₃)COO	3.5	3.9×10 ⁻¹⁸	6.58E-34	6.30	-121	
Z-(CH ₂ OOH)CHOO	3.3	2.5×10^{-17}	1.81E-17	0.66	1016	
Z-(CH ₂ CH ₂ OOH)CHOO	3.0	3.1×10 ⁻¹⁷	1.99E-12	-1.17	1308	
Z-(CH ₂ CH ₂ CH ₂ OOH)CHOO	5.2	1.4×10^{-18}	1.24E-12	-0.95	2474	
E-(CH ₂ OOH)CHOO	-1.8	4.3×10^{-13}	1.32E-26	3.88	-2693	
$E-(CH_3)(CH_2OOH)COO$	2.9	1.2×10^{-16}	2.43E-41	8.53	-2460	
E-(CH ₂ CH ₂ OOH)CHOO	-1.3	1.8×10^{-13}	1.78E-23	2.64	-2382	
ONO ₂ -bearing substituents						
Z-(CH ₂ ONO ₂)(CH ₃)COO	5.5	3.4×10^{-18}	1.40E-21	2.46	1848	
E-(CH ₃)(CH ₂ ONO ₂)COO	4.5	7.3×10 ⁻¹⁸	3.64E-21	2.21	1478	
Alkoxy-substituents						
Z-(OCH ₃)CHOO	2.1	4.3×10 ⁻¹⁶	3.13E-19	1.43	272	
Z-(OCH ₃)(CH ₃)COO	0.8	2.4×10^{-15}	1.45E-19	1.43	-471	
Z-(OCH ₃)(OH)COO	-2.2	4.2×10 ⁻¹³	5.90E-21	2.01	-1970	
E-(OCH ₃)CHOO	-2.5	3.0×10 ⁻¹²	2.01E-19	1.68	-2078	
E-(CH ₃)(OCH ₃)COO	1.3	3.7×10 ⁻¹⁵	6.80E-22	2.42	-512	
Carboxylic acid bearing substit	uents					
Z-(COOH)CHOO	3.8	5.8×10 ⁻¹⁷	4.33E-18	1.27	1373	

Z-(CH ₂ COOH)CHOO	2.9	8.9×10 ⁻¹⁷	1.07E-15	0.25	1164
Z-(CH ₂ CH ₂ COOH)CHOO	5.8	1.2×10^{-18}	4.87E-23	2.94	1976
E-(CH ₂ COOH)CHOO	0.5	5.2×10 ⁻¹⁵	1.14E-19	1.66	-374
E-(CH ₂ CH ₂ COOH)CHOO	-2.2	8.9×10 ⁻¹⁴	2.93E-28	4.36	-2541
Ester substituent					
Z-(C(=O)OCH ₃)CHOO	0.5	1.7×10^{-15}	5.44E-20	1.58	-406
Epoxy-substituent					
Z-(cyc-CH ₂ OCH-)CHOO	4.5	8.8×10^{-18}	1.41E-19	1.61	1511
Aldehyde substituents					
(CHO) ₂ COO	1.6	4.4×10 ⁻¹⁶	2.61E-20	1.73	36
Multifunctional species					
Z-(C(=O)CH ₂ OH)CHOO	-0.1	5.2×10 ⁻¹⁵	2.37E-19	1.28	-806

Table 28: Rate constant predictions for the reaction of CI with H₂O monomers catalyzing the insertion reaction, obtained after barrier height corrections in the theoretical data, listing barrier heights E_b (kcal mol⁻¹), rate coefficient k (cm³ molecule⁻¹ s⁻¹) at 298 K, and parameters for a Kooij equation fit $k(T)=A\times(T/K)^n\times\exp(-E_d/T)$ cm³ molecule⁻¹ s⁻¹ for the temperature range 200-450 K.

Carbonyl oxide	E _b	<i>k</i> (298K)	A / s ⁻¹	n	E_a / K	Remarks		
OH-bearing substituents								
Z-(CH ₂ OH)CHOO	3.9	6.1×10 ⁻¹⁷	8.13E-32	5.48	-909			
Z-(CH ₂ OH)(CH ₃)COO	3.0	7.5×10 ⁻¹⁶	3.24E-44	9.72	-2968			
Z-(<i>i</i> C ₃ H ₆ OH)CHOO	5.2	7.4×10 ⁻¹⁸	8.58E-34	6.34	-161			
Z-(<i>i</i> C ₃ H ₆ OH)(CH ₃)COO	6.5	1.7×10^{-18}	7.17E-53	12.70	-2033			
Z-(CH ₂ CH ₂ OH)CHOO	2.5	5.4×10 ⁻¹⁷	5.01E-14	-0.70	855			
Z-(CH ₂ CH ₂ CH ₂ OH)CHOO	-7.0	(>5×10 ⁻¹¹)						
Z-(CH ₂ CH ₂ CH ₂ CH ₂ OH)CHOO	-4.8	(4.0×10 ⁻¹¹)						
E-(CH ₂ CH ₂ OH)CHOO	0.4	1.2×10 ⁻¹⁵	3.46E-13	-1.18	-325			
E-(CH ₂ CH ₂ CH ₂ OH)CHOO	-11.7	(>5×10 ⁻¹¹)						
<i>E</i> -(CH ₂ CH ₂ CH ₂ CH ₂ OH)CHOO	-8.4	(>5×10 ⁻¹¹)						
OOH-bearing substituents								
Z-(CH ₂ OOH)(CH ₃)COO	-0.2	1.7×10^{-14}	7.63E-25	3.08	-1865			
Z-(CH ₂ OOH)CHOO	1.0	1.4×10^{-15}	1.50E-17	0.59	-352			
Z-(CH ₂ CH ₂ OOH)CHOO	-6.4	(>5×10 ⁻¹¹)						
Z-(CH ₂ CH ₂ CH ₂ OOH)CHOO	-3.5	3.6×10 ⁻¹²	3.11E-09	-2.12	-1582			
E-(CH ₂ OOH)CHOO	-0.9	9.3×10 ⁻¹⁵	1.70E-15	-0.45	-1273			
E-(CH ₃)(CH ₂ OOH)COO	1.5	2.1×10 ⁻¹⁶	8.77E-27	3.33	-1475			
E-(CH ₂ CH ₂ OOH)CHOO	-10.1	(>5×10 ⁻¹¹)						
E-(CH ₂ CH ₂ CH ₂ OOH)CHOO	-7.3	(>5×10 ⁻¹¹)						
Carboxylic acid bearing substituents								
Z-(COOH)CHOO	1.1	2.7×10^{-14}	9.99E-33	6.22	-2078			
Z-(CH ₂ COOH)CHOO	1.1	2.9×10 ⁻¹⁴	8.08E-32	5.86	-2087			
Z-(CH ₂ CH ₂ COOH)CHOO	-1.1	4.6×10 ⁻¹⁴	7.98E-20	1.29	-1756			
Z-(CH ₂ CH ₂ CH ₂ COOH)CHOO	-4.2	6.0×10 ⁻¹³	9.63E-18	0.10	-3122			
E-(CH ₂ COOH)CHOO	-2.6	1.0×10^{-12}	1.34E-24	3.00	-3055			
E-(CH ₂ CH ₂ COOH)CHOO	-5.9	(>5×10 ⁻¹¹)						
Multi-functional species								
Z-(C(=O)CH ₂ OH)CHOO	-0.6	1.7×10 ⁻¹⁴	2.95E-17	0.63	-830			
S. Structure-Activity relationships: substituent naming conventions

The combinations of substituents used allow the construction of Structure-Activity Relationships (SAR) that is applicable to most of the unsaturated compounds present in the troposphere. Table 29 lists the notational conventions used in the SARs in this work.

Substituent label	Definition
R ₁ , R ₂	These are the substituents implanted on the carbon in the carbonyl oxide moiety, O^{\bigcirc}
	where R_1 is always on the <i>syn</i> -side of the oxide O-atom, and R_2 on the <i>anti</i> -side, as
	indicated in the scheme on the right.
	These substituents can represent the following moieties:
	H-atoms, alkyl groups (any branching, any chain length), β -, γ - and other vinyl R ₁ R ₂
	substituents, β -, γ - and other oxo-substituted chains, and generally substituted alkyl (B ₁)(B ₂)COO
	chains where the functional group is at least in γ -position, where it is currently
	assumed to assert only a minor influence.
	Some additional substitution patterns are discussed explicitly elsewhere in this supporting information.
R3, R4, R5	Substituents implanted on unsaturated substituents, specifically O^{\bigcirc}
	vinyl- and oxo-groups (see scheme on the right). We always use \downarrow_{\bigoplus}
	the same naming for the site-specific and stereo-specific positions, $\bigcup_{II} R_5$ $\bigcup_{II} \Phi$
	i.e. R ₃ , R ₄ and R ₅ are always as indicated in the schemes on the $C_{1} = C_{2}$
	right. C^{-} K_4 C^{-} K_3
	These substituents can represent all of the moieties as for R_1 and R_2
	R ₂ , though one should consider that no explicit data is available
	for multi-unsaturated CI (i.e. conjugated alkadiene or cumulene/ketene functionalities adjacent to the
	carbonyl oxide moiety).
$R_6, R_7,$	These substituents can represent all the moieties defined for R_1 but are implanted in a position of the
	molecule that is not defined explicitly by R_1 through R_5 .
$R_a, R_b, R_c, R_d,$	These substituents allow for the same moieties as R_1 , except for H-atoms. This is used to define the
	branching order of the bearing C-atom, i.e. $-CH_3$, $-CH_2R_a$, $-CHR_aR_b$, $-CR_aR_bR_c$ are primary,
	secondary, tertiary and quaternary carbon atoms with exactly 3, 2, 1, and 0 H-atoms, respectively.
R', R", R'"	These substituents represent either an H-atom, or a substituent without (easily) mobile H-atoms on the
	connecting carbon, e.g. $-tC_4H_9$, $-C(R_a)=CR_4R_5$, a cyclic moiety where ring strain or geometric
	constraints prevents H-migration (e.g. nopinone oxide), etc. These labels are used to indicate
	compounds for which no H-migration path is accessible.

Table 29: SAR naming convention for carbonyl oxide substituents

T. Structure-Activity Relationships (SARs) for SCI unimolecular reactions

Table 30: Predicted total rate coefficients for unimolecular carbonyl oxide decay as a function of the two substituents R_1 and R_2 . Indicated is the mode of reaction, the rate coefficient k (s⁻¹) at 298K, and the parameters of a Kooij equation fit $k(T) = A \times (T/K)^n \times \exp(-E_d/T)$ between 200 and 450 K (A in s⁻¹, E_a in K), and already account for all migratable H-atoms. The meaning of the SAR substituents is explained in section S. Note that the theoretical work here does not consider systematic variations for $R_a/R_b/R_c/R_3/R_4/R_5/R'$, and the values listed are for substituents –H (when appropriate), –CH₃, –C₂H₅, or an average of the prediction for these substituents. Values in green are based directly on theoretical kinetic calculations, whereas values in orange are estimated values based on the reactivity trends for other substituents. The values are standardized in number of digits, see Vereecken et al.⁸ for an uncertainty analysis.

0 [©]	$R_2 = -CH_3$	$R_2 = -CH_2R_a$	$R_2 = -CHR_aR_b$	$R_2 = -CR_aR_bR_c$	$R_2 = -H$	$R_2 = vinyl$
©⊕ ∥	O O U U U	O ⊖ U ⊕	O ⊖ U	O O ⊕ U	O O ⊕	$O_{\underline{U}}^{\bigcirc}$ R_5
R ₁ R ₂	R₁ CH₃	$\mathbf{R}_{1}^{\prime C} \mathbf{C} \mathbf{H}_{2} \mathbf{R}_{a}$	$\stackrel{C}{R_1}CH_{R_b}^{R_a}$	$\mathbf{R_1^{C_{C_{R_a}}}}_{\mathbf{R_c}^{R_a}}$	С R ₁ Н	$R_{1}^{C} \overset{C}{\underset{R_{3}}{\overset{C}{\underset{R_{3}}{\overset{C}{\underset{R_{4}}{\overset{R_{4}}{\underset{R_{4}}{\overset{R_{4}}{\underset{R_{4}}{\overset{R_{4}}{\underset{R_{4}}{\overset{R_{4}}{\underset{R_{4}}{\overset{R_{4}}{\underset{R_{4}}{\overset{R_{4}}{\underset{R_{4}}{\overset{R_{4}}{\underset{R_{4}}{\overset{R_{4}}{\underset{R_{4}}{\underset{R_{4}}{\underset{R_{4}}{\overset{R_{4}}{\underset{1}}{\underset{1}$
$R_{1} = -CH_{3}$ O^{\bigoplus} O^{\bigoplus} $H_{3}C^{\bigoplus}R_{2}$	1,4-H-migration k(298K)=478 $A=7.64\times10^{-60}$ n=23.59 $E_a=-2367$	1,4-H-migration k (298K)= 433 $A=8.63\times10^{-61}$ n=23.94 $E_a=-2390$	1,4-H-migration k(298K)=611 $A=4.18\times10^{-59}$ n=23.38 $E_a=-2276$	1,4-H-migration k(298K)=373 $A=9.26\times10^{-61}$ n=23.92 $E_a=-2362$	1,4-H-migration k(298K)=136 $A=3.11\times10^{-64}$ n=24.95 $E_a=-2685$	1,4-H-migration k(298K)=50 $A=4.36\times10^{-67}$ n=25.90 $E_{a}=-2737$
$R_{1} = -CH_{2}R_{a}$ $O^{\bigoplus}_{O^{\bigoplus}}$ $R_{a} - CH_{2}^{C}R_{2}$	1,4-H-migration k(298K)=689 $A=5.91\times10^{-58}$ n=22.91 $E_{a}=-2331$	1,4-H-migration k(298K)=534 $A=4.72\times10^{-59}$ n=23.29 $E_{a}=-2358$	1,4-H-migration k(298K)=257 $A= 4.83 \times 10^{-61}$ n= 23.93 $E_a= -2420$	1,4-H-migration k(298K)=12 A= 2.13×10 ⁻⁷⁴ n= 28.47 E _a = -2964	1,4-H-migration k(298K)=205 $A= 2.41 \times 10^{-62}$ n= 24.33 $E_a= -2571$	1,4-H-migration k (298K)= 30 A= 1.36×10^{-68} n= 26.38 E _a = -2809

$R_{1} = -CHR_{a}R_{b}$ $O^{\bigoplus}_{O^{\bigoplus}}$ $R_{a} \subset CH R_{2}$ $R_{b} \subset CH R_{2}$	1,4-H-migration	1,4-H-migration	1,4-H-migration	1,4-H-migration	1,4-H-migration	1,4-H-migration
	k(298K)=14	k(298K)=13	k(298K)=19	k(298K)=1.1	k(298K)=6.7	k(298K)=11
	$A = 4.45 \times 10^{-76}$	$A=8.54\times10^{-73}$	$A=1.62\times10^{-70}$	$A=8.80\times10^{-81}$	$A=1.52\times10^{-75}$	$A= 4.09 \times 10^{-72}$
	n = 27.97	n=27.89	n=27.01	n=30.47	n=28.72	n= 27.42
	$E_a = -2967$	$E_{a}=-2858$	$E_{a}=-2912$	$E_a=-3249$	$E_a=-3150$	$E_a= -3149$
$R_{1} = -CR_{a}R_{b}R_{c}$ $O^{\bigcirc}_{0} \oplus$ $R_{a} C^{\frown}_{c}C^{\frown}_{c}R_{2}$ R_{c}	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation
	k(298K)=0.17	k(298K)=0.15	k(298K)=1.1	k(298K)=0.075	k(298K)=1×10⁻²	k(298K)=9.6×10⁻²
	$A=2.55\times10^{10}$	$A=5.45\times10^{11}$	$A = 6.83 \times 10^{10}$	$A=1.12\times10^{11}$	$A=2.58\times10^{6}$	$A=1.53\times10^{8}$
	n=1.02	n=0.55	n = 0.80	n=0.85	n=2.32	n=1.66
	$E_{a}=9399$	$E_a=9555$	$E_a = 8759$	$E_a=9795$	$E_{a}=9710$	$E_{a}=9170$
$ \begin{array}{c} R_1 = -H \\ O^{\bigoplus} \\ O^{\oplus} \\ H^{C} \\ R_2 \end{array} $	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation
	k(298K)=53	k(298K)=74	k(298K)=102	k(298K)=111	k(298K)=0.3	k(298K)=22
	$A=1.69\times10^9$	A= 1.57×10^{10}	$A=9.22\times10^{9}$	$A=8.51\times10^{9}$	$A=1.66\times10^{1}$	$A=6.84\times10^{10}$
	n=1.35	n= 1.03	n=1.13	n=1.15	n=4.02	n=0.83
	$E_a=7445$	E _a = 7464	$E_{a}=7387$	$E_{a}=7357$	$E_{a}=8024$	$E_{a}=7925$
$R_{1} = -CH_{2}-CR_{3}=CR_{4}R_{5}$ R_{4} R_{5} $O \oplus$ CH_{2} R_{2}	Allyl-1,4-Hmig.	Allyl-1,4-Hmig.	Allyl-1,4-Hmig.	Allyl-1,4-Hmig.	Allyl-1,4-Hmig.	Allyl-1,4-Hmig.
	k(298K)=7040	k(298K)=7080	k(298K)=7120	k(298K)=247	k(298K)=4180	k(298K)=795
	$A= 2.97 \times 10^{-45}$	$A= 6.14 \times 10^{-45}$	$A=1.27\times10^{-44}$	$A=3.24\times10^{-58}$	$A = 3.66 \times 10^{-46}$	$A=2.16\times10^{-50}$
	n= 18.69	n= 18.52	n=18.35	n=23.01	n = 18.87	n=20.16
	$E_{a}= -1459$	$E_a= -1532$	$E_a=-1605$	$E_a=-2023$	$E_a = -1630$	$E_{a}=-1839$
$R_{1} = -CHR_{a}-CR_{3}=CR_{4}R_{5}$ $R_{4} \qquad \qquad$	Allyl-1,4-Hmig.	Allyl-1,4-Hmig.	Allyl-1,4-Hmig.	Allyl-1,4-Hmig.	Allyl-1,4-Hmig.	Allyl-1,4-Hmig.
	k(298K)=385	k(298K)=388	k(298K)=390	k(298K)=13	k(298K)=230	k(298K)=43
	A= 7.22×10 ⁻⁵⁷	$A= 1.49 \times 10^{-56}$	$A=3.09\times10^{-56}$	$A=7.88\times10^{-70}$	$A = 8.89 \times 10^{-58}$	$A=5.25\times10^{-62}$
	n= 22.50	n= 22.33	n=22.16	n=26.82	n = 22.68	n=23.97
	E _a = -2098	$E_a= -2171$	$E_a=-2244$	$E_a=-2662$	$E_a = -2269$	$E_{a}=-2478$
$R_{1} = -CR_{a}R_{b}-CR_{3}=CR_{4}R_{5}$ $R_{4} \xrightarrow{R_{5}} O_{\odot} \oplus \\ H_{1} \xrightarrow{C} C_{R_{a}} R_{2}$ $R_{3} \xrightarrow{R_{5}} R_{2}$	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation
	k (298K)=0.23	k(298K)=0.20	k(298K)=1.5	k(298K)=0.10	k(298K)=0.013	k(298K)=0.13
	$A = 9.73 \times 10^{10}$	$A=2.08\times10^{12}$	$A=2.61\times10^{11}$	$A=4.27\times10^{11}$	$A=9.84\times10^{6}$	$A=5.84 \times 10^{8}$
	n = 0.79	n=0.32	n=0.57	n=0.62	n=2.09	n=1.45
	$E_a = 9314$	$E_a=9471$	$E_a=8674$	$E_a=9711$	$E_{a}=9625$	$E_{a}=9086$
$R_{1} = -(CR_{3}=CR_{4}CH_{3})$ $O^{\bigoplus}_{O^{\bigoplus}}$ CH_{3} CH_{3} R_{4} $C=C$ R_{2} R_{2}	Allyl-1,6-Hmig.	Allyl-1,6-Hmig.	Allyl-1,6-Hmig.	Allyl-1,6-Hmig.	Allyl-1,6-Hmig.	Allyl-1,6-Hmig.
	$k(298K)=2.5\times10^{8}$	k(298K)=3.4×10⁷	k(298K)=3.4×10⁷	k(298K)=3.4×10⁷	k(298K)=4.8×10⁶	k(298K)=1.7×10⁶
	$A=4.80\times10^{-5}$	$A=2.59\times10^{-7}$	$A=2.59\times10^{-7}$	$A=2.59\times10^{-7}$	A= 1.40×10 ⁻⁹	$A= 1.96\times10^{-12}$
	n=5.44	n=6.11	n=6.11	n=6.11	n= 6.77	n= 7.72
	$E_{a}=512$	$E_a=675$	$E_a=675$	$E_a=675$	E _a = 838	$E_a= 785$

$ \begin{array}{c} R_1 = -CR_3 = CR_4CH_2R_a \\ O \\ R_a \\ O \\ O \\ CH_2 \\ CH_2 \\ CH_2 \\ R_4 \\ R_3 \\ \end{array} \right) \begin{array}{c} O \\ O \\ O \\ CH_2 \\ CH_2 \\ R_2 \\ R_2 \\ R_3 \\ \end{array} $	Allyl-1,6-Hmig.	Allyl-1,6-Hmig.	Allyl-1,6-Hmig.	Allyl-1,6-Hmig.	Allyl-1,6-Hmig.	Allyl-1,6-Hmig.
	$k(298K)=3.0\times10^{8}$	$k(298K)=4.1\times10^7$	$k(298K)=4.1\times10^7$	$k(298K)=4.1\times10^7$	k(298K)=5.7×10⁶	$k(298K)=2.1\times10^{6}$
	$A=5.39\times10^{-4}$	$A=2.90\times10^{-6}$	$A=2.90\times10^{-6}$	$A=2.90\times10^{-6}$	A= 1.57×10 ⁻⁸	$A=2.20\times10^{-11}$
	n=5.09	n=5.76	n=5.76	n=5.76	n= 6.42	n=7.37
	$E_{a}=591$	$E_a=754$	$E_a=754$	$E_a=754$	E _a = 917	$E_{a}=864$
$R_{1} = -CR_{3} = CR_{4}CHR_{a}R_{b}$ $O^{\bigoplus}_{R_{a} \ CH} O^{\bigoplus}_{CH} O^{\bigoplus}_{CH} R_{2}$ $R_{4} \ R_{3}$	Allyl-1,6-Hmig.	Allyl-1,6-Hmig.	Allyl-1,6-Hmig.	Allyl-1,6-Hmig.	Allyl-1,6-Hmig.	Allyl-1,6-Hmig.
	k(298K)=1.1×10⁸	k(298K)=1.5×10⁷	k(298K)=1.5×10⁷	$k(298K)=1.5\times10^7$	k(298K)=2.0×10⁶	k(298K)=7.4×10⁵
	A= 5.21×10 ⁻⁵	A= 2.81×10 ⁻⁷	$A=2.81×10^{-7}$	$A=2.81\times10^7$	A=1.51×10 ⁻⁹	A= 2.13×10 ⁻¹²
	n= 5.49	n= 6.16	n=6.16	n=6.16	n=6.83	n= 7.77
	E _a = 884	E _a = 1047	$E_a=1047$	$E_a=1047$	E _a =1210	E _a = 1157
$R_{1} = -CR_{3} = CR_{4}R'$ $O^{\bigcirc} O^{\textcircled{O}}$ $O^{\textcircled{O}} O^{\textcircled{O}}$ $O^{\textcircled{O}}$ O^{O} $O^$	1,5-Cyclisation	1,5-Cyclisation	1,5-Cyclisation	1,5-Cyclisation	1,5-Cyclisation	1,5-Cyclisation
	$k(298K)=4.5\times10^4$	$k(298K)=1.2\times10^4$	$k(298K)=1.2\times10^4$	k(298K)=1.2×10⁴	k(298K)=8.7×10³	k(298K)=1.2×10⁴
	$A=9.32\times10^{10}$	$A=9.77\times10^{10}$	$A=1.68\times10^{11}$	$A=1.28\times10^{11}$	$A=7.01\times10^{10}$	$A=1.28\times10^{11}$
	n=0.46	n=0.50	n=0.44	n=0.44	n=0.44	n=0.44
	$E_a=5124$	$E_a=5584$	$E_a=5668$	$E_a=5625$	$E_a=5485$	$E_{a}=5625$
$R_{1} = -CHO$ O_{0}^{\bigcirc} O_{0}^{\oplus} H_{C}^{C} R_{2} O_{0}^{\ominus} H_{C}^{C}	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation
	k(298K)=7.1×10⁴	$k(298K)= 2.4 \times 10^4$	k(298K)= 4.8×10⁴	$k(298K)= 1.4 \times 10^4$	k(298K)= 144	$k(298K)= 1.1 \times 10^4$
	$A=2.76\times10^{10}$	$A=7.73 \times 10^{11}$	$A=2.95\times10^{10}$	$A= 1.29 \times 10^{11}$	$A= 2.49 \times 10^{6}$	$A= 5.22 \times 10^{11}$
	n=0.78	n=0.36	n=0.75	n= 0.57	n= 2.21	n= 0.25
	$E_{a}=5162$	$E_a=5756$	$E_a=5244$	$E_a= 5755$	$E_a= 6656$	$E_a= 5712$
$R_{1} = -C(O)R_{a}$ O^{\bigoplus}_{U} $R_{a} C^{C}_{U}$	1,3-Cyclisation k(298K)= 1.6×10⁴ A=3.95×10 ⁹ n= 1.02 $E_a= 5448$	$\begin{array}{l} 1,3\text{-Cyclisation} \\ \textbf{k(298K)= 4.1 \times 10^{3}} \\ A = 1.38 \times 10^{11} \\ n = 0.58 \\ E_a = 6141 \end{array}$	1,3-Cyclisation k(298K)= 8.3×10³ $A=5.28\times10^9$ n=0.97 $E_a=5629$	$\begin{array}{l} 1,3\text{-Cyclisation} \\ \textbf{k(298K)= 2.3 \times 10^{3}} \\ A=2.30\times 10^{10} \\ n=0.79 \\ E_{a}=6140 \end{array}$	1,3-Cyclisation k(298K)= 20 A= 5.55×10^5 n= 2.41 E _a = 7141	1,3-Cyclisation $k(298K)=6.5\times10^{3}$ $A=1.43\times10^{11}$ n=0.39 $E_{a}=5701$
$R_{1} = -C(=O)OR'$ O^{\bigcirc}_{U} $R_{a} = O C^{C}_{C}$ R_{2}	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation
	k(298K)= 1.3×10³	k(298K)= 3.6×10²	k(298K)= 7.2×10²	k(298K)= 2.0×10^{2}	k(298K)= 1.7	k(298K)= 5.6×10^2
	A= 1.85×10^{8}	$A= 6.49 \times 10^{9}$	$A=2.48\times10^{8}$	A= 1.08×10^{9}	$A=2.61\times10^4$	A= 6.70×10^9
	n= 1.33	n= 0.88	n=1.28	n= 1.10	n=2.71	n= 0.70
	E _a = 5784	$E_{a}= 6477$	$E_{a}=5965$	E _a = 6476	$E_a=7477$	E _a = 6037
$R_{1} = -ONO_{2}$ O^{\bigcirc}_{0} O^{\bigcirc}_{1} $O_{2}NO^{\frown}_{2}R_{2}$	1,3-Cyclisation k(298K)= 4.4×10⁶ $A=8.19\times10^{10}$ n=0.66 $E_a=4047$	1,3-Cyclisation k(298K)= 6.0×10^{6} A= 3.21×10 ¹² n= 0.16 E _a = 4196	1,3-Cyclisation $k(298K)=1.2\times10^7$ $A=1.22\times10^{11}$ n=0.55 $E_a=3684$	$\begin{array}{l} 1,3\text{-Cyclisation} \\ \textbf{k(298K)= 3.4\times10^6} \\ A=5.33\times10^{11} \\ n=0.37 \\ E_a=4195 \end{array}$	1,3-Cyclisation k(298K)= 1.4×10⁵ A=1.44×10 ⁷ n= 1.93 $E_a=4650$	1,3-Cyclisation $k(298K)=1.0\times10^7$ $A=3.02\times10^{12}$ n=-0.02 $E_a=3707$

$R_{1} = -CH_{2}ONO_{2}$ O^{\bigcirc} $O^{\textcircled{O}}$ $O^{(O}$ $O^{(O})$ O	1,4-H-migration	1,4-H-migration	1,4-H-migration	1,4-H-migration	1,4-H-migration	1,4-H-migration
	k (298K)=2.2×10 ³	k(298K)=1.9×10³	k(298K)=1.9×10³	k(298K)=2.3×10²	k(298K)=7.5×10²	k(298K)=3.4×10²
	$A=4.01\times10^{-56}$	$A=1.04\times10^{-56}$	$A=4.71\times10^{-56}$	A= 1.77×10 ⁻⁶⁴	A= 7.14×10 ⁻⁶⁰	A= 9.20×10 ⁻⁶²
	n=22.41	n=22.63	n=22.36	n= 25.21	n= 23.59	n= 24.15
	$E_a=-2271$	$E_{a}=-2252$	$E_{a}=-2253$	E _a = -2574	E _a = -2518	E _a = -2615
$R_{1} = -CHR_{a}ONO_{2}$ O^{\bigcirc}_{\bullet} $O_{2}NO_{\bullet}C_{\bullet}$ $CH_{\bullet}R_{2}$ R_{a}^{\prime}	1,4-H-migration	1,4-H-migration	1,4-H-migration	1,4-H-migration	1,4-H-migration	1,4-H-migration
	k(298K)=47	k(298K)=45	k(298K)=141	k (298K)= 21	k(298K)=25	k(298K)=122
	$A= 6.42 \times 10^{-71}$	A= 1.87×10^{-70}	A= 1.58×10^{-65}	$A=7.31\times10^{-71}$	A= 4.52×10^{-73}	$A=2.76\times10^{-65}$
	n= 27.47	n= 27.23	n= 25.45	n=27.20	n= 27.98	n=25.20
	$E_a= -2907$	E _a = -2752	E _a = -2745	$E_a=-2860$	E _a = -3097	$E_a=-2955$
$R_{1} = -CR_{a}R_{b}ONO_{2}$ O^{\bigcirc}_{U} $O_{2}NO_{U}C$ R_{a} R_{b}	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation
	k (298K)= 0.21	k(298K)= 0.29	k(298K)= 0.57	k(298K)= 0.16	k(298K)= 6.8×10^{-3}	k(298K)= 0.41
	$A=1.64\times10^7$	$A=6.42\times10^{8}$	$A=2.45\times10^7$	A=1.07×10 ⁸	A=2.88×10 ³	$A=7.27\times10^{8}$
	n=1.99	n=1.48	n=1.88	n= 1.70	n= 3.26	n=1.30
	$E_{a}=8789$	$E_{a}=8938$	$E_a=8426$	E _a = 8937	E _a = 9392	$E_{a}=8546$
$R_{1} = -OR'$ O^{\bigcirc} $O^{\textcircled{O}}$ $R'O^{\textcircled{O}}$ $R'O^{\textcircled{O}}$ $R'O^{\textcircled{O}}$ R_{2}	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation
	k(298K)= 1.1×10^5	k(298K)= 1.5×10^5	k(298K)= 2.9×10⁵	k(298K)= 8.3×10^4	k(298K)= 2.6×10³	$k(298K)=3.1\times10^5$
	A= 5.65×10^{10}	A= 2.21×10 ¹²	A= 8.44×10^{10}	A= 3.68×10^{11}	A=4.74×10 ⁹	$A=2.50\times10^{12}$
	n= 0.42	n= -0.08	n= 0.31	n= 0.13	n= 0.81	n=-0.27
	E _a = 4637	E _a = 4785	E _a = 4273	E _a = 4784	$E_a= 5658$	$E_a=4393$
$R_{1} = -OH$ O^{\bigcirc} $O^{\textcircled{O}}$ $HO^{\textcircled{C}}$ R_{2}	Unstable	Unstable	Unstable	Unstable	Unstable	Unstable
	Converts to peracid	Converts to peracid	Converts to peracid	Converts to peracid	Converts to peracid	Converts to peracid
$R_{1} = -CH_{2}OR'$ O^{\bigoplus} O^{\bigoplus} $R'O, C$ $CH_{2} R_{2}$	1,4-H-migration	1,4-H-migration	1,4-H-migration	1,4-H-migration	1,4-H-migration	1,4-H-migration
	k(298K)=280	k(298K)=237	k(298K)=239	k(298K)=28	k(298K)=95	k(298K)=42
	$A=4.45\times10^{-66}$	A= 1.15×10^{-66}	$A= 5.24 \times 10^{-66}$	A= 1.97×10^{-74}	A= 7.94×10 ⁻⁷⁰	$A=1.02\times10^{-71}$
	n=25.81	n= 26.03	n= 25.76	n= 28.61	n= 26.99	n=27.55
	$E_a=-2713$	E _a = -2693	$E_a= -2694$	E _a = -3016	E _a = -2960	$E_a=-3056$
$R_{1} = -CHR_{a}OR'$ $O^{\bigoplus}_{O^{\bigoplus}}$ $R'O, CH, R_{2}$ $R'O, CH, R_{2}$	1,4-H-migration	1,4-H-migration	1,4-H-migration	1,4-H-migration	1,4-H-migration	1,4-H-migration
	k (298K)= 5.8	k (298K)= 5.6	k(298K)=18	k (298K)= 2.6	k(298K)=3.1	k(298K)=15
	$A=3.35\times10^{-81}$	$A=2.09\times10^{-80}$	A= 1.76×10^{-75}	$A=8.13\times10^{-81}$	$A=5.02\times10^{-83}$	$A=3.07\times10^{-75}$
	n=30.87	n=30.63	n= 28.85	n=30.60	n=31.38	n=28.60
	$E_{a}=-3349$	$E_a=-3194$	E _a = -3187	$E_a=-3301$	$E_a=-3538$	$E_a=-3397$
$R_{1} = -CR_{a}R_{b}OR'$ $O^{\bigcirc}_{O} \\ O^{\bigcirc}_{C}$ $R'O_{C}, C'_{R_{a}}$ $R_{a} \\ R_{b}$ $R'O_{C} \\ R_{b}$	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation
	k(298K)= 0.10	k(298K)= 0.13	k(298K)= 0.27	k(298K)= 0.077	k(298K)= 3.2×10^{-3}	k(298K)= 0.19
	$A=1.18\times10^{11}$	$A=6.42\times10^{8}$	$A=2.45\times10^7$	$A=1.07 \times 10^{8}$	A=2.88×10 ³	$A=7.27\times10^{8}$
	n=0.80	n=1.48	n=1.88	n=1.70	n= 3.26	n=1.30
	$E_{a}=9635$	$E_{a}=8938$	$E_a=8426$	$E_{a}=8937$	E _a = 9392	$E_{a}=8546$

$ \begin{array}{c c} R_1 = -C(R_6)(R_7)C(R_8)(R_9) - \\ C(R_{10})(R_{11})OH \\ O^{\bigcirc} \\ O^{\textcircled{O}} \\ O^{O} $	Intramol. insertion	Intramol. insertion	Intramol. insertion	Intramol. insertion	Intramol. insertion	Intramol. insertion
	k(298K)= 1.5×10^7	k(298K)= 1.3×10^7	k(298K)= 1.3×10^7	k(298K)= 1.3×10^7	k(298K)= 1.0×10^7	k(298K)= 1.3×10^7
	A= 1.01×10^{15}	A= 6.58×10^{16}	A= 6.58×10^{16}	A= 6.58×10^{16}	A= 4.30×10^{18}	A= 6.58×10^{16}
	n= -1.13	n= -1.77	n= -1.77	n= -1.77	n= -2.41	n= -1.77
	E _a = 3441	E _a = 3661	E _a = 3661	E _a = 3661	E _a = 3882	E _a = 3661
$ \begin{array}{c} HO & C \\ R_2 \\ R_1 = -C(R_6)(R_7)C(R_8)(R_9) - \\ C(R_{10})(R_{11})C(R_{12})(R_{13})OH \\ O \end{array} $	Intramol. insertion	Intramol. insertion	Intramol. insertion	Intramol. insertion	Intramol. insertion	Intramol. insertion
	$k(298K)=1.7\times10^{6}$	k(298K)= 1.7×10^{6}	k(298K)= 1.7×10^{6}	k(298K)= 1.7×10^{6}	k(298K)= 1.7×10^{6}	k(298K)= 1.7×10^{6}
	$A=4.65\times10^{30}$	A= 4.65×10^{30}	A= 4.65×10^{30}	A= 4.65×10^{30}	A= 4.65×10^{30}	A= 4.65×10^{30}
	n=-7.03	n= -7.03	n= -7.03	n= -7.03	n= -7.03	n= -7.03
	E=4.842	E = 4842	E = 4.842	E = 4842	E = -4.842	E = -48.42
	1.2 Cyclication	1.2 Cyclication	1.2 Cyclication	1.2 Cyclication	1.2 Cualization	1.2 Cualization
$ \begin{array}{c} R_1 = -OOH \\ O^{\bigoplus} \\ O^{\bigoplus} \\ U \\ HOO \\ R_2 \end{array} $	k (298K)= 3.7×10^3	k (298K)= 5.0×10^3	$k(298K) = 1.0 \times 10^4$	$k(298K) = 2.9 \times 10^{3}$	k (298K)= 67	$k(298K) = 7.2 \times 10^3$
	A= 5.97×10^{10}	A= 2.34×10^{12}	$A = 8.92 \times 10^{10}$	$A = 3.89 \times 10^{11}$	A= 1.86×10^9	$A = 2.64 \times 10^{12}$
	n= 0.49	n= -0.02	n = 0.38	n = 0.20	n= 0.91	n = -0.21
	E _a = 5772	E _a = 5920	$E_a = 5408$	$E_a = 5919$	E _a = 6646	$E_a = 5528$
$ \begin{array}{c} R_1 = -CH_2OOH \\ O^{\bigcirc} \\ O^{\oplus} \\ HOO \\ CH_2 \\ R_2 \end{array} $	Intramol. insertion	Intramol. insertion	Intramol. insertion	Intramol. insertion	Intramol. insertion	Intramol. insertion
	k(298K)= 9.8×10⁴	k(298K)= 8.4×10³	k(298K)= 8.4×10³	k(298K)= 8.4×10³	k(298K)= 718	k(298K)= 8.4×10³
	$A= 2.45 \times 10^{3}$	$A=4.14\times10^{6}$	$A=4.14\times10^{6}$	$A=4.14\times10^{6}$	$A= 6.99 \times 10^9$	$A=4.14×10^{6}$
	n= 2.59	n=1.50	n=1.50	n=1.50	n= 0.42	n=1.50
	$E_{a}= 3300$	$E_{a}=4403$	$E_{a}=4403$	$E_{a}=4403$	$E_a= 5505$	$E_{a}=4403$
	1,4-H-migration	1,4-H-migration	1,4-H-migration	1,4-H-migration	1,4-H-migration	1,4-H-migration
	k(298K)= 663	k(298K)=564	k(298K)=568	k(298K)=68	k(298K)= 256	k(298K)=100
	$A=2.72\times10^{-57}$	$A=7.04\times10^{-58}$	$A=3.20\times10^{-57}$	$A=1.20\times10^{-65}$	$A=8.64\times10^{-63}$	$A=6.25\times10^{-63}$
	n=22.69	n=22.91	n=22.64	n=25.48	n=24.51	n=24.43
	$E_{a}=-2240$	$E_{a}=-2220$	$E_{a}=-2221$	$E_{a}=-2543$	$E_{a}=-2629$	$E_{a}=-2583$
$R_{1} = -CHR_{a}OOH$ O^{\bigcirc} $O^{\textcircled{B}}$ $HOO, C,$	Intramol. insertion	Intramol. insertion	Intramol. insertion	Intramol. insertion	Intramol. insertion	Intramol. insertion
	k(298K)= 8.4×10³	k(298K)= 8.4×10³	$k(298K) = 8.4 \times 10^{3}$	k(298K)= 8.4×10³	$k(298K) = 8.4 \times 10^{3}$	$k(298K) = 8.4 \times 10^{3}$
	$A=4.14\times10^{6}$	$A=4.14\times10^{6}$	$A = 4.14 \times 10^{6}$	$A=4.14\times10^{6}$	$A = 4.14 \times 10^{6}$	$A = 4.14 \times 10^{6}$
	n=1.50	n= 1.50	n = 1.50	n= 1.50	n = 1.50	n = 1.50
	E=4402	E=4402	E = 4402	E = 4402	E = 4402	E = -500
$\begin{array}{c} CH R_2\\ R_a \\ R_1 = -CR_2R_2OOH \end{array}$	$E_a = 4403$	$E_a = 4405$	Ea= 4405	$E_a = 4405$	Ea= 4405	E _a = 4405
$\begin{array}{c} N_1 = -CR_4R_5OOH \\ O^{\bigcirc} \\ O^{\textcircled{\odot}} \\ HOO_{O} C_{C} \\ R_2 \\ R_3 & R_2 \end{array}$		k (298K)= 8.4×10 ³ A= 4.14×10 ⁶ n= 1.50 E _a = 4403		$k(298K) = 8.4 \times 10^{3}$ A= 4.14×10 ⁶ n= 1.50 E _a = 4403		
$R_{1} = -C(R_{6})(R_{7})C(R_{8})(R_{9})OOH$	Intramol. insertion	Intramol. insertion	Intramol. insertion	Intramol. insertion	Intramol. insertion	Intramol. insertion
	k(298K)= 1.6×10^7	k(298K)= 1.6×10^7	k(298K)= 1.6×10^7	k(298K)= 1.6×10^7	k(298K)= 1.6×10^7	k(298K)= 1.6×10^7
	A= 2.89×10 ¹⁷	A= 2.89×10^{17}	A= 2.89×10^{17}	A= 2.89×10^{17}	$A= 2.89 \times 10^{17}$	A= 2.89×10^{17}
	n= -1.96	n= -1.96	n= -1.96	n= -1.96	n= -1.96	n= -1.96
	E _a = 3708	E _a = 3708	E _a = 3708	E _a = 3708	$E_a= 3708$	E _a = 3708

$R_1 = -C(R_6)(R_7)C(R_8)(R_9) - C(R_{10})(R_{11})OOH$	Intramol. insertion $k(298K) = 1.7 \times 10^4$	Intramol. insertion k(298K)= 1.7×10 ⁴	Intramol. insertion k(298K) = 1.7 ×10 ⁴	Intramol. insertion k(298K)= 1.7 ×10 ⁴	Intramol. insertion k(298K)= 1.7×10⁴	Intramol. insertion k(298K)= 1.7 ×10 ⁴
O^{Θ}	$A = 1.16 \times 10^{21}$	$A = 1.16 \times 10^{21}$	$A = 1.16 \times 10^{21}$	$A = 1.16 \times 10^{21}$	$A = 1.16 \times 10^{21}$	$A = 1.16 \times 10^{21}$
Ŭ `O⊕	n= -3.12	n= -3.12	n= -3.12	n= -3.12	n= -3.12	n= -3.12
HOO	$E_{a}=6253$	$E_a = 6253$	$E_a = 6253$	$E_{a} = 6253$	$E_a = 6253$	$E_a = 6253$
$R_1 = -COOH$	Intramol. insertion k(298K)= 9.0 ×10 ⁵	Intramol. insertion k(298K)= 9.0 ×10 ⁵	Intramol. insertion k(298K)= 9.0 ×10 ⁵	Intramol. insertion k(298K)= 9.0×10⁵	Intramol. insertion k (298K)= 9.0 × 10 ⁵	Intramol. insertion k(298K)= 9.0×10⁵
_O⊕	$A = 9.81 \times 10^{10}$	$A = 9.81 \times 10^{10}$	$A = 9.81 \times 10^{10}$	$A = 9.81 \times 10^{10}$	$A = 9.81 \times 10^{10}$	$A = 9.81 \times 10^{10}$
но С	n=0.79 E = 4700	n = 0.79 E = 4700	n = 0.79 E = 4700	n = 0.79 E = 4700	n = 0.79 E = 4700	n = 0.79 E = 4700
$ \begin{array}{c} $	$E_a = 4790$	$E_a = 4790$	$E_a = 4790$	$E_a = 4790$	$E_a = 4790$	$E_a = 4790$
$\mathbf{R}_1 = -\mathbf{C}(\mathbf{R}_6)(\mathbf{R}_7)\mathbf{COOH}$	$CO_2 + Alkene$	$CO_2 + Alkene$	$CO_2 + Alkene$	$CO_2 + Alkene$	$CO_2 + Alkene$	$CO_2 + Alkene$
O(⊖	$K(298K) = 4.0 \times 10^{10}$	$K(298K) = 4.0 \times 10^{10}$	$\mathbf{K}(298\mathbf{K}) = 4.0 \times 10^{10}$	$K(298K) = 4.0 \times 10^{10}$	$\mathbf{K}(298\mathbf{K}) = 4.0 \times 10^{10}$	$K(298K) = 4.0 \times 10^{10}$
$O O O \Phi$	n = 0.54	n = 0.54	n = 0.54	n = 0.54	n = 0.54	n = 0.54
, C, P	$E_a = 1232$	$E_a = 1232$	$E_a = 1232$	$E_a = 1232$	$E_a = 1232$	$E_a = 1232$
\mathbf{R}_{2}	SOZ formation	SO7 formation	SO7 formation	SOZ formation	SO7 formation	SOZ formation
$C(R_{\circ})(R_{\circ})COOH$	$k(298K) = 8.9 \times 10^2$	$k(298K) = 8.9 \times 10^2$	$k(298K) = 8.9 \times 10^2$	$k(298K) = 8.9 \times 10^2$	$k(298K) = 8.9 \times 10^2$	$k(298K) = 8.9 \times 10^2$
O^{Θ}	$A = 5.32 \times 10^{15}$	$A = 5.32 \times 10^{15}$	$A = 5.32 \times 10^{15}$	$A = 5.32 \times 10^{15}$	$A = 5.32 \times 10^{15}$	$A = 5.32 \times 10^{15}$
Ŭ. O⊕	n= -1.70	n= -1.70	n= -1.70	n= -1.70	n= -1.70	n= -1.70
HO. A C	$E_a = 5877$	$E_a = 5877$	$E_a = 5877$	$E_{a} = 5877$	$E_a = 5877$	$E_a = 5877$
R_2	Intramol insertion	Intramol insertion	Intramol insertion	Intramol insertion	Intramol insertion	Intramol insertion
Ö	$k(298K) = 5.0 \times 10^2$	$k(298K) = 5.0 \times 10^2$	$k(298K) = 5.0 \times 10^2$	$k(298K) = 5.0 \times 10^2$	$k(298K) = 5.0 \times 10^2$	$k(298K) = 5.0 \times 10^2$
	$A = 1.69 \times 10^{16}$	$A = 1.69 \times 10^{16}$	$A = 1.69 \times 10^{16}$	$A = 1.69 \times 10^{16}$	$A = 1.69 \times 10^{16}$	$A = 1.69 \times 10^{16}$
	n= -1.68	n= -1.68	n= -1.68	n= -1.68	n= -1.68	n= -1.68
	$E_a = 6435$	$E_a = 6435$	$E_a = 6435$	$E_a = 6435$	$E_a = 6435$	$E_a = 6435$
$R_1 = -C(R_6)(R_7)C(R_8)(R_9) - C(R_{10})(R_{11})COOH$	$k(298K) = 8.2 \times 10^4$	$k(298K) = 8.2 \times 10^4$	$k(298K) = 8.2 \times 10^4$	$k(298K) = 8.2 \times 10^4$	$k(298K) = 8.2 \times 10^4$	$k(298K) = 8.2 \times 10^4$
	$A = 6.15 \times 10^{15}$	$A = 6.15 \times 10^{15}$	$A = 6.15 \times 10^{15}$	$A = 6.15 \times 10^{15}$	$A = 6.15 \times 10^{15}$	$A = 6.15 \times 10^{15}$
O°	n= -2.28	n= -2.28	n= -2.28	n= -2.28	n= -2.28	n= -2.28
	$E_a = 3596$	$E_a = 3596$	$E_a = 3596$	$E_a = 3596$	$E_a = 3596$	$E_a = 3596$
HO R ₂	Intromol insertion	Intromol insertion	Intromol insortion	Intromal insertion	Intromol insertion	Intromol insertion
	$k(298K) = 1.2 \times 10^3$	$k(298K) = 1.2 \times 10^3$	$k(298K) = 1.2 \times 10^3$	$k(298K) = 1.2 \times 10^3$	$k(298K) = 1.2 \times 10^3$	$k(298K) = 1.2 \times 10^3$
	$A = 4.71 \times 10^{13}$	$A = 4.71 \times 10^{13}$	$A = 4.71 \times 10^{13}$	$A = 4.71 \times 10^{13}$	$A = 4.71 \times 10^{13}$	$A = 4.71 \times 10^{13}$
	n= -1.19	n= -1.19	n= -1.19	n= -1.19	n= -1.19	n=-1.19
	$E_a = 5241$	$E_a = 5241$	$E_a = 5241$	$E_a = 5241$	$E_a = 5241$	$E_a = 5241$
$R_1 = -OOOH$	Unstable	Unstable	Unstable	Unstable	Unstable	Unstable
Q,⊡	Converts to peracid + ${}^{1}\Omega_{2}$	Converts to peracid + ${}^{1}\Omega_{2}$	Converts to peracid + ${}^{1}O_{2}$	Converts to peracid + ${}^{1}O_{2}$	Converts to peracid + ${}^{1}O_{2}$	$\frac{1}{1}$
O.A.		<i>₩</i> 2	\sim_2	U 2	<i>₩</i> 2	<i>₩</i> 2

Table 31: Predicted total rate coefficients for unimolecular carbonyl oxide decay as a function of the two substituents R_1 and R_2 . Indicated is the mode of reaction, the rate coefficient k (s⁻¹) at 298K, and the parameters of a Kooij equation fit $k(T) = A \times (T/K)^n \times \exp(-E_a/T)$ between 200 and 450 K (A in s⁻¹, E_a in K). The meaning of the SAR substituents is explained in section S. Note that the theoretical work here does not consider systematic variations for $R_a/R_b/R_c/R_3/R_4/R_5/R'$, and the values listed are for substituents –H (when appropriate), –CH₃, –C₂H₅, or an average of the prediction for these substituents. Values in green are based directly on theoretical kinetic calculations, whereas values in orange are estimated values based on the reactivity trends for other substituents. The values are standardized in number of digits, see Vereecken et al.⁸ for an uncertainty analysis.

o^{\ominus}	$R_2 = \alpha - C = O$	$R_2 = \alpha - ONO_2$		$R_2 = -C(R_6)(R_7)ONO_2$	$R_2 = -OR'$	$R_2 = -OH$
 Cli⊕	o,⊖ O.⊕	o ⊙⊕		o⊖ o⊕	o⊝ o⊕	o⊖ o⊕
$R_1 R_2$	$\begin{array}{c} \overset{\text{II}}{\underset{\text{C}}{\overset{\text{C}}{\overset{\text{R}}}}} R_{3}\\ \overset{\text{II}}{\underset{\text{O}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}}{\overset{\text{II}}}{\overset{\text{II}}}{\overset{\text{II}}}{\overset{\text{II}}}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}{\overset{\text{II}}{\overset{\text{II}}}{\overset{\text{II}}}}}}}}}}$		(b)	$\mathbf{R}_{1}^{'} \mathbf{C}_{\mathbf{R}_{6}'}^{'ONO_{2}}$	Č R ₁ OR'	, С R ₁ ОН
$ \begin{array}{c} \mathbf{R}_{1} = -\mathbf{C}\mathbf{H}_{3} \\ \mathbf{O}^{\bigcirc} \\ \mathbf{O}^{\textcircled{\Theta}} \\ \mathbf{H}_{3}\mathbf{C}^{\textcircled{C}} \mathbf{R}_{2} \end{array} $	1,4-H-migration k(298K)=3.6 $A=2.22\times10^{-80}$ n=30.26 $E_{a}=-3670$	1,3-Cyclisation k(298K)=6.8×10⁴ $A=2.84\times10^{12}$ n=0.09 $E_{a}=5388$	1,4-H-migration k(298K)=2.3×10³ $A=7.77×10^{-51}$ n=20.63 $E_a=-1675$	1,4-H-migration k(298K)=477 A= 1.44×10^{-58} n= 23.12 E _a = -2282	1,3-Cyclisation k(298K)=4.7×10⁴ $A=5.31×10^{11}$ n=0.47 $E_a=5646$	1,3-Cyclisation k(298K)=4.6×10⁴ $A=8.54\times10^{11}$ n=0.37 $E_a=5618$
$R_{1} = -CH_{2}R_{a}$ O^{\bigcirc} O^{\oplus} $C_{R_{a}} - CH_{2}R_{2}$	1,4-H-migration k(298K)=1.8 A= 2.16×10 ⁻⁸² n= 30.89 E _a = -3783	1,3-Cyclisation $k(298K)=2.6\times10^5$ $A=3.23\times10^{11}$ n=0.44 $E_a=4932$	1,4-H-migration k(298K)=1.2×10³ $A=7.56\times10^{-53}$ n=21.26 $E_a=-1788$	1,4-H-migration k(298K)=246 A= 1.40×10 ⁻⁶⁰ n= 23.75 E_a = -2395	1,3-Cyclisation $k(298K)=1.8\times10^{5}$ $A=6.04\times10^{10}$ n=0.82 $E_{a}=5190$	1,3-Cyclisation k(298K)=1.7×10⁵ $A=9.71\times10^{10}$ n=0.72 $E_a=5163$
$R_{1} = -CHR_{a}R_{b}$ O^{\odot} O^{\odot} $R_{a} CHR_{2}$ $R_{b} CHR_{2}$	1,4-H-migration k(298K)=7.2×10⁻² A= 5.61×10 ⁻⁹⁴ n= 34.72 E_a = -4282	1,3-Cyclisation k(298K)=9.6×10⁵ A= 1.83×10^{14} n= -0.48 E _a = 4871		1,4-H-migration k(298K)=10 A= 3.65×10 ⁻⁷² n= 27.58 E _a = -2893	1,3-Cyclisation k(298K)=6.6×10⁵ $A=3.41\times10^{13}$ n=-0.10 $E_a=5129$	1,3-Cyclisation k(298K)=6.4×10⁵ $A=5.49\times10^{13}$ n=-0.20 $E_a=5101$
$R_{1} = -CR_{a}R_{b}R_{c}$ O^{\bigoplus}_{II} $R_{a} \subset C_{R_{b}}$ R_{c} R_{c} R_{c}	1,3-Cyclisation k(298K)=1.4×10⁻⁴ A= 6.31×10 ⁷ n= 1.88 E _a = 11194	1,3-Cyclisation $k(298K)=2.7\times10^{6}$ $A=5.47\times10^{13}$ n=-0.26 $E_{a}=4560$		1,3-Cyclisation k(298K)=0.55 A= 7.10×10^8 n= 1.40 E _a = 8635	1,3-Cyclisation $k(298K)=1.9\times10^{6}$ $A=1.02\times10^{13}$ n=0.12 $E_{a}=4818$	1,3-Cyclisation k(298K)=1.8×10⁶ A= 1.64×10 ¹³ n= 0.01 $E_a= 4791$
$ \begin{array}{c} R_1 = -H \\ O^{\bigoplus} \\ O^{\bigoplus} \\ H \\ C \\ H \\ R_2 \end{array} $	1,3-Cyclisation k(298K)=0.031 $A = 6.61 \times 10^5$ n = 2.51 $E_a = 9286$	1,3-Cyclisation $k(298K)=2.8\times10^{8}$ $A=6.54\times10^{12}$ n=0.08 $E_{a}=3130$		1,3-Cyclisation k(298K)=124 $A=7.44\times10^{6}$ n=2.03 $E_{a}=6727$	1,3-Cyclisation k(298K)=7.1×10⁷ $A = 2.57 \times 10^{12}$ n = 0.25 $E_a = 3559$	1,3-Cyclisation k(298K)=6.1×10⁷ $A=2.06\times10^{12}$ n=0.25 $E_a=3530$

o^{Θ}	$R_2 = -C(R_6)(R_7)OR'$	$R_2 = -C(R_6)(R_7)OH$	$R_2 = -CCOH$	$R_2 = -C_{n \ge 3}OH$	$R_2 = -OOH$	$R_2 = -C(R_6)(R_7)OOH$
Ŭ _⊕	o [⊖] _	o [⊖] _	0 [©]	o,⊖	o,⊖	o [⊖] _
) O	, Ö.	,Ö,⊕	, O(+)	, O (+)	, Ö. (+)
, Č	C _C OR'	_,Ċ _{、_,OH}		C OH	Č,	_,С,_оон
R_1 R_2	$R_1 C$	$R_1 C_{n}$	R ₁ [↓] OH	R ₁ * *	R ₁ OOH	R ₁ ~
, "	R_6 /	$\frac{K_6}{1.4 \text{ H migration}}$	1 4 U migration	Intramal insertion	1.2 Cualization	1 4 U migration
$\mathbf{K}_1 = -\mathbf{C}\mathbf{H}_3$	k(298K)=109	k(298K)=288	k(298K)=462	$k(298K)=1.1\times10^{7}$	$k(298K)=4.2\times10^{5}$	k(298K)=83
	$A = 2.26 \times 10^{-63}$	$A = 8.11 \times 10^{-61}$	$A = 3.22 \times 10^{-60}$	$A = 2.54 \times 10^{24}$	$A = 4.82 \times 10^{12}$	$A = 8.73 \times 10^{-63}$
	n= 24.68	n= 23.92	n= 23.75	n= -4.84	n = 0.02	n= 24.41
	$E_a = -2483$	$E_a = -2308$	$E_a = -2343$	$E_a = 3685$	$E_a = 4871$	$E_a = -2462$
$R_1 = -CH_2R_3$	1,4-H-migration	1,4-H-migration	1,4-H-migration	Intramol. insertion	1,3-Cyclisation	1,4-H-migration
O^{Θ}	k(298K)=56	k(298K)=149	k(298K)=118	k(298K)=1.1×10 ⁷	k(298K)=1.6×10 ⁶	k(298K)=43
` <u>`</u>	$A = 2.20 \times 10^{-65}$	$A = 7.90 \times 10^{-63}$	A= 7.86×10 ⁻⁶⁵	$A=2.54\times10^{24}$	$A = 5.48 \times 10^{11}$	$A = 8.50 \times 10^{-65}$
0=0	n= 25.31	n= 24.55	n= 25.23	n= -4.84	n=0.37	n= 25.04
$R_a - CH_2 R_2$	$E_a = -2595$	$E_a = -2421$	$E_a = -2580$	$E_a = 3685$	$E_a = 4415$	$E_a = -2574$
$R_1 = -CHR_aR_b$	1,4-H-migration	1,4-H-migration	1,4-H-migration	Intramol. insertion	1,3-Cyclisation	1,4-H-migration
0 ⁰	k(298K)=2.3	k(298K)=6.1	k(298K)=6.5	k(298K)=1.1×10 ⁷	k(298K)=6.0×10 ⁶	k(298K)=1.7
`o⊕	$A = 5.73 \times 10^{-77}$	$A = 2.0 \times 10^{-74}$	$A = 1.07 \times 10^{-74}$	$A = 2.54 \times 10^{24}$	$A=3.10\times10^{14}$	$A = 2.21 \times 10^{-76}$
	n=29.14	n=28.38	n = 28.46	n = -4.84	n = -0.55	n= 28.87
R_b CH R_2	$E_a = -3094$	$E_a = -2919$	$E_a = -3006$	$E_a = 3685$	$E_a = 4354$	$E_a = -30/3$
$R_1 = -CR_aR_bR_c$	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	Intramol. insertion	1,3-Cyclisation	1,3-Cyclisation
o⊖	k(298K)=0.23	k(298K)=0.56	k(298K)=1.7	k(298K)=1.1×10 ⁷	k(298K)=1.7×10 ⁷	k(298K)=0.43
_`o⊕	$A = 1.24 \times 10^9$	$A = 7.29 \times 10^{11}$	$A = 9.89 \times 10^{7}$	$A = 2.54 \times 10^{24}$	$A = 9.28 \times 10^{13}$	$A = 3.11 \times 10^{11}$
R_{a} , $\overset{II}{C}$	n = 1.26 E = 9911	n = 0.41 E = 0.016	n=1.25 E = 7.428	n = -4.84 E = 2685	n = -0.34 E = 4042	n = 0.45
R_{b} C R_{2}	$E_a = 0011$	$E_a = 9010$	$E_a = 7430$	$E_a = 5005$	$E_a = 4045$	$E_a = 8907$
Ŕ _c						
$R_1 = -H$	1,3-Cyclisation	1,3-Cyclisation	1,3-Cyclisation	Intramol. insertion	1,3-Cyclisation	1,3-Cyclisation
l o [⊖]	k(298K)=53	k(298K)=77 A = 2.52×10 ⁹	k(298K)=390	$k(298K) = 4.6 \times 10^{\circ}$	$k(298K)=1.7\times10^{\circ}$	k(298K)=97
, , , , , , , , , ,	$A = 1.50 \times 10^{\circ}$ n = 1.89	$A = 2.35 \times 10^{\circ}$ n = 1.18	$A= 1.04 \times 10^{\circ}$ n= 1.87	$A = 9.03 \times 10^{-5}$ n = -7.01	$A = 9.54 \times 10^{\circ}$ n = 1.21	$A= 5.20 \times 10^{7}$ n= 1.08
, Č	$E_a = 6902$	$E_{a} = 7158$	$E_{a} = 5530$	$E_{a} = 3387$	$E_a = 2564$	$E_a = 6998$
H R ₂						
O C	$R_2 = -C_{n \ge 2}OOH$	$R_2 = -COOH$	$\mathbf{R}_{2} = -\mathbf{C}(\mathbf{R}_{6})(\mathbf{R}_{7})\mathbf{COOH}$		$R_2 = -C_{n \ge 2}COOH$	$R_2 = -OOOH$
) O⊕		O,⊂	o,⊖		O,⊂	o∵
	R. COH	C OH	Rí OH		R ₁ C OH	
$R_1 R_2$			(a)	(b)		
$R_1 = -CH_3$	Intramol. insertion	1,4-H-migration	$CO_2 + alkene$	1,4-H-migration	Intramol. insertion	1,3-Cyclisation
	$K(298K)=5.7\times10^{7}$	K(298K)=3.6	K(298K)=2.0 A = 2.50×10 ⁹	K(298K)=314	$K(298K)=5.3\times10^{4}$	$K(298K) = 5.8 \times 10^{3}$
) Ö	$A= 5.47 \times 10^{22}$ n= -4.41	$A = 2.22 \times 10^{-00}$ n = 30.26	$A = 3.39 \times 10^{7}$ n = 0.48	$A = 1.00 \times 10^{-52}$ n = 24.56	$A= 3.47 \times 10^{-2}$ n = -0.91	$A = 1.10 \times 10^{10}$ n = -0.10
, Č	$E_a = 3335$	$E_a = -3670$	$E_a = 7162$	$E_a = -2422$	$E_a = 3958$	$E_a = 4947$
1	1					

$ \begin{array}{c} R_1 = -CH_2R_a \\ O^{\bigcirc} \\ O^{\oplus} \\ I \\ R_a - CH_2 R_2 \end{array} $	Intramol. insertion	1,4-H-migration	CO ₂ + alkene	1,4-H-migration	Intramol. insertion	1,3-Cyclisation
	k(298K)=5.7×10 ⁷	k (298K)= 1.8	k(298K)=2.0	k(298K)=162	k(298K)=5.3×10⁴	$k(298K)=1.5 \times 10^{6}$
	A= 3.47×10 ²³	$A = 2.16 \times 10^{-82}$	A= 3.59×10^9	$A=1.56\times10^{-64}$	$A=5.47\times10^{12}$	$A= 1.26 \times 10^{12}$
	n= -4.41	n = 30.89	n= 0.48	n=25.19	n=-0.91	n= 0.25
	E _a = 3335	$E_a = -3783$	E _a = 7162	$E_a=-2535$	$E_a=3958$	$E_{a}= 4491$
$\begin{array}{c} R_{1} = -CHR_{a}R_{b} \\ O \\ O \\ \vdots \\ R_{a} \\ CH \\ R_{b} \end{array} $	Intramol. insertion	1,4-H-migration	CO ₂ + alkene	1,4-H-migration	Intramol. insertion	1,3-Cyclisation
	k(298K)=5.7×10^7	k(298K)=7.2×10⁻²	k(298K)=2.0	k(298K)=6.6	k(298K)=5.3×10⁴	k(298K)=5.4×10⁶
	A= 3.47×10 ²³	$A=5.61\times10^{-94}$	A= 3.59×10^{9}	$A=4.05\times10^{-76}$	$A=5.47\times10^{12}$	A=7.10×10 ¹⁴
	n= -4.41	n=34.72	n= 0.48	n=29.02	n=-0.91	n= -0.67
	E _a = 3335	$E_a=-4282$	E _a = 7162	$E_a=-3033$	$E_{a}=3958$	E _a = 4430
$R_{I} = -CR_{a}R_{b}R_{c}$ $O^{\bigoplus}_{O^{\bigoplus}}$ $R_{a} C^{\frown}_{C} R_{2}$ R_{c}	Intramol. insertion	1,3-Cyclisation	CO ₂ + alkene	1,3-Cyclisation	Intramol. insertion	1,3-Cyclisation
	k(298K)=5.7×10^7	k(298K)=1.4×10⁻⁴	k(298K)=2.0	k(298K)=0.18	k(298K)=5.3×10⁴	$k(298K)=1.5\times10^7$
	A= 3.47×10 ²³	A= 6.31×10 ⁷	A= 3.59×10^9	A= 1.25×10 ⁹	$A=5.47\times10^{12}$	$A=2.13\times10^{14}$
	n= -4.41	n= 1.88	n= 0.48	n= 1.35	n=-0.91	n=-0.46
	E _a = 3335	E _a = 11194	E _a = 7162	E _a = 9031	$E_a=3958$	$E_a=4119$
$ \begin{array}{c} \mathbf{R}_{1} = -\mathbf{H} \\ \mathbf{O}^{\bigoplus} \\ \mathbf{O}^{\bigoplus} \\ \mathbf{C} \\ \mathbf{H}^{'} \mathbf{R}_{2} \end{array} $	Intramol. insertion k (298K)= 5.7 × 10 ⁷ A= 3.47×10^{23} n= -4.41 E _a = 3335	1,3-Cyclisation k(298K)=0.031 A= 6.61×10 ⁵ n= 2.51 E _a = 9286	$\begin{array}{l} \text{CO}_2 + \text{alkene} \\ \textbf{k(298K)=21} \\ \text{A}= 6.40 \times 10^{12} \\ \text{n}= -0.53 \\ \text{E}_a = 6970 \end{array}$	1,3-Cyclisation k(298K)=42 $A= 1.31 \times 10^7$ n= 1.97 $E_a= 7123$	Intramol. insertion k(298K)=5.3×10⁴ $A=5.47\times10^{12}$ n=-0.91 $E_a=3958$	1,3-Cyclisation k(298K)=2.7×10⁸ $A=6.07\times10^{11}$ n=0.32 $E_a=2842$

U. Structure-Activity Relationships (SARs) for $SCI + H_2O$ reactions

Table 32: Predicted total rate coefficients for the reaction of carbonyl oxide with H₂O monomers as a function of the two substituents R₁ and R₂, based on fitting theory-derived reaction trends to a set of literature data. The rate coefficient k (cm³ molecule⁻¹ s⁻¹) is given at 298 K, and the parameters of a Kooij equation fit $k(T) = A \times (T/K)^n \times \exp(-E_a/T)$ between 200 and 450 K (*A* in cm³ molecule⁻¹ s⁻¹), *E_a* in K). The definition of R_a/R_b/R_c/R₃/R₄/R₅/R' is given in Table 29. Values in green are based directly on experimental and/or theoretical kinetic calculations, values in orange are values estimated by applying (averaged) reaction trends for other substituents.

_ o [⊖]	$R_2 = -CH_3$	$R_2 = -CH_2R_a$	$R_2 = -CHR_aR_b$	$R_2 = -CR_aR_bR_c$	$R_2 = -H$	$R_2 = vinyl$
$ \begin{array}{c} $	0 [⊖] 0⊕ " R ₁ CH ₃	$\begin{array}{c} O \\ O \\ C \\ C \\ R_1 \\ C \\ C \\ C \\ C \\ C \\ R_a \end{array}$	$\stackrel{O \bigoplus}{\overset{O}{}_{R_1}}_{R_1} \stackrel{C}{C} H_{R_b}^{-R_a}$	$\begin{array}{c} O^{\bigoplus} \\ O^{\bigoplus} \\ R_1 \\ C \\ R_c \\ R_c \\ R_c \end{array}$	O O O R ₁ H	$ \begin{array}{c} O \\ O \\ H \\ R_{1} \\ C \\ R_{3} \\ R_{3} \end{array} \begin{array}{c} R_{5} \\ R_{5} \\ C \\ R_{4} \\ R_{4} \end{array} $
$ \begin{array}{c} R_1 = -CH_3 \\ O \bigoplus \\ O \bigoplus \\ H_3C \longleftarrow R_2 \end{array} $	$k=7.5 \times 10^{-18}$ A= 3.87×10 ⁻²⁰ n= 1.91 E _a = 1677	$k=9.1 \times 10^{-18}$ $A=1.41 \times 10^{-20}$ $n=2.03$ $E_{a}=1524$	$k=4.3 \times 10^{-18}$ $A=2.06 \times 10^{-19}$ $n=1.60$ $E_a=1813$	$\begin{array}{l} \textbf{k=1.5\times10^{-17}} \\ A = 1.64 \times 10^{-19} \\ n = 1.64 \\ E_a = 1441 \end{array}$	$k=6.7 \times 10^{-19}$ $A=2.19 \times 10^{-19}$ $n=1.68$ $E_a=2513$	$k=8.1 \times 10^{-20}$ A= 7.07×10 ⁻¹⁹ n= 1.46 E _a = 3132
$\begin{array}{c} R_1 = -CH_2R_a \\ O \stackrel{\bigcirc}{} \\ O \stackrel{\bigcirc}{} \\ O \stackrel{\bigcirc}{} \\ \\ R_a - CH_2 R_2 \end{array}$	k=1.5×10⁻¹⁷ A=4.19×10 ⁻²⁰ n= 1.78 E _a = 1265	k=1.8×10⁻¹⁷ A= 3.24×10 ⁻²⁰ n= 1.74 E _a = 1057	$k=3.3 \times 10^{-18}$ A= 8.90×10 ⁻²⁰ n= 1.59 E _a = 1631	k=2.9×10⁻¹⁷ A= 1.78×10 ⁻¹⁹ n= 1.50 E _a = 1029	$k=1.5 \times 10^{-18}$ A= 1.23×10 ⁻¹⁸ n= 1.39 E _a = 2300	$k=1.9 \times 10^{-19}$ $A=3.33 \times 10^{-17}$ $n=0.82$ $E_{a}=2932$
$\begin{array}{c} R_1 = -CHR_aR_b \\ O \stackrel{\bigcirc}{\odot} \\ O \stackrel{\oplus}{\bullet} \\ R_a \stackrel{C}{\searrow} CH \\ R_b \stackrel{C}{\searrow} CH \\ R_2 \end{array}$	$\begin{array}{l} \textbf{k=9.8\times10^{-18}}\\ A=1.39{\times}10^{-20}\\ n=1.74\\ E_a=998 \end{array}$	$k=2.0 \times 10^{-17}$ $A=1.21 \times 10^{-18}$ $n=1.08$ $E_{a}=1000$	$k=1.0 \times 10^{-17}$ $A=1.61 \times 10^{-20}$ $n=1.63$ $E_a=842$	k=1.9×10⁻¹⁷ A= 5.89×10 ⁻²⁰ n= 1.46 E _a = 762	$\begin{array}{l} \textbf{k=9.2 \times 10^{-18}} \\ A = 5.76 \times 10^{-18} \\ n = 1.11 \\ E_a = 1740 \end{array}$	$k=1.1 \times 10^{-18}$ $A = 6.69 \times 10^{-20}$ $n= 1.52$ $E_a= 1734$

$ \begin{array}{c} R_1 = -CR_3 = CR_4R' \\ O \stackrel{\bigcirc}{\bigcirc} \\ O \stackrel{\oplus}{\bigcirc} \\ R'_{-} C = C \stackrel{ C }{\underset{R_4}{\bigcirc} C} R_2 \\ R_3 \end{array} $	$\begin{array}{l} \textbf{k=1.8 \times 10^{-18}} \\ A = 2.21 \times 10^{-21} \\ n = 2.27 \\ E_a = 1858 \end{array}$	$ k=2.4 \times 10^{-18} $	$ k=1.8 \times 10^{-18} $	$k=3.5 \times 10^{-18}$ A= 9.36×10 ⁻²¹ n= 1.99 E _a = 1622	$k=1.4 \times 10^{-19}$ A= 3.20×10 ⁻²⁰ n= 1.92 E _a = 2819	$k=1.9 \times 10^{-20}$ A= 1.40×10 ⁻²⁰ n= 1.93 E _a = 3200
$R_{1} = -CH = O$ O^{\bigcirc} $O^{\textcircled{O}}$ $H_{C} C^{\frown} R_{2}$	$ k=1.4 \times 10^{-14} $	$k=1.7 \times 10^{-14}$ $A= 6.04 \times 10^{-20}$ $n= 1.64$ $E_{a}= -966$	$\begin{array}{l} \textbf{k=1.4\times10^{-14}}\\ A=9.03\times10^{-20}\\ n=1.57\\ E_{a}\text{=-913} \end{array}$	k=2.8×10⁻¹⁴ A= 3.31×10^{-19} n= 1.41 E _a = -993	$k=7.7 \times 10^{-16}$ A= 3.04×10 ⁻¹⁹ n= 1.59 E _a = 370	$ k=1.0 \times 10^{-16} $
$R_{1} = -C(=O)R_{a}$ O^{\bigoplus} O^{\bigoplus} $R_{a} \subset C$ R_{2} C R_{2}	$\begin{array}{l} \textbf{k=5.5\times10^{-14}}\\ A=2.18\times10^{-19}\\ n=1.43\\ E_a=-1268 \end{array}$	$\begin{array}{l} \textbf{k=6.7\times10^{-14}} \\ A=1.68\times10^{-19} \\ n=1.39 \\ E_a=-1477 \end{array}$	$k=5.6 \times 10^{-14}$ $A=2.52 \times 10^{-19}$ $n=1.32$ $E_{a}=-1425$	k=1.1×10⁻¹³ A= 9.23×10^{-19} n= 1.16 E _a = -1504	$\begin{array}{l} \textbf{k=3.0\times10^{-15}} \\ A = 8.48 \times 10^{-19} \\ n = 1.35 \\ E_a = -141 \end{array}$	$k=3.9\times10^{-16}$ A= 3.71×10 ⁻¹⁹ n= 1.36 E _a = 239
$R_{1} = -C(=0)OR'$ O^{\bigcirc} $O^{\textcircled{O}}$ $R_{a} = O C^{\textcircled{O}}$	$ k=1.7 \times 10^{-15} $	$\begin{array}{l} \textbf{k=2.1\times10^{-15}} \\ A=4.21\times10^{-20} \\ n=1.54 \\ E_a=-615 \end{array}$	$ k=1.8 \times 10^{-15} $	k=3.4×10⁻¹⁵ A= 2.30×10^{-19} n= 1.31 E _a = -642	$ k=1.7 \times 10^{-15} $	$ k=1.2 \times 10^{-17} $
$\mathbf{R}_1 = -\mathbf{C}(\mathbf{R}_6)(\mathbf{R}_7)\mathbf{ONO}_2$	k=3.4×10⁻¹⁸ A= 1.40×10 ⁻²¹	k=4.2×10⁻¹⁸ A= 1.08×10 ⁻²¹	k=3.5×10⁻¹⁸ A= 1.62×10 ⁻²¹	$k=6.7 \times 10^{-18}$ $A=5.93 \times 10^{-21}$ $n=2.18$	k=2.8×10⁻¹⁹ A= 7.08×10^{-32}	$k=2.8 \times 10^{-20}$ A= 1.56×10 ⁻²¹ n=2.42
$ \begin{array}{c} 0^{\oplus} \\ 0_{2}NO \\ C \\ R_{6} \\ R_{7} \end{array} $	n= 2.46 E _a = 1848	n= 2.42 E _a = 1640	n= 2.34 E _a = 1692	$E_a = 1612$	$E_a = 1372$	$E_a = 3264$
$ \begin{array}{c} 0^{\oplus} \\ 0_{2}NO, & \\ C, & \\ R_{6}, & \\ R_{7} \end{array} $ $ \begin{array}{c} R_{1} = -OR', \\ 0^{\oplus} \\ 0^{\oplus} \\ C, & \\ R_{2} \end{array} $ $ \begin{array}{c} R_{1} = -OR', \\ 0^{\oplus} \\ C, & \\ R_{2} \end{array} $	$n=2.46$ E _a = 1848 $k=2.4\times10^{-15}$ A= 1.45×10 ⁻¹⁹ n= 1.43 E _a = -471	$n=2.42 \\ E_a=1640$ k=3.0×10⁻¹⁵ A=1.12×10 ⁻¹⁹ n=1.39 E_a=-679	n= 2.34 E _a = 1692 k=2.5×10⁻¹⁵ A= 1.67×10 ⁻¹⁹ n= 1.32 E _a = -627	$\mathbf{k} = 2.18$ $\mathbf{E}_{a} = 1612$ $\mathbf{k} = 4.8 \times 10^{-15}$ $\mathbf{A} = 6.14 \times 10^{-19}$ $\mathbf{n} = 1.16$ $\mathbf{E}_{a} = -707$	$\mathbf{k} = 3.90$ $\mathbf{E}_{a} = 1372$ $\mathbf{k} = 4.3 \times 10^{-16}$ $\mathbf{A} = 3.13 \times 10^{-19}$ $\mathbf{n} = 1.43$ $\mathbf{E}_{a} = 272$	$\mathbf{k} = 2.43$ $\mathbf{E}_{a} = 3264$ $\mathbf{k} = 5.6 \times 10^{-17}$ $\mathbf{A} = 1.37 \times 10^{-19}$ $\mathbf{n} = 1.44$ $\mathbf{E}_{a} = 652$
$ \begin{array}{c} $	n= 2.46 E _a = 1848 $k=2.4 \times 10^{-15}$ A= 1.45×10 ⁻¹⁹ n= 1.43 E _a = -471 Unstable	n= 2.42 E _a = 1640 k=3.0×10⁻¹⁵ A= 1.12×10 ⁻¹⁹ n= 1.39 E _a = -679 Unstable	n= 2.34 E_a = 1692 k=2.5×10⁻¹⁵ A= 1.67×10 ⁻¹⁹ n= 1.32 E_a = -627 Unstable	$E_{a} = 1612$ $k=4.8 \times 10^{-15}$ $A = 6.14 \times 10^{-19}$ $n= 1.16$ $E_{a} = -707$ Unstable	$H = 3.90$ $E_a = 1372$ $k = 4.3 \times 10^{-16}$ $A = 3.13 \times 10^{-19}$ $n = 1.43$ $E_a = 272$ Unstable	$\mathbf{k} = 2.43$ $\mathbf{E}_{a} = 3264$ $\mathbf{k} = 5.6 \times 10^{-17}$ $\mathbf{A} = 1.37 \times 10^{-19}$ $\mathbf{n} = 1.44$ $\mathbf{E}_{a} = 652$ Unstable

$R_1 = -C(R_6)(R_7)OH$	Addition	Addition	Addition	Addition	Addition	Addition
	$k=1.4 \times 10^{-17}$	$k=1.7 \times 10^{-17}$	k=1.5×10⁻¹⁷	k=2.8×10⁻¹⁷	k=7.8×10⁻¹⁸	$k=1.0 \times 10^{-18}$
	$A = 1.36 \times 10^{-21}$	$\Delta = 1.05 \times 10^{-21}$	A=1.57×10 ⁻²¹	$A = 5.74 \times 10^{-21}$	$\Delta = 1.03 \times 10^{-18}$	$\Delta = 4.52 \times 10^{-19}$
HO C B	n=2.22	n=2.18	n=2.11	n=1.95	n=1.30	n=1.32
	E _a = 1016	E _a = 808	E _a = 860	E _a = 780	E _a = 1610	E _a = 1990
$R_{6} = -C(R_{6})(R_{7})C(R_{8})(R_{9})OH$ O^{\bigcirc}_{0} HO^{\bigcirc}_{1} R_{2}	Ringcl. Catal. \mathbf{k} =3.6×10 ⁻¹⁷ A = 1.52×10 ⁻⁴⁸ n = 11.21 E_a = -2500 Addition \mathbf{k} =5.3×10 ⁻¹⁶ A = 1.77×10 ⁻¹⁵ n = -0.44 E_a = -387	Ringcl. Catal. $k=4.5 \times 10^{-17}$ $A = 1.18 \times 10^{-48}$ n = 11.17 $E_a = -2709$ Addition $k=4.2 \times 10^{-16}$ $A = 7.77 \times 10^{-15}$ n = -0.75 $E_a = -406$	Ringcl. Catal. k=3.7×10⁻¹⁷ A=1.76×10 ⁻⁴⁸ n=11.09 E ₄ =-2656 Addition k=4.2×10⁻¹⁶ A=1.18×10 ⁻¹⁴ n=-0.74 E _a =-263	Ringcl. Catal. k=7.1×10⁻¹⁷ A= 6.46×10^{-48} n= 10.93 E _a = -2736 Addition k=2.7×10⁻¹⁵ A= 6.95×10^{-14} n= -1.00 E _a = -719	Ringcl. Catal. $k=2.1\times10^{-17}$ $A=8.35\times10^{-33}$ n=5.91 $E_{a}=-535$ Addition $k=5.1\times10^{-17}$ $A=3.08\times10^{-14}$ n=-0.76 $E_{a}=620$	Ringcl. Catal. k=2.8×10⁻¹⁸ A= 3.65×10^{-33} n= 5.92 E _a = -155 Addition k=6.8×10⁻¹⁸ A= 1.35×10^{-14} n= -0.74 E _a = 1000
	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.	Ringel. Catal.	Ringel. Catal.	Ringel. Catal.
	$k=5.6 \times 10^{-16}$	k=4.4×10⁻¹⁶	k=4.5×10⁻¹⁶	k=2.8×10⁻¹⁵	$k=5.4 \times 10^{-17}$	k=7.1×10⁻¹⁸
	$A= 2.99 \times 10^{-15}$	A= 1.31×10^{-14}	$A=1.99×10^{-14}$	$A=1.17\times10^{-13}$	$A=5.20 \times 10^{-14}$	$A=2.28\times10^{-14}$
	n= -0.38	n= -0.70	n=-0.68	n=-0.94	n=-0.70	n=-0.69
	$E_a= -151$	E _a = -170	$E_{a}=-27$	$E_a=-483$	$E_a=856$	$E_a=1236$
$R_{1} = -C(R_{6})(R_{7})C(R_{8})(R_{9}) - C(R_{10})(R_{11})OH$ O^{\bigcirc}_{HO} HO^{\bigcirc}_{HO} R_{2}	$(k \sim 5 \times 10^{-11})$	(k ~ 5×10 ⁻¹¹)	$(k \sim 5 \times 10^{-11})$	(k ~ 5×10 ⁻¹¹)	Kingel. Catal. (k ∼ 5×10 ⁻¹¹)	Kingel, Catal. (k ~ 5×10 ⁻¹¹)
$R_{1} = -C(R_{6})(R_{7})C(R_{8})(R_{9}) - C(R_{10})(R_{11})C(R_{12})(R_{13})OH$	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.
	(k ~ 5×10 ⁻¹¹)	(k ~ 5×10 ⁻¹¹)	(k ~ 5×10 ⁻¹¹)	(k ~ 5×10 ⁻¹¹)	(k ~ 5×10⁻¹¹)	(k ~ 5×10 ⁻¹¹)
$ \begin{array}{c} \mathbf{R}_{1} = -\mathbf{OOH} \\ \mathbf{O}^{\ominus} \\ \mathbf{O}^{\oplus} \\ \mathbf{C} \\ \mathbf{C} \\ \mathbf{R}_{1} \end{array} $	No data	No data	No data	No data	No data	No data
$\begin{array}{c} \text{HOO} \text{K}_2 \\ \text{R}_1 = -\text{C}(\text{R}_6)(\text{R}_7)\text{OOH} \\ O \\ C \\ \text{R}_6 \\ R_7 \end{array}$	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.	Ringel. Catal.
	k=1.7×10⁻¹⁴	k=2.1×10⁻¹⁴	k=1.7×10⁻¹⁴	k=3.3×10⁻¹⁴	k=1.4×10⁻¹⁵	k=1.8×10⁻¹⁶
	$A = 7.63 \times 10^{-25}$	$A=5.90\times10^{-25}$	$A=8.82\times10^{-25}$	$A=3.23×10^{-24}$	$A= 1.50 \times 10^{-17}$	$A=6.55\times10^{-18}$
	n = 3.08	n=3.04	n=2.97	n=2.81	n= 0.59	n=0.60
	$E_a = -1865$	$E_a=-2073$	$E_a=-2021$	$E_a=-2101$	$E_a= -352$	$E_a=28$

$R_{1} = -C(R_{6})(R_{7})C(R_{8})(R_{9})OOH$	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	Ringel. Catal. (k ~ 5×10 ⁻¹¹)	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)
$HOO \overset{C}{} R_2$	Dinard Catal	Dinard Catal	Direct Catal	Dingel Catal	Dinasl Catal	Dingel Catal
$R_{1} = -C(R_{6})(R_{7})C(R_{8})(R_{9})-$ $C(R_{10})(R_{11})OOH$ O_{0}^{\bigcirc} HOO_{1} R_{2}	$(k \sim 5 \times 10^{-11})$	$(k \sim 5 \times 10^{-11})$	$(k \sim 5 \times 10^{-11})$	$(k \sim 5 \times 10^{-11})$	kingel: Catal: k=3.6×10⁻¹² $A=3.11\times10^{-9}$ n=-2.12 $E_a=-1582$	k=4.8×10⁻¹³ A= 1.36×10^{-9} n= -2.10 E _a = -1202
$R_{1} = -COOH$ O^{\bigoplus} O^{\bigoplus} $HO C^{C} R_{2}$	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.
	k=2.8×10⁻¹³	k=2.2×10⁻¹³	k=2.2×10⁻¹³	$k=1.4 \times 10^{-12}$	$k=2.7 \times 10^{-14}$	k=3.6×10⁻¹⁵
	$A=5.74\times10^{-34}$	$A=2.51×10^{-33}$	A= 3.83×10^{-33}	$A=2.25 \times 10^{-32}$	$A=9.99 \times 10^{-33}$	$A=4.37\times10^{-33}$
	n=6.54	n=6.23	n= 6.24	n=5.99	n=6.22	n=6.24
	$E_a=-3086$	$E_a=-3105$	E _a = -2961	$E_a=-3418$	$E_a=-2078$	$E_a=-1698$
$R_{1} = -C(R_{6})(R_{7})COOH$ O^{\bigcirc} O^{\bigcirc} HO^{\bigcirc} R_{2}	CO ₂ +alkene Catal.	CO ₂ +alkene Catal.	CO ₂ +alkene Catal.	CO ₂ +alkene Catal.	CO ₂ +alkene Catal.	CO ₂ +alkene Catal.
	k=3.0×10⁻¹³	k=2.4×10⁻¹³	k=2.4×10⁻¹³	k=1.5×10⁻¹²	k=2.9×10⁻¹⁴	k=3.8×10⁻¹⁵
	$A=4.64\times10^{-33}$	A= 2.03×10^{-32}	A= 3.09×10^{-32}	A= 1.82×10^{-31}	A= 8.08×10^{-32}	A= 3.53×10^{-32}
	n=6.18	n= 5.87	n= 5.88	n= 5.63	n= 5.86	n= 5.88
	$E_a=-3094$	E _a = - 3114	E _a = -2970	E _a = -3426	E _a = -2087	E _a = -1707
$R_{1} = -C(R_{6})(R_{7})C(R_{8})(R_{9})COOH$ O_{1}^{\bigcirc} HO_{1} C_{1} R_{2}	Ringcl. Catal.	Ringcl. Catal.	Ringel. Catal.	Ringcl. Catal.	Ringcl. Catal.	Ringel. Catal.
	k=4.8×10⁻¹³	k=3.8×10⁻¹³	k=3.8×10⁻¹³	k=2.4×10⁻¹²	k=4.6×10⁻¹⁴	k=6.1×10⁻¹⁵
	$A=4.59\times10^{-21}$	$A=2.01\times10^{-20}$	A= 3.06×10^{-20}	$A=1.80\times10^{-19}$	A= 7.98×10^{-20}	$A=3.49\times10^{-20}$
	n=1.61	n=1.30	n= 1.31	n=1.06	n= 1.29	n=1.31
	$E_a=-2764$	$E_a=-2783$	E _a = -2639	$E_a=-3096$	E _a = -1756	$E_a=-1376$
$R_{1} = -C(R_{6})(R_{7})C(R_{8})(R_{9}) - C(R_{10})(R_{11})COOH$	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.
	k=6.2×10⁻¹²	k=4.9×10⁻¹²	k=5.0×10⁻¹²	k=3.1×10⁻¹¹	k=6.0×10⁻¹³	k=8.0×10⁻¹⁴
	$A = 5.54 \times 10^{-19}$	$A=2.43\times10^{-18}$	A= 3.69×10^{-18}	$A=2.17\times10^{-17}$	$A=9.63\times10^{-18}$	$A = 4.22 \times 10^{-18}$
	n = 0.42	n=0.10	n= 0.12	n=-0.14	n=0.10	n = 0.11
	$E_a = -4129$	$E_a=-4148$	E _a = -4005	$E_{a}=-4461$	$E_a=-3122$	$E_{a} = -2742$
$ \begin{array}{c} \mathbf{R}_1 = -\mathbf{OOOH} \\ \mathbf{O} \stackrel{\bigcirc}{\mathbf{O}} \\ \mathbf{O} \stackrel{\bigcirc}{\mathbf{O}} \\ \mathbf{H} \\ \mathbf{H} \\ \mathbf{OOO} \stackrel{\frown}{\mathbf{C}} \\ \mathbf{R}_2 \end{array} $	No data	No data	No data	No data	No data	No data

Table 33: Predicted total rate coefficients for the reaction of carbonyl oxide with H₂O monomers as a function of the two substituents R₁ and R₂, based on fitting theory-derived reaction trends to a set of literature data. The rate coefficient k (cm³ molecule⁻¹ s⁻¹) is given at 298 K, and the parameters of a Kooij equation fit $k(T) = A \times (T/K)^n \times \exp(-E_a/T)$ between 200 and 450 K (A in cm³ molecule⁻¹ s⁻¹, E_a in K). The definition of R_a/R_b/R_c/R₃/R₄/R₅/R' is given in Table 29. Values in green are based directly on experimental and/or theoretical kinetic calculations, values in orange are values estimated by applying (averaged) reaction trends for other substituents.

o^{\ominus}	$R_2 = \alpha - C = O$	$R_2 = \alpha - ONO_2$	$R_2 = -C(R_6)(R_7)ONO_2$	$R_2 = -OR'$	$R_2 = -OH$	$R_2 = -C(R_6)(R_7)OR'$
⊕		o(⊖	O(⊖	Q⊖	o(⊖	o,⊖
		0°		0 U		O [⊕]
C _	$R_1 C^{R_3}$	\mathbf{R}_1 ONO ₂	$R_1 C_{1}$	R ₁ OR'	R ₁ OH	$R_1 C^{OR'}$
$R_1 R_2$	Ö		$\dot{R}_6 R_7$			$\dot{R}_6 R_7$
$R_1 = -CH_3$	k=7.8×10 ⁻²¹	No data	k=7.3×10 ⁻¹⁸	k=3.7×10 ⁻¹⁵	No data	k=9.2×10 ⁻¹⁸
00	$A = 3.90 \times 10^{-20}$		$A = 3.64 \times 10^{-21}$	$A = 6.80 \times 10^{-22}$		$A = 2.12 \times 10^{-19}$
ŏ⊙⊕	n= 1.97		n= 2.21	n= 2.42		n= 1.56
, ^{II}	$E_a = 3825$		$E_a = 1478$	$E_{a} = -512$		$E_{a} = 1533$
H ₃ C´ R ₂						
$R_1 = -CH_2R_a$	$k=1.2\times10^{-20}$	No data	$k=1.1 \times 10^{-17}$	$k=5.6\times10^{-15}$	No data	$k=1.4\times10^{-17}$
0 [⊕]	$A= 5.5 / \times 10^{20}$ n = 1.83		$A= 5.02 \times 10^{-1}$ n= 2.06	$A = 9.30 \times 10^{-2}$ n = 2.28		$A = 2.92 \times 10^{-5}$ n = 1.42
O ^U	$E_a = 3556$		$E_a = 1209$	$E_a = -781$		$E_a = 1264$
$\mathbf{F} - \mathbf{C} \mathbf{H}_{2} \mathbf{R}_{2}$						
$R_a = -CHR_aR_b$	k=1.3×10 ⁻²⁰	No data	k=1.2×10 ⁻¹⁷	k=6.3×10 ⁻¹⁵	No data	k=1.6×10 ⁻¹⁷
$\alpha \Theta$	$A = 2.16 \times 10^{-19}$		$A = 2.02 \times 10^{-20}$	$A = 3.77 \times 10^{-21}$	110 000	$A = 1.18 \times 10^{-18}$
, O.⊕	n= 1.41		n= 1.64	n= 1.86		n= 1.00
R. C.	$E_a = 3223$		$E_a = 876$	$E_a = -1114$		$E_a = 931$
R_{h}						
$R_1 = -CR_aR_bR_c$	k=1.2×10 ⁻²⁰	No data	k=1.1×10 ⁻¹⁷	k=5.6×10 ⁻¹⁵	No data	k=1.4×10 ⁻¹⁷
0^{Θ}	A= 4.27×10 ⁻²⁰		A= 3.98×10 ⁻²¹	A=7.43×10 ⁻²²		$A = 2.32 \times 10^{-19}$
`o⊕	n= 1.87		n=2.10	n = 2.32		n= 1.46
$R_a \downarrow C \downarrow$	$E_a = 3553$		$E_a = 1206$	$E_a = -784$		$E_a = 1261$
$R_b - C R_2$						
R _c	1. 5.0.10-18	N. Jata	1- 2.0.10-14	L 2 0. 10-12	N. J.t.	L 2 510-14
$K_1 = -H$	$K=3.0\times10^{-10}$ $\Delta=1.59\times10^{-18}$	ino data	$K=2.0\times10^{-17}$ $\Delta=3.57\times10^{-19}$	$K=3.0\times10^{-12}$ $\Delta=2.01\times10^{-19}$	ino data	$K=2.5\times10^{-17}$ $\Delta=2.08\times10^{-17}$
	n = 1.53		n = 1.54	n = 1.68		n = 0.90
	$E_a = 2258$		$E_a = -639$	$E_a = -2078$		$E_a = -584$
H R ₂						

o^{Θ}	$R_2 = -C(R_6)(R_7)OH$	$R_2 = -CCOH$	$R_2 = -C_{n \ge 3}OH$	$R_2 = -OOH$	$R_2 = -C(R_6)(R_7)OOH$	
	o⊖	o(⊖	0 [©]	O(⊖ (⊖	o(⊖	
		O U U	O ⁽⁺⁾	00		
, C	R ₁ C ^{OH}	R ₁ OH	R ₁ C OH	Ŕ1 ООН	R_1	
$R_1 R_2$	$\mathbf{R}_{6}^{\prime}\mathbf{R}_{7}$	·			(a)	(b)
$R_1 = -CH_3$	Addition	Addition	Ringel. Catal.	No data	Addition	Ringcl. Catal.
l o [⊖]	$k=6.6\times10^{-17}$	$k=2.3\times10^{-10}$	$(k \sim 5 \times 10^{-11})$		$k=1.2\times10^{-10}$ A = 2.43×10^{-41}	$k=2.1\times10^{-10}$
Ŭ,	n = 1.45	n = 5.12			n = 8.53	n = 3.33
H ₂ C R ₂	$E_a = 914$	$E_a = -1396$			$E_a = -2460$	$E_a = -1475$
$R_1 = -CH_2R_a$	Addition	Addition	Ringcl. Catal.	No data	Addition	Ringcl. Catal.
00	k=9.8×10 ⁻¹⁷	k=5.5×10 ⁻¹⁶	$(k \sim 5 \times 10^{-11})$		k=1.8×10 ⁻¹⁶	k=3.2×10 ⁻¹⁶
ò⊕	$A = 5.14 \times 10^{-19}$	$A = 2.86 \times 10^{-30}$			$A = 3.34 \times 10^{-41}$	$A = 1.21 \times 10^{-26}$
, Ë	n=1.50 $E_{0}=645$	n = 4.00 $F_{0} = -1.895$			n = 8.39 $F_{0} = -2729$	n = 5.18 $F_{0} = -1744$
R_a -CH ₂ R ₂		La- 1075				
$R_1 = -CHR_aR_b$	Addition	Addition	Ringel. Catal.	No data	Addition	Ringel. Catal.
l o(⊖	$A = 2.07 \times 10^{-18}$	$A = 2.93 \times 10^{-30}$	$(\mathbf{K} \sim 5 \times 10^{-1})$		$A = 1.35 \times 10^{-40}$	$A = 4.87 \times 10^{-26}$
	n = 0.88	n= 4.63			n= 7.97	n= 2.76
$R_{a} CH R_{2}$	Ea= 313	Ea= -2147			Ea=-3061	E _a = -2077
$R_1 = -CR_aR_bR_c$	Addition	Addition	Ringcl. Catal.	No data	Addition	Ringcl. Catal.
o [⊖] _	$k=9.9\times10^{-17}$	$k=7.4\times10^{-10}$	$(k \sim 5 \times 10^{-11})$		$k=1.8\times10^{-10}$	$k=3.2\times10^{-10}$
) Ö	$A = 4.08 \times 10^{-5}$ n = 1.34	$A = 1.51 \times 10^{-5}$ n = 4.80			$A= 2.03 \times 10^{-10}$ n= 8.43	n = 3.22
R_a C R_2	$E_a = 643$	$E_a = -1969$			$E_a = -2731$	$E_a = -1746$
R _c						
$R_1 = -H$	Addition	Addition	Ringel. Catal.	No data	Addition	Ringcl. Catal.
	$k=1.1\times10^{-13}$ $\Delta=2.19\times10^{-19}$	$k=6.4 \times 10^{-13}$ $\Delta = 4.45 \times 10^{-29}$	$(\mathbf{K} \sim 5 \times 10^{-11})$		$k=4.3 \times 10^{-13}$ $\Delta = 1.32 \times 10^{-26}$	$K=9.3 \times 10^{-13}$ $\Delta = 1.70 \times 10^{-15}$
O [®]	n=1.49	n = 4.46			n=3.88	n = -0.45
L C R₂	$E_a = -1387$	$E_a = -3513$			$E_a = -2693$	E _a = -1273
o⊖	$R_2 = -C_{n \ge 2}OOH$	R ₂ = -COOH	$R_2 = -C(R_6)(R_7)COOH$	-C _{n≥2} COOH	R ₂ =-OOOH	
) D⊕		o,⊡		o,⊡		
	R ₁ OOH	R_1	R ₁ OH	R ₁ V ^U		
$R_1 R_2$		O II		O II		
$R_1 = -CH_3$	Ringel. Catal.	No data	CO_2 +alkene Catal.	Ringel. Catal.	No data	
	(K ~ 5×10 **)		$A = 1.37 \times 10^{-26}$	(K ~ 5×10)		
			n= 3.66			
			$E_a = -938$			
J - 2	I					I

$ \begin{array}{c} R_1 = -CH_2R_a \\ O^{\bigcirc} \\ O^{\textcircled{P}} \\ \vdots \\ R_a - CH_2 \\ R_2 \end{array} $	Ringel. Catal. (k ~ 5×10 ⁻¹¹)	No data	CO ₂ +alkene Catal. k=8.6×10⁻¹⁶ A= 8.58×10^{-26} n= 3.20 E _a = -1437	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	No data
$\begin{array}{c} R_{1}=-CHR_{a}R_{b}\\ O^{\textcircled{O}}\\ \vdots\\ R_{a}\\ CH\\ R_{b}\\ \end{array}$	Ringel. Catal. (k ~ 5×10 ⁻¹¹)	No data	CO ₂ +alkene Catal. k=1.8×10⁻¹⁵ A= 8.80×10^{-26} n= 3.17 E _a = -1689	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	No data
$R_{1} = -CR_{a}R_{b}R_{c}$ O^{\bigoplus}_{II} $R_{a} C^{\bigoplus}_{I}$ $R_{b} C^{\top}_{I}$ R_{c} R_{c}	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	No data	CO ₂ +alkene Catal. k=1.2×10⁻¹⁵ A= 3.94×10^{-26} n= 3.34 E _a = -1511	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	No data
$ \begin{array}{c} \mathbf{R}_{1} = -\mathbf{H} \\ \mathbf{O}^{\bigodot} \\ \overset{\bigodot}{\mathbf{O}^{\oplus}} \\ \mathbf{H}^{'} \\ \mathbf{R}_{2} \end{array} $	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	No data	CO ₂ +alkene Catal. k=1.0×10⁻¹² A= 1.34×10^{-24} n= 3.00 E _a = -3055	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	No data

V. Structure-Activity Relationships (SARs) for SCI + (H₂O)₂ reactions

Table 34: Predicted total rate coefficients for the reaction of carbonyl oxide with (H₂O)₂ as a function of the two substituents R₁ and R₂, based on fitting theory-derived reaction trends to a set of literature data. The rate coefficient k (cm³ molecule⁻¹ s⁻¹) is given at 298K, and the parameters of a Kooij equation fit $k(T) = A \times (T/K)^a \times \exp(-E_a/T)$ between 200 and 450 K (*A* in cm³ molecule⁻¹ s⁻¹, E_a in K). The definition of R_a/R_b/R_c/R₃/R₄/R₅/R' is given in Table 29. Values in green are based directly on experimental and/or theoretical kinetic calculations, values in orange are values estimated by applying (averaged) reaction trends for other substituents.

	$R_2 = -CH_3$	$R_2 = -CH_2R_a$	$R_2 = -CHR_aR_b$	$R_2 = -CR_aR_bR_c$	$R_2 = -H$	$\mathbf{R}_2 = \mathbf{vinyl}$
$R_1 R_2$	0 [⊖] 0⊕ ,C R ₁ CH ₃	$\begin{array}{c} O \stackrel{\bigoplus}{} \\ O \stackrel{\bigoplus}{} \\ \overset{\parallel}{,} \\ R_1 \\ C H_2 \cdot R_a \end{array}$	$\stackrel{O \bigoplus}{\overset{O}{\overset{\Box}{}{}}}_{R_1} CH_{R_b}^{R_a}$	$\begin{array}{c} O^{\bigoplus} \\ O^{\bigoplus} \\ R_1 \\ C \\ R_b \\ R_c \\ R_b \end{array}$	O O C R ₁ H	$ \begin{array}{c} O \\ O \\ H \\ R_{1} \\ C \\ R_{3} \\ R_{3} \end{array} \begin{array}{c} R_{5} \\ R_{5} \\ R_{5} \\ R_{5} \\ R_{4} \end{array} $
$R_1 = -CH_3$	k=1.8×10 ⁻¹⁴	k=2.1×10 ⁻¹⁴	k=1.1×10 ⁻¹⁴	k=3.2×10 ⁻¹⁴	k=2.1×10 ⁻¹⁵	k=3.1×10 ⁻¹⁶
O O ⊕ O ⊕	$A=3.90\times10^{-20} \\ n=1.91 \\ E_{a}=-643$	$A = 1.41 \times 10^{-20}$ n = 2.03 E _a = -786	$A = 2.05 \times 10^{-19}$ n = 1.60 E _a = -512	$A = 1.70 \times 10^{-19}$ n = 1.63 E _a = -849	$A=2.27\times 10^{-19} \\ n=1.67 \\ E_a=121$	$A = 7.63 \times 10^{-19}$ n = 1.45 E _a = 675
H_3C R_2						
$\begin{array}{c} R_1 = -CH_2R_a \\ O \bigoplus_{\substack{O \\ O \\ C \\ C \\ C \\ C \\ \end{array}} \end{array}$	$k=3.2\times10^{-14}$ $A=4.27\times10^{-20}$ $n=1.77$ $E_{a}=-1022$	$k=3.8 \times 10^{-14}$ $A=3.39 \times 10^{-20}$ $n=1.73$ $E_{a}=-1213$	$k=7.6 \times 10^{-15}$ $A=8.75 \times 10^{-20}$ $n=1.60$ $E_{a}=-682$	$k=5.7 \times 10^{-13}$ $A=1.86 \times 10^{-19}$ $n=1.50$ $E_{a}=-1227$	$k=4.3 \times 10^{-15}$ $A=1.26 \times 10^{-18}$ $n=1.39$ $E_{a}=-68$	$k=6.5 \times 10^{-16}$ $A=3.52 \times 10^{-17}$ $n=0.81$ $E_a=510$
R_a -CH ₂ R ₂	11		11	14	11	
$ \begin{array}{c} R_1 = -CHR_aR_b\\ O^{\bigcirc}\\ O^{}\\ C\\ R_a \\ R_b \\ \end{array} CHR_2$	$ \mathbf{k} = 1.9 \times 10^{-14} $ $ A = 1.39 \times 10^{-20} $ $ n = 1.74 $ $ E_a = -1261 $			$ \mathbf{k} = 5.4 \times 10^{-14} $ $ \mathbf{A} = 6.04 \times 10^{-20} $ $ \mathbf{n} = 1.46 $ $ \mathbf{E}_a = -1466 $		$K=2.8 \times 10^{-13}$ $A=6.86 \times 10^{-20}$ $n=1.51$ $E_{a}=-590$

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{l} \textbf{k=4.8\times10^{-15}}\\ A=2.25\times10^{-21}\\ n=2.27\\ E_{a}=-493 \end{array}$	$ k=5.9 \times 10^{-15} $	$ k=4.6 \times 10^{-15} $	k=8.5×10⁻¹⁵ A= 9.79×10^{-21} n= 1.99 E _a = -698	$k=5.0 \times 10^{-16}$ A= 3.33×10 ⁻²⁰ n= 1.91 E _a = 384	$k=7.7 \times 10^{-17}$ $A=1.52 \times 10^{-20}$ $n=1.92$ $E_{a}=722$
$R_{1} = -CHO$ O^{\bigoplus} O^{\bigoplus} $H C^{C}$ R_{2}	$ k=1.5 \times 10^{-11} $	$ k=1.7 \times 10^{-11} $	$k=1.4\times10^{-11} \\ A=9.30\times10^{-20} \\ n=1.56 \\ E_{a}=-2963$	k=2.6×10⁻¹¹ A= 3.51×10^{-19} n= 1.40 E _a = -3033	$ k=1.1 \times 10^{-12} $	$k=1.7 \times 10^{-13}$ $A=1.39 \times 10^{-19}$ $n=1.60$ $E_{a}=-1467$
$R_{1} = -C(O)R_{a}$ O^{\bigoplus} O^{\bigoplus} $R_{a} C^{\bigoplus}$ R_{2}		$ k=5.5 \times 10^{-11} $	$k=4.5\times10^{-11}$ A= 2.61×10 ⁻¹⁹ n= 1.32 E _a = -3414	k=8.3×10⁻¹¹ A= 9.83×10 ⁻¹⁹ n= 1.15 E_a = -3485	$k=3.6 \times 10^{-12}$ $A=8.53 \times 10^{-19}$ $n=1.35$ $E_{a}=-2256$	$k=5.5 \times 10^{-13}$ $A=3.91 \times 10^{-19}$ $n=1.35$ $E_{a}=-1918$
$R_{1} = -C(=O)OR'$ O^{\bigcirc}_{U} $R_{a} = O C'C_{C} R_{2}$	$\begin{array}{l} \textbf{k=2.0\times10^{-12}}\\ A=5.17\times10^{-20}\\ n=1.59\\ E_{a}=-2508 \end{array}$	$\begin{array}{l} \textbf{k=2.3\times10^{-12}}\\ A=4.10\times10^{-20}\\ n=1.54\\ E_{a}=-2700 \end{array}$	$k=1.9\times10^{-12}$ $A=5.96\times10^{-20}$ $n=1.47$ $E_{a}=-2643$	$\begin{array}{l} \textbf{k=3.5\times10^{-12}} \\ A=2.25\times10^{-19} \\ n=1.31 \\ E_{a}=-2714 \end{array}$	$\begin{array}{l} \textbf{k=1.5 \times 10^{-13}} \\ A = 1.95 \times 10^{-19} \\ n = 1.51 \\ E_a = -1485 \end{array}$	$k=2.3 \times 10^{-14}$ $A=8.94 \times 10^{-20}$ $n=1.51$ $E_{a}=-1147$
$R_{1} = -C(R_{6})(R_{7})ONO_{2}$ O^{\bigcirc}_{O} $O_{2}NO_{C}$ R_{6} R_{2} R_{6} R_{2}	$\begin{array}{l} \textbf{k=8.8\times10^{-15}}\\ A=1.43\times10^{-21}\\ n=2.45\\ E_{a}=-492 \end{array}$	$\begin{array}{l} \textbf{k=1.0\times10^{-14}}\\ A=1.14\times10^{-21}\\ n=2.41\\ E_a=-683 \end{array}$	$ k=8.4 \times 10^{-15} $	$k=1.6 \times 10^{-14} \\ A = 6.22 \times 10^{-21} \\ n = 2.18 \\ E_a = -697$	$\begin{array}{l} \textbf{k=1.2 \times 10^{-15}} \\ A = 2.01 \times 10^{-20} \\ n = 2.17 \\ E_a = 393 \end{array}$	$ k=1.2 \times 10^{-16} $
$ \begin{array}{c} \mathbf{R}_1 = -\mathbf{O}\mathbf{R}' \\ \mathbf{O}^{\bigcirc} \\ \mathbf{O}^{\textcircled{\odot}} \\ \mathbf{C}^{\textcircled{\odot}} \\ \mathbf{R}'\mathbf{O}^{\textcircled{\odot}} \mathbf{R}_2 \end{array} $	$\begin{array}{l} \textbf{k=3.0\times10^{-12}}\\ A=1.46\times10^{-19}\\ n=1.43\\ E_{a}\text{=-2589} \end{array}$	$\begin{array}{l} \textbf{k=3.5\times10^{-12}} \\ A=1.16\times10^{-19} \\ n=1.38 \\ E_{a}=-2780 \end{array}$	$ k=2.8 \times 10^{-12} A= 1.68 \times 10^{-19} n= 1.32 Ea= -2724 $	$ k=5.3 \times 10^{-12} $	$ k=6.4 \times 10^{-13} $	$\begin{array}{l} \textbf{k=9.8\times10^{-14}}\\ A=1.45\times10^{-19}\\ n=1.43\\ E_a=-1569 \end{array}$
$ \begin{array}{c} R_1 = -OH \\ O^{\bigoplus} \\ O^{\oplus} \\ C \\ HO \\ R_2 \end{array} $	Unstable	Unstable	Unstable	Unstable	Unstable	Unstable
$R_{1} = -C(R_{6})(R_{7})OR'$ O^{\bigoplus}_{II} $R'O_{II}$ $R'O_{II}$ $R'O_{II}$ $R'O_{II}$ $R'O_{II}$ R_{2} R_{6} R_{7}	$\begin{array}{l} \textbf{k=2.7\times10^{-14}}\\ A=2.78\times10^{-18}\\ n=1.34\\ E_{a}=-460 \end{array}$	$\begin{array}{l} \textbf{k=3.2\times10^{-14}}\\ A=2.21\times10^{-18}\\ n=1.30\\ E_{a}=\textbf{-651} \end{array}$	$ k=2.6 \times 10^{-14} $	k=4.9×10⁻¹⁴ A= 1.21×10^{-17} n= 1.06 E _a = -665	$ k=3.8 \times 10^{-15} $	$\begin{array}{l} \textbf{k=3.6\times10^{-16}} \\ A=3.43\times10^{-18} \\ n=1.30 \\ E_{a}=819 \end{array}$

$ \begin{array}{c} \mathbf{R}_1 = -\mathbf{C}(\mathbf{R}_6)(\mathbf{R}_7)\mathbf{OH} \\ \mathbf{O}^{\bigodot} \\ \mathbf{O}^{\textcircled{O}} \\ \mathbf{HO}_{\mathbf{C}} \\ \mathbf{HO}_{\mathbf{C}} \\ \mathbf{R}_2 \end{array} $	Addition $k=3.0 \times 10^{-14}$ $A=1.46 \times 10^{-21}$ n=2.21 $E_a=-1260$	Addition k=3.5×10⁻¹⁴ A=1.16×10 ⁻²¹ n=2.17 E_{a} = -1451	Addition k=2.8×10⁻¹⁴ $A=1.68\times10^{-21}$ n=2.10 $E_{a}=-1395$	Addition $k=5.3 \times 10^{-14}$ $A = 6.34 \times 10^{-21}$ n = 1.93 $E_a = -1465$	Addition k=1.7×10⁻¹⁴ A=1.06×10 ⁻¹⁸ n=1.30 E_{a} = -686	Addition k=2.7×10⁻¹⁵ $A=4.84\times10^{-19}$ n=1.31 $E_{a}=-349$
$R_{6} R_{7}$ $R_{1} = -C(R_{6})(R_{7})C(R_{8})(R_{9})OH$ O_{1}^{\bigcirc} C_{1}^{\bigcirc}	Ringcl. Catal. k=8.1×10⁻¹⁴ $A=1.69\times10^{-46}$ n=10.53 $E_a=-4553$ Addition k=6.1×10⁻¹³ $A=1.72\times10^{-15}$ n=-0.44 $E_a=-2488$	Ringcl. Catal. k=9.5×10⁻¹⁴ $A=1.35×10^{-46}$ n=10.48 $E_{a}=-4745$ Addition k=4.8×10⁻¹³ $A=7.69×10^{-15}$ n=-0.75 $E_{a}=-2504$	Ringcl. Catal. k=7.8×10⁻¹⁴ $A=1.95\times10^{-46}$ n=10.41 $E_a=-4688$ Addition k=4.9×10⁻¹³ $A=1.15\times10^{-14}$ n=-0.73 $E_a=-2364$	Ringcl. Catal. k=1.4×10⁻¹³ $A=7.37\times10^{-46}$ n=10.25 $E_{a}=-4759$ Addition k=2.6×10⁻¹² $A=6.93\times10^{-14}$ n=-1.00 $E_{a}=-2771$	Ringcl. Catal. $k=4.7 \times 10^{-14}$ $A=3.53 \times 10^{-32}$ n=5.70 $E_a=-2755$ Addition $k=7.9 \times 10^{-14}$ $A=3.04 \times 10^{-14}$ n=-0.76 $E_a=-1565$	Ringcl. Catal. k=7.2×10⁻¹⁵ $A=1.62\times10^{-32}$ n=5.71 $E_a=-2418$ Addition k=1.2×10⁻¹⁴ $A=1.39\times10^{-14}$ n=-0.75 $E_a=-1228$
HO $\sim R_2$ $R_1 = -C(R_6)(R_7)C(R_8)(R_9) - C(R_{10})(R_{11})OH$	Ringcl. Catal. k=6.7×10⁻¹³ $A=2.90×10^{-15}$ n=-0.38 $E_a=-2263$ Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	Ringcl. Catal. $k=5.2 \times 10^{-13}$ $A=1.29 \times 10^{-14}$ n=-0.69 $E_{a}=-2280$ Ringcl. Catal. $(k \sim 5 \times 10^{-11})$	Ringcl. Catal. k=5.3×10⁻¹³ $A=1.92\times10^{-14}$ n=-0.68 $E_a=-2140$ Ringcl. Catal. (k ~ 5×10⁻¹¹)	Ringcl. Catal. $k=2.8 \times 10^{-12}$ $A=1.17 \times 10^{-13}$ n=-0.94 $E_{a}=-2547$ Ringcl. Catal. $(k \sim 5 \times 10^{-11})$	Ringcl. Catal. $k=8.6 \times 10^{-14}$ $A=5.11 \times 10^{-14}$ n=-0.70 $E_a=-1341$ Ringcl. Catal. $(k \sim 5 \times 10^{-11})$	Ringcl. Catal. k=1.3×10⁻¹⁴ $A=2.34\times10^{-14}$ n=-0.69 $E_a=-1004$ Ringcl. Catal. (k ~ 5×10⁻¹¹)
$\begin{array}{c} O^{\bigoplus} \\ O^{\bigoplus} \\ HO \\ C \\ R_2 \\ R_2 \\ R_3 \\ R_4 \\ R_2 \\ R_2 \\ R_3 \\ R_4 \\ R_5 $	Ringel Catal.	Ringel Catal.	Ringel Catal	Ringel Catal	Ringel Catal.	Ringel Catal
$\begin{array}{c} C(R_{10})(R_{1})C(R_{12})(R_{13})OH \\ O^{\bigcirc} \\ O^{\textcircled{O}} \\ HO \\ \end{array}$	(k ~ 5×10 ⁻¹¹)	(k ~ 5×10 ⁻¹¹)	(k ~ 5×10 ⁻¹¹)	(k ~ 5×10 ⁻¹¹)	(k ~ 5×10 ⁻¹¹)	(k ~ 5×10 ⁻¹¹)
$ \begin{array}{c} R_1 = -OOH \\ O^{\bigoplus} \\ O^{\bigoplus} \\ C \\ $	No data	No data	No data	No data	No data	No data
$R_{1} = -C(R_{6})(R_{7})OOH$ O^{\bigoplus}_{C} $HOO_{C} C^{C}_{R_{6}}$ R_{2} R_{6}	Ringcl. Catal. $k=1.8 \times 10^{-11}$ $A=9.59 \times 10^{-25}$ n=3.05 $E_a=-3923$	Ringcl. Catal. $k=2.1 \times 10^{-11}$ $A=7.61 \times 10^{-25}$ n=3.00 $E_a=-4115$	Ringcl. Catal. k=1.7×10⁻¹¹ $A=1.11×10^{-24}$ n=2.94 $E_a=-4058$	Ringcl. Catal. $k=3.1\times10^{-11}$ $A=4.17\times10^{-24}$ n=2.77 $E_a=-4129$	Ringcl. Catal. $k=1.7 \times 10^{-12}$ $A=1.59 \times 10^{-17}$ n=0.58 $E_a=-2474$	Ringcl. Catal. k=2.7×10⁻¹³ $A=7.29\times10^{-18}$ n= 0.59 $E_a=-2137$

$\begin{vmatrix} R_1 = -C(R_6)(R_7)C(R_8)(R_9)OOH \\ O \bigoplus_{i=1}^{\bigcirc} \\ HOO & R_2 \end{vmatrix}$	Ringcl. Catal.	Ringel. Catal.	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.	Ringel. Catal.
	(k ~ 5×10 ⁻¹¹)	(k ~ 5×10 ⁻¹¹)	(k ~ 5×10 ⁻¹¹)			
$R_{1} = -C(R_{6})(R_{7})C(R_{8})(R_{9}) - C(R_{10})(R_{11})OOH$	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.
	(k ~ 5×10 ⁻¹¹)	(k ~ 5×10 ⁻¹¹)	(k ~ 5×10 ⁻¹¹)	(k ~ 5×10 ⁻¹¹)	(k ~ 5×10 ⁻¹¹)	(k ~ 5×10 ⁻¹¹)
$ \begin{array}{c} \mathbf{R}_1 = -\mathbf{COOH} \\ \mathbf{O}^{\ominus} \\ \mathbf{O}^{\oplus} \\ \mathbf{HO} \\ \mathbf{C}^{C} \\ \mathbf{R}_2 \\ \mathbf{O} \end{array} $	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	Ringcl. Catal. $k=5.3 \times 10^{-12}$ $A=1.95 \times 10^{-32}$ n=6.02 $E_a=-3796$
$R_{1} = -C(R_{6})(R_{7})COOH$ O^{\bigoplus}_{0} HO^{\bigoplus}_{0} R_{2}	CO ₂ +alkene Catal.	CO ₂ +alkene Catal.	CO ₂ +alkene Catal.			
	($k \sim 5 \times 10^{-11}$)	(k ~ 5×10 ⁻¹¹)	(k ~ 5 × 10 ⁻¹¹)	(k ~ 5 ×10 ⁻¹¹)	(k ~ 5 × 10⁻¹¹)	(k ~ 5×10 ⁻¹¹)
$R_{1} = -C(R_{6})(R_{7})C(R_{8})(R_{9})COOH$ O^{\bigoplus}_{II} HO_{II} R_{2}	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	Ringel. Catal. (k ~ 5×10 ⁻¹¹)	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	Ringcl. Catal. $k=6.4 \times 10^{-12}$ $A=3.63 \times 10^{-20}$ n=1.30 $E_a=-3445$
$R_{1} = -C(R_{6})(R_{7})C(R_{8})(R_{9}) - C(R_{10})(R_{11})COOH$ O^{\bigcirc} O^{\bigcirc} O^{\bigcirc} HO^{\bigcirc} R_{2}	Ringel. Catal.	Ringel. Catal.	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.	Ringcl. Catal.
	(k ~ 5×10 ⁻¹¹)	(k ~ 5×10 ⁻¹¹)	(k ~ 5×10 ⁻¹¹)			
$ \begin{array}{c} R_1 = -OOOH \\ O \stackrel{\bigcirc}{\bigcirc} \\ O \stackrel{{\oplus}}{\overset{\bigcirc}{\bigcirc}} \\ HOOO \stackrel{\frown}{\overset{\bigcirc}{}} R_2 \end{array} $	No data	No data	No data	No data	No data	No data

Table 35: Predicted total rate coefficients for the reaction of carbonyl oxide with $(H_2O)_2$ as a function of the two substituents R_1 and R_2 , based on fitting theory-derived reaction trends to a set of literature data. The rate coefficient *k* (cm³ molecule⁻¹ s⁻¹) is given at 298K, and the parameters of a Kooij equation fit $k(T) = A \times (T/K)^n \times \exp(-E_a/T)$ between 200 and 450 K (*A* in cm³ molecule⁻¹ s⁻¹, E_a in K). The definition of $R_a/R_b/R_c/R_3/R_4/R_5/R'$ is given in Table 29. Values in green are based directly on experimental and/or theoretical kinetic calculations, values in orange are values estimated by applying (averaged) reaction trends for other substituents.

	$ \begin{array}{c} R_{2}=\alpha\text{-}C=O \\ O^{\bigcirc} \\ O^{\oplus} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} R_{2}=\alpha\text{-ONO}_{2} \\ O^{\bigoplus} \\ O^{\bigoplus} \\ C \\ C \end{array}$	$R_{2} = -C(R_{6})(R_{7})ONO_{2}$ O_{0}^{\bigoplus} O_{1}^{\bigoplus} O_{1}^{\bigoplus} O_{1}^{\bigoplus} O_{1}^{\bigoplus} O_{1}^{\bigoplus} O_{2}^{\bigoplus} O_{1}^{\bigoplus} O_{2}^{\bigoplus} O_{1}^{\bigoplus} O_{2}^{\bigoplus} $O_{2}^$	$\begin{array}{c} R_{2}=-OR'\\ O_{\oplus}^{\bigoplus}\\ O_{\oplus}^{\oplus}\\ C\\ C\end{array}$	$\begin{array}{c} R_{2} = -OH \\ O^{\bigoplus} \\ O^{\bigoplus} \\ C \\ C \end{array}$	$R_{2} = -C(R_{6})(R_{7})OR'$
$R_1 R_2$	$R_1^{T}C_1^{T}C_3^{T}$	\mathbf{R}_1^{\prime} ONO ₂	$R_1 C_{R_6} R_7$	R ₁ OR'	Rí₁ OH	$R_1 C R_7 R_6 R_7$
$ \begin{array}{c} \mathbf{R}_{1} = -\mathbf{C}\mathbf{H}_{3} \\ \mathbf{O}^{\bigcirc} \\ \mathbf{O}^{\textcircled{\bullet}} \\ \mathbf{H}_{3}\mathbf{C}^{\frown} \mathbf{R}_{2} \end{array} $	$k=3.7 \times 10^{-17}$ A = 3.97×10 ⁻²⁰ n = 1.97 E _a = 1301	No data	$k=1.6 \times 10^{-14} \\ A = 3.57 \times 10^{-21} \\ n = 2.21 \\ E_a = -819$	$k=5.0 \times 10^{-12} \\ A=7.34 \times 10^{-22} \\ n=2.41 \\ E_a=-2651$	No data	$ k=2.0 \times 10^{-14} $
$R_{1} = -CH_{2}R_{a}$ O^{\bigcirc}_{U} $R_{a} - CH_{2}^{C}R_{2}$	$k=5.2 \times 10^{-17}$ A= 5.47×10 ⁻²⁰ n= 1.82 E _a = 1055	No data		$ k=6.9 \times 10^{-12} $	No data	$\begin{array}{l} \textbf{k=2.8\times10^{-14}}\\ A=2.99\times10^{-19}\\ n=1.42\\ E_a=-1004 \end{array}$
$\begin{array}{c} R_{1}=-CHR_{a}R_{b}\\ O_{u}^{\bigcirc}\\ O_{u}^{}\\ R_{a}\searrow CH}\\ R_{b}\swarrow CH} R_{2} \end{array}$	$k=5.1 \times 10^{-17}$ $A=2.22 \times 10^{-19}$ $n=1.40$ $E_{a}=760$	No data	$k=2.2 \times 10^{-14}$ A= 1.99×10 ⁻²⁰ n= 1.65 E _a = -1359	$k=6.9 \times 10^{-12}$ $A=4.10 \times 10^{-21}$ $n=1.85$ $E_{a}=-3191$	No data	$\begin{array}{l} \textbf{k=2.8\times10^{-14}}\\ A=1.21\times10^{-18}\\ n=1.00\\ E_{a}=-1299 \end{array}$
$R_{1} = -CR_{a}R_{b}R_{c}$ O^{\bigoplus} O^{\oplus} $R_{a} C^{\oplus}$ $R_{b} C^{+}_{l} R_{2}$ R_{c}	$k=5.1\times10^{-17} \\ A=4.24\times10^{-20} \\ n=1.87 \\ E_{a}=1056$	No data	$k=2.2\times10^{-14} \\ A= 3.81\times10^{-21} \\ n= 2.11 \\ E_a= -1063$	$k=6.8 \times 10^{-12}$ A= 7.83×10 ⁻²² n= 2.31 E _a = -2895	No data	$\begin{array}{l} \textbf{k=2.8\times10^{-14}}\\ A=2.31\times10^{-19}\\ n=1.46\\ E_a=-1003 \end{array}$
$ \begin{array}{c} \mathbf{R}_1 = -\mathbf{H} \\ \mathbf{O}^{\bigodot} \\ \mathbf{O}^{\textcircled{\Theta}} \\ \mathbf{O}^{\textcircled{\Theta}} \\ \mathbf{C} \\ \mathbf{H}^{\overleftarrow{\mathbf{C}}} \mathbf{R}_2 \end{array} $	$ k=1.4 \times 10^{-14} $	No data	$\begin{array}{l} \textbf{k=2.1\times10^{-11}} \\ A= 3.46\times10^{-19} \\ n= 1.55 \\ E_{a}= -2718 \end{array}$	Addition (k ~ 5×10 ⁻¹¹)	No data	$ k=2.6 \times 10^{-11} $

o ^Θ	$\mathbf{R}_2 = -\mathbf{C}(\mathbf{R}_6)(\mathbf{R}_7)\mathbf{OH}$	R ₂ =-CCOH	$R_2 = -C_{n \ge 3}OH$	$R_2 = -OOH$	$R_2 = -C(R_6)(R_7)OOH$	
⊕	Q⊖ N ⊕	o(⊖	o,⊖	O(⊖ (⊖	o(⊖	
		O [®]	, O(+)	O 		
, Č	R ₁ C OH	R ₁ ^C OH	R. OH	R ₁ OOH	$R_1 \rightarrow OOH$	
$R_1 R_2$	$R_6' R_7$				(a)	(b)
$R_1 = -CH_3$	Addition	Addition	Ringel. Catal.	No data	Addition	Ringcl. Catal.
l o [⊖]	$k=1.2\times10^{-13}$ A = 3.77×10 ⁻¹⁹	$k=3.7\times10^{-13}$	$(k \sim 5 \times 10^{-11})$		$k=3.1\times10^{-13}$	$k=2.9\times10^{-15}$ A = 1.54×10 ⁻²⁶
O ^(±)	n = 1.44	n = 5.18			n = 8.26	n = 3.25
	Ea=-1318	$E_a = -3612$			$E_a = -4575$	$E_a = -3597$
$R_1 = -CH_2R_a$	Addition	Addition	Ringcl. Catal.	No data	Addition	Ringcl. Catal.
00	k=1.6×10 ⁻¹³	k=7.5×10 ⁻¹³	$(k \sim 5 \times 10^{-11})$		k=2.8×10 ⁻¹³	k=4.0×10 ⁻¹³
ŏ⊙⊕	$A = 5.20 \times 10^{-19}$	$A = 1.97 \times 10^{-30}$			$A = 2.24 \times 10^{-40}$	$A = 2.13 \times 10^{-26}$
, Č	$E_{a} = -1564$	H = 4.71 E ₂ = -4065			H = 8.11 $E_a = -4820$	$E_{a} = -3842$
$R_a - CH_2 R_2$	2					
$R_1 = -CHR_aR_b$	Addition $k=1.6\times10^{-13}$	Addition $k=1.4\times10^{-12}$	Ringel. Catal. $(\mathbf{k} = 5 \times 10^{-11})$	No data	Addition $k = 2.8 \times 10^{-13}$	Ringel. Catal. $k=4.0\times10^{-13}$
	$A = 2.11 \times 10^{-18}$	$A = 2.00 \times 10^{-30}$	$(\mathbf{K} \sim \mathbf{J} \times \mathbf{I}\mathbf{U}^{-1})$		$A = 9.10 \times 10^{-40}$	$A = 8.63 \times 10^{-26}$
	n= 0.88	n= 4.69			n= 7.69	n= 2.68
R_a CH R_2	E _a = -1859	$E_a = -4285$			$E_a = -5115$	$E_a = -4137$
	Addition	Addition	Pingel Catal	No data	Addition	Pingel Catal
$\mathbf{K}_{1} = -\mathbf{C}\mathbf{K}_{a}\mathbf{K}_{b}\mathbf{K}_{c}$	k=1.6×10 ⁻¹³	k=9.6×10 ⁻¹³	$(k \sim 5 \times 10^{-11})$	No data	k=2.8×10 ⁻¹³	$k=4.0\times10^{-13}$
0°€	A= 4.03×10 ⁻¹⁹	A= 9.00×10 ⁻³¹			A= 1.74×10 ⁻⁴⁰	A= 1.65×10 ⁻²⁶
	n=1.34	n = 4.86			n = 8.16	n = 3.15
$R_{b} - C - R_{2}$	$E_a = -1503$	$E_a = -4126$			$E_a = -4819$	$E_a = -3841$
Ŕ _c						
D U	Addition	Addition	Ringel Catal	No data	Addition	Ringel Catal
$K_{1}=-\Pi$	k=9.9×10 ⁻¹¹	$(k \sim 5 \times 10^{-11})$	$(k \sim 5 \times 10^{-11})$	No data	$(k \sim 5 \times 10^{-11})$	$k=8.5\times10^{-12}$
0° [⊕]	A= 2.21×10 ⁻¹⁹					A= 1.75×10 ⁻¹⁵
	n=1.49					n = -0.46
H R ₂	$E_a = -3400$					$E_a = -3304$
	D G 0.011					
l 0⊖	$R_2 = -C_{n \ge 2}OOH$	$R_2 = -COOH$	$\mathbf{R}_{2} = -\mathbf{C}(\mathbf{R}_{6})(\mathbf{R}_{7})\mathbf{C}\mathbf{O}\mathbf{O}\mathbf{H}$	-C _{n≥2} COOH	$R_2 = -OOOH$	
) D⊕	0,~	o >⊖⊕	o °	o,⊂ D⊕		
		Сон	Ë U	С по Он		
		\mathbf{R}_{1}	R ₁ OH	$R_1 \vee Y$		
K ₁ K ₂		Ö			NT 1.	
$R_1 = -CH_3$	Ringel. Catal. ($\mathbf{k} \sim 5 \times 10^{-11}$)	No data	CO_2 +alkene Catal. k=5.4×10 ⁻¹³	Ringel. Catal. $(\mathbf{k} \sim 5 \times 10^{-11})$	No data	
O O O ⊕	(** UNEU J		$A = 8.20 \times 10^{-27}$	(A SALU)		
			n= 3.73			
H_3C R_2			E _a = -3139			
•	•					I

$ \begin{array}{c} \mathbf{R}_{1} = -\mathbf{C}\mathbf{H}_{2}\mathbf{R}_{a} \\ \mathbf{O}^{\bigcirc} \\ \mathbf{O}^{\textcircled{\oplus}} \\ \mathbf{C} \\ \mathbf{R}_{a} - \mathbf{C}\mathbf{H}_{2}^{\frown} \mathbf{R}_{2} \end{array} $	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	No data	CO ₂ +alkene Catal. k=1.1×10⁻¹² A= 5.29×10^{-26} n= 3.26 E _a = -3592	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	No data
$\begin{array}{c} R_{1} = -CHR_{a}R_{b} \\ O^{\bigcirc} \\ \vdots \\ R_{a} \\ CH \\ R_{b} \\ \end{array}$	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	No data	CO ₂ +alkene Catal. k=2.0×10⁻¹² A= 5.36×10^{-26} n= 3.24 E _a = -3812	Ringcl. Catal. (k ~ 5×10⁻¹¹)	No data
$R_{1} = -CR_{a}R_{b}R_{c}$ O^{\bigcirc} O^{\oplus} R_{a}, C^{\bigcirc} $R_{b} \sim C_{1}^{C}$ R_{c} R_{c}	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	No data	CO ₂ +alkene Catal. k=1.4×10⁻¹² A= 2.41×10 ⁻²⁶ n= 3.41 E _a = -3653	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	No data
$ \begin{array}{c} \mathbf{R}_{1} = -\mathbf{H} \\ \mathbf{O}^{\bigoplus} \\ \mathbf{O}^{\bigoplus} \\ \mathbf{C} \\ \mathbf{H}^{'} \mathbf{R}_{2} \end{array} $	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	No data	CO ₂ +alkene Catal. (k ~ 5×10 ⁻¹¹)	Ringcl. Catal. (k ~ 5×10 ⁻¹¹)	No data

W. Counterexamples of SAR extrapolation to multi-functionalized SCI

In this section we attempt to apply the SAR for unimolecular reaction to a set of multi-functionalized species and compare them to the results of explicit theoretical calculations. The current recommendation is to apply the SAR several times, each time while considering only one of the functionalities, replacing the others with a (set of) alkyl group(s), and use the resulting rates to determine the dominant (set of) reactions. This approach is expected to work when the functionalities have no or only weak interactions. The multi-functionalized SCI chosen in this section are selected to highlight potential problems in applying the SAR, using substitution patterns that interact in specific ways.

1. OH substituents in β -unsaturated SCI

We have examined 4 syn- β -unsaturated hydroxylated SCI, for which we expect up to 3 important reaction classes: 1,5-ring closure on the double bond, insertion in the OH group, and allyl-1,6-H-migration for Z-substituted double bonds. These reactions are usually fast and have comparable rates, such that we can probe the relative contribution of the various channels. The impact of the substituents is expected to be correlated, as H-bonding between the OH-group and carbonyl oxide moiety is likely to impact the approach of the COO group onto the double bond, while the change in bond length and rigid bond angles of the double bond is likely to impact the cyclisation process of the insertion reaction.

The theoretical rate predictions are listed in Table 36 (omitting minor other channels listed elsewhere), where we also include the SAR rate predictions at 298 K for analogous compounds where either the OH or C=C moiety is substituted with an alkyl equivalent. Following the procedure for SAR extrapolation, we then assign the reaction rates from the SAR to the individual channels of the target bi-functionalized SCI.

SCI	Reaction class	Calculated k(298 K) / s ⁻¹	SAR extrapolation / s ⁻¹
Z-(C(=CH ₂)CH ₂ OH)CHOO	1,5-ring closure	1.6×10^{2}	8.7×10^{3}
	insertion in OH	3.7×10 ⁻³	
Z-(C(=CH2)CH2CH2OH)CHOO	1,5-ring closure	8.5×10^{2}	
	insertion in OH	6.3×10^4	1.0×10^{7}
Z-(Z-CH=CHCH2OH)CHOO	1,5-ring closure	9.2×10^{5}	
	allyl-1,6-H-migration	8.7×10^{6}	5.7×10^{6}
	insertion in OH	5.7×10^{5}	1.0×10^{7}
Z-(Z-CH=CHCH2CH2OH)CHOO	1,5-ring closure	1.6×10^5	
	allyl-1,6-H-migration	1.3×10^{8}	5.7×10^{6}
	insertion in OH	1.4×10^{6}	1.7×10^{6}
Comparison SCI	SAR reaction class	SAR k(298 K) / s ⁻¹	
Z-(C(=CH ₂)CH ₂ CH ₃)CHOO	1,5-ring closure	8.7×10^{3}	
Z-(C(CH ₃) ₂ CH ₂ OH)CHOO	insertion in OH	7.0×10^{0}	
Z-(C(=CH ₂)CH ₂ CH ₂ CH ₃)CHOO	1,5-ring closure	8.7×10^{3}	
Z-(C(CH ₃) ₂ CH ₂ CH ₂ OH)CHOO	insertion in OH	1.0×10^{7}	
Z-(CH=CHCH ₂ CH ₃)CHOO	allyl-1,6-H-migration	5.7×10^{6}	
Z-(CH ₂ CH ₂ CH ₂ OH)CHOO	insertion in OH	1.0×10^{7}	
Z-(CH=CHCH2CH2CH3)CHOO	allyl-1,6-H-migration	5.7×10^{6}	
Z-(CH ₂ CH ₂ CH ₂ CH ₂ OH)CHOO	insertion in OH	1.7×10^{6}	

Table 36: Analysis of the reaction rates of bi-substituted SCI, showing the dominant reaction classes, *a priori* predictions of the rate coefficients, SAR predictions for analogous SCI, and application of the SAR predictions to the various pathways in the bi-substituted SCI.

For the first two compounds in Table 36, with a $C(=CH_2)(CH_2)_nOH$ syn-substituent, we notice a clear impact of the bi-substitution, where the SAR rates for 1,5-ring closure do not account for the H-bonding by the OH group, and the insertion in the OH bond is affected by the different bond angle around the double bonded carbon in the formed ring. The SAR rates and theory-predicted rates differ by over an order of magnitude, but in both cases the correct dominant channel is identified, and the reaction rates are sufficiently fast to prevent bimolecular reactions.

For the last two compounds in Table 36, with a $CH=CH-(CH_2)_nOH$ syn-substituent, we find similar differences between the extrapolated SAR rates and theory-predicted rates. Furthermore, as the SAR only lists the dominant channels, we do not have information on the 1,5-ring closure provided by the SAR, though technically we could have used the rate of ring closure of the SAR category for Z-(CH=CH_2)CHOO. The SAR extrapolation correctly finds that SCI losses are fast and that no bimolecular reactions are competitive, but neither the absolute rates nor the relative rates of the channels are particularly accurate.

2. Combining two oxygenated substituents

For an OOH- and OH-bi-substituted SCI we typically expect insertion reactions to be dominant. As discussed elsewhere, the rate of insertion is affected by H-bonding with the carbonyl oxide moiety, where different distances of the O_nH group yield rates that do not follow a monotonous increase or decrease with distance. For example (section N), we found that insertion in the OH bond of a Z-(CH₂CH₂OH)CHOO SCI was slower than insertion with a shorter or longer intervening number of carbons, precisely due to the interaction between OH and the carbonyl oxide moiety. For the first compound in Table 37, two O_n -H bonds are accessible for insertion, at identical distance from the outer oxide O-atom. The two $-O_nH$ groups can form several H-bonds between themselves and with the oxide moiety, where H-bonding changes when transitioning from the reactant to either of the insertion TS. Extrapolating the SAR does correctly predict that insertion into the OH bond. The H-bonding afforded by the OOH group negates the slowdown of insertion into an OH group at this distance, enhancing the rate of the insertion reaction compared to the mono-substituted SCI; this is not accounted for in the SAR. At the same time, H-bonding seems to negatively affect the rate of the 1,4-H-migration.

The second SCI in Table 37 similarly probes the impact of the interaction between H-bond donors and acceptors, as well as changing the bond lengths and angles by introducing a double-bonded carbon in the insertion TS ring. The theoretical predictions find that insertion in the OH group is greatly enhanced by the neighboring carbonyl group, while the SAR extrapolation would instead suggest that insertion and 1,3-ring closure have similar contributions to the loss rate. The total loss rate by the SAR extrapolation is also significantly lower than the *a priori* prediction, incorrectly allowing bimolecular reactions from becoming competitive under some atmospheric conditions.

Table 37: Analysis of the reaction rates of bi-substituted SCI, showing the dominant reaction classes, a priori predicti	ions
of the rate coefficients, SAR predictions for analogous SCI, and application of the SAR predictions to the vari	ious
pathways in the bi-substituted SCI.	

SCI	Reaction class	Calculated k(298 K) / s ⁻¹	SAR extrapolation / s ⁻¹
Z-(CH(OOH)CH ₂ OH)(CH ₃)COO	insertion in OOH	8.5×10^4	9.8×10^4
	insertion in OH	4.7×10^{3}	7.0×10^{0}
	1,4-H-shift	1.2×10^{1}	6.6×10^2
Z-(C(=O)CH ₂ OH)CHOO	insertion in OH	8.7×10^{3}	7.0×10^{0}
	1,3-ring closure	1.6×10^{0}	2.0×10^{1}
Comparison SCI	SAR reaction class	SAR k(298 K) / s ⁻¹	
Z-(CH(OOH)CH ₂ CH ₃)(CH ₃)COO	insertion in OOH	9.8×10^4	
	1,4-H-migration	6.6×10^2	
Z-(CH ₂ CH ₂ OH)(CH ₃)COO	insertion in OH	7.0×10^{0}	
$Z-(C(=O)CH_2CH_3)CHOO$	1,3-ring closure	2.0×10^{1}	
Z-(C(CH ₃) ₂ CH ₂ OH)CHOO	insertion in OH	7.0×10^{0}	

3. SCI with two oxygenated a-substituents

Non-alkyl α -substituents tend to have a large impact on the reactivity of the SCI, and two α -substituents are expected to have very specific interactions both with each other and the carbonyl oxide moiety. It is thus not expected that the SAR is able to correctly predict such compounds, as they each should be considered a separate reaction class. To illustrate this, we have examined the rates of (OCH₃)₂COO, (CHO)₂COO, and *Z*-(OCH₃)(OH)COO (see Table 38). For two of the SCI, the only existing reaction channel is 1,3-ring closure, while (CHO)₂COO can undergo either 1,3-ring closure or acyl-1,4-H-migration, where the former is expected to be the fastest channel. To apply the SAR, we would consider variations with either of the two substituents replaced with an alkyl group, for which we also tabulate the rate coefficients at 298 K.

SCI	Reaction class	Calculated k(298 K) / s ⁻¹
(OCH ₃) ₂ COO	1,3-ring closure	1.7×10^{7}
(CHO) ₂ COO	1,3-ring closure	4.2×10^{1}
	acyl-1,4-H-migration	4.3×10^{0}
Z-(OCH ₃)(OH)COO	1,3-ring closure	2.1×10 ⁹
Comparison SCI	SAR reaction class	SAR k(298 K) / s ⁻¹
Z-(OCH ₃)(CH ₃)COO	1,3-ring closure	1.1×10^{5}
E-(CH ₃)(OCH ₃)COO	1,3-ring closure	4.7×10^{4}
Z-(CHO)(CH ₃)COO	1,3-ring closure	7.1×10^4
E-(CH ₃)(CHO)COO	(1,4-H-migration)	
E-(CH ₃)(OH)COO	1,3-ring closure	4.6×10^4

Table 38: Analysis of the reaction rates of bi-substituted SCI, showing the dominant reaction classes, *a priori* predictions of the rate coefficients, and SAR predictions for mono-substituted SCI with similar substituents.

Estimating the (CHO)₂COO rate against the SAR prediction for *E*-(CH₃)(CHO)COO does not work, as for the latter 1,4-H-migration is dominant. The procedure for multi-functionalized SCI would correctly determine that 1,3-ring closure is the dominant path, but none of the mono-functionalized SCI have a SAR rate coefficient within an order of magnitude of the calculated rate for the bi-substituted SCI. For (OCH₃)₂COO and *Z*-(OCH₃)(OH)COO, the procedure would correctly conclude that the unimolecular loss is dominant in all atmospheric conditions, even if the SAR-predicted rate would be too low. For (CHO)₂COO, however, the *a priori* rate is significantly slower than any of the SAR predictions, and bimolecular reactions with water or other co-reactants could start to contribute, contrary to what the SAR extrapolation procedure suggests.

For such $bi-\alpha$ -substituted SCI, we feel that SAR extrapolations are unlikely to work in general, and explicit calculations or experiments seem to be the only recourse. Rather than applying a SAR, then, one would use tabulated rate coefficient values and reaction classes.

X. Raw quantum chemical data

Selected quantum chemical data is available on all SCI, transition states and products discussed in this work. This includes geometries, moments of inertia for molecular rotation, vibrational wavenumbers, zero point energies, potential energies at various levels of theory, and T1 diagnostics.

The data is hosted in the Data repository of Forschungszentrum Jülich GmbH, and can be cited under DOI 10.26165/JUELICH-DATA/MCZDGS, and accessed as https://doi.org/10.26165/JUELICH-DATA/MCZDGS.

Y. References

- 1 L. Vereecken and J. S. Francisco, Theoretical studies of atmospheric reaction mechanisms in the troposphere, *Chem. Soc. Rev.*, 2012, **41**, 6259–6293.
- 2 L. Vereecken, D. R. Glowacki and M. J. Pilling, Theoretical Chemical Kinetics in Tropospheric Chemistry: Methodologies and Applications, *Chem. Rev.*, 2015, **115**, 4063–4114.
- 3 T. Berndt, R. Kaethner, J. Voigtländer, F. Stratmann, M. Pfeifle, P. Reichle, M. Sipilä, M. Kulmala and M. Olzmann, Kinetics of the unimolecular reaction of CH₂OO and the bimolecular reactions with the water monomer, acetaldehyde and acetone at atmospheric conditions, *Phys. Chem. Chem. Phys.*, 2015, **17**, 19862–19873.
- 4 B. Long, J. L. Bao and D. G. Truhlar, Atmospheric Chemistry of Criegee Intermediates. Unimolecular Reactions and Reactions with Water, *J. Am. Chem. Soc.*, 2016, **138**, 14409–14422.
- 5 T. L. Nguyen, H. Lee, D. A. Matthews, M. C. McCarthy and J. F. Stanton, Stabilization of the Simplest Criegee Intermediate from the Reaction between Ozone and Ethylene: A High Level Quantum Chemical and Kinetic Analysis of Ozonolysis, J. Phys. Chem. A, 2015, 119, 5524–5533.
- R. Chhantyal-Pun, O. Welz, J. D. Savee, A. J. Eskola, E. P. F. Lee, L. Blacker, H. R. Hill, M. Ashcroft, M. A. H. H. Khan, G. C. Lloyd-Jones, L. A. Evans, B. Rotavera, H. Huang, D. L. Osborn, D. K. W. Mok, J. M. Dyke, D. E. Shallcross, C. J. Percival, A. J. Orr-Ewing and C. A. Taatjes, Direct Measurements of Unimolecular and Bimolecular Reaction Kinetics of the Criegee Intermediate (CH₃)₂COO, *J. Phys. Chem. A*, 2017, **121**, 4–15.
- 7 M. J. Newland, A. R. Rickard, M. S. Alam, L. Vereecken, A. Muñoz, M. Ródenas and W. J. Bloss, Kinetics of stabilised Criegee intermediates derived from alkene ozonolysis: reactions with SO₂, H₂O and decomposition under boundary layer conditions, *Phys. Chem. Chem. Phys.*, 2015, **17**, 4076–4088.
- 8 L. Vereecken, A. Novelli and D. Taraborrelli, Unimolecular decay strongly limits concentration of Criegee intermediates in the atmosphere, *Phys. Chem. Chem. Phys.*, 2017, **19**, 31599–31612.
- 9 D. Stone, K. Au, S. Sime, D. J. Medeiros, M. Blitz, P. W. Seakins, Z. Decker and L. Sheps, Unimolecular decomposition kinetics of the stabilised Criegee intermediates CH₂OO and CD₂OO, *Phys. Chem. Chem. Phys.*, 2018, **20**, 24940–24954.
- 10 J. Peltola, P. Seal, A. Inkila and A. Eskola, Time-resolved, broadband UV-absorption spectrometry measurements of Criegee intermediate kinetics using a new photolytic precursor: unimolecular decomposition of CH₂OO and its reaction with formic acid, *Phys. Chem. Chem. Phys.*, 2020, **22**, 11797–11808.
- 11 Y. Fang, F. Liu, V. P. Barber, S. J. Klippenstein, A. B. McCoy and M. I. Lester, Communication: Real time observation of unimolecular decay of Criegee intermediates to OH radical products, *J. Chem. Phys.*, 2016, 144, 061102.
- 12 Y. Fang, F. Liu, V. P. Barber, S. J. Klippenstein, A. B. McCoy and M. I. Lester, Deep tunneling in the unimolecular decay of CH₃CHOO Criegee intermediates to OH radical products, *J. Chem. Phys.*, 2016, 145, 234308.
- 13 J. D. Fenske, A. S. Hasson, A. W. Ho and S. E. Paulson, Measurement of Absolute Unimolecular and Bimolecular Rate Constants for CH₃CHOO Generated by the trans-2-Butene Reaction with Ozone in the Gas Phase, J. Phys. Chem. A, 2000, **104**, 9921–9932.
- 14 A. Novelli, L. Vereecken, J. Lelieveld and H. Harder, Direct observation of OH formation from stabilised Criegee intermediates, *Phys. Chem. Chem. Phys.*, 2014, **16**, 19941–19951.
- 15 Y. Fang, F. Liu, S. J. Klippenstein and M. I. Lester, Direct observation of unimolecular decay of CH₃CH₂CHOO Criegee intermediates to OH radical products, *J. Chem. Phys.*, 2016, **145**, 044312.
- 16 Y. Fang, V. P. Barber, S. J. Klippenstein, A. B. Mccoy and M. I. Lester, Tunneling effects in the unimolecular decay of (CH₃)₂COO Criegee intermediates to OH radical products, J. Chem. Phys., 2017, 146, 134307.
- 17 M. C. Smith, W. Chao, K. Takahashi, K. A. Boering and J. J.-M. Lin, Unimolecular Decomposition Rate of the Criegee Intermediate (CH₃)₂COO Measured Directly with UV Absorption Spectroscopy, *J. Phys. Chem. A*, 2016, **120**, 4789–4798.
- 18 T. Berndt, T. Jokinen, M. Sipilä, R. L. Mauldin, H. Herrmann, F. Stratmann, H. Junninen and M. Kulmala, H₂SO₄ formation from the gas-phase reaction of stabilized Criegee Intermediates with SO₂: Influence of water vapour content and temperature, *Atmos. Environ.*, 2014, **89**, 603–612.

- 19 B. Long, J. L. Bao and D. G. Truhlar, Unimolecular reaction of acetone oxide and its reaction with water in the atmosphere, *Proc. Natl. Acad. Sci.*, 2018, 201804453.
- 20 P. Deng, L. Wang and L. Wang, Mechanism of Gas-Phase Ozonolysis of β-Myrcene in the Atmosphere, *J. Phys. Chem. A*, 2018, **122**, 3013–3020.
- 21 V. P. Barber, S. Pandit, A. M. Green, N. Trongsiriwat, P. J. Walsh, S. J. Klippenstein and M. I. Lester, Four Carbon Criegee Intermediate from Isoprene Ozonolysis: Methyl Vinyl Ketone Oxide Synthesis, Infrared Spectrum, and OH Production, J. Am. Chem. Soc., 2018, 140, 10866–10880.
- 22 Y.-H. Lin, C.-H. Yang, K. Takahashi and J. J.-M. Lin, Kinetics of Unimolecular Decay of Methyl Vinyl Ketone Oxide, an Isoprene-Derived Criegee Intermediate, under Atmospherically Relevant Conditions, J. Phys. Chem. A, 2020, 124, 9375–9381.
- 23 B. Long, J. L. Bao and D. G. Truhlar, Rapid unimolecular reaction of stabilized Criegee intermediates and implications for atmospheric chemistry, *Nat. Commun.*, 2019, **10**, 2003.
- 24 B. Chuong, J. Zhang and N. M. Donahue, Cycloalkene Ozonolysis: Collisionally Mediated Mechanistic Branching, J. Am. Chem. Soc., 2004, 126, 12363–12373.
- 25 K. T. Kuwata, B. J. Kujala, Z. W. Morrow and E. Tonc, Quantum chemical and RRKM/master equation studies of cyclopropene ozonolysis, *Comput. Theor. Chem.*, 2011, **965**, 305–312.
- 26 R. Winterhalter, F. Herrmann, B. Kanawati, T. L. Nguyen, J. Peeters, L. Vereecken and G. K. Moortgat, The gas-phase ozonolysis of β -caryophyllene (C₁₅H₂₄). Part I: an experimental study, *Phys. Chem. Chem. Phys.*, 2009, **11**, 4152–4172.
- 27 F. A. Mackenzie-Rae, A. Karton and S. M. Saunders, Computational investigation into the gas-phase ozonolysis of the conjugated monoterpene α-phellandrene, *Phys. Chem. Chem. Phys.*, 2016, **18**, 27991–28002.
- 28 O. Welz, J. D. Savee, D. L. Osborn, S. S. Vasu, C. J. Percival, D. E. Shallcross and C. A. Taatjes, Direct Kinetic Measurements of Criegee Intermediate (CH₂OO) Formed by Reaction of CH₂I with O₂, *Science*, 2012, 335, 204–207.
- 29 K. E. Leather, A. Bacak, R. Wamsley, A. T. Archibald, A. Husk, D. E. Shallcross and C. J. Percival, Temperature and pressure dependence of the rate coefficient for the reaction between ClO and CH₃O₂ in the gas-phase, *Phys. Chem. Chem. Phys.*, 2012, **14**, 3425–3434.
- 30 B. Ouyang, M. W. McLeod, R. L. Jones and W. J. Bloss, NO₃ radical production from the reaction between the Criegee intermediate CH₂OO and NO₂, *Phys. Chem. Chem. Phys.*, 2013, **15**, 17070–17075.
- 31 D. Stone, M. Blitz, L. Daubney, N. U. M. Howes and P. Seakins, Kinetics of CH₂OO reactions with SO₂, NO₂, NO, H₂O and CH₃CHO as a function of pressure, *Phys. Chem. Chem. Phys.*, 2014, **16**, 1139–1149.
- 32 J. M. Anglada, J. González and M. Torrent-Sucarrat, Effects of the substituents on the reactivity of carbonyl oxides. A theoretical study on the reaction of substituted carbonyl oxides with water, *Phys. Chem. Chem. Phys.*, 2011, **13**, 13034–13045.
- 33 J. M. Anglada, P. Aplincourt, J. M. Bofill and D. Cremer, Atmospheric Formation of OH Radicals and H₂O₂ from Alkene Ozonolysis under Humid Conditions, *ChemPhysChem*, 2002, **3**, 215–221.
- 34 A. B. Ryzhkov and P. A. Ariya, A theoretical study of the reactions of parent and substituted Criegee intermediates with water and the water dimer, *Phys. Chem. Chem. Phys.*, 2004, **6**, 5042–5050.
- 35 L.-C. Lin, H.-T. Chang, C.-H. Chang, W. Chao, M. C. Smith, C.-H. Chang, J. J.-M. Lin and K. Takahashi, Competition between H₂O and (H₂O)₂ reactions with CH₂OO/CH₃CHOO, *Phys. Chem. Chem. Phys.*, 2016, **18**, 4557–4568.
- 36 J. M. Anglada and A. Solé, Impact of water dimer on the atmospheric reactivity of carbonyl oxides., *Phys. Chem. Chem. Phys.*, 2016, **18**, 17698–17712.
- 37 L. Chen, W. Wang, W. Wang, Y. Liu, F. Liu, N. Liu and B. Wang, Water-catalyzed decomposition of the simplest Criegee intermediate CH₂OO, *Theor. Chem. Acc.*, 2016, **135**, 131.
- 38 R. L. Caravan, M. F. Vansco, K. Au, M. A. H. Khan, Y.-L. Li, F. A. F. Winiberg, K. Zuraski, Y.-H. Lin, W. Chao, N. Trongsiriwat, P. J. Walsh, D. L. Osborn, C. J. Percival, J. J.-M. Lin, D. E. Shallcross, L. Sheps, S. J. Klippenstein, C. A. Taatjes and M. I. Lester, Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate, *Proc. Natl. Acad. Sci.*, 2020, 201916711.
- 39 C. Yin and K. Takahashi, Effect of unsaturated substituents in the reaction of Criegee intermediates with water vapor, *Phys. Chem. Chem. Phys.*, 2018, 20, 20217–20227.
- 40 C. A. Taatjes, O. Welz, A. J. Eskola, J. D. Savee, A. M. Scheer, D. E. Shallcross, B. Rotavera, E. P. F. Lee, J. M. Dyke, D. K. W. Mok, D. L. Osborn and C. J. Percival, Direct Measurements of Conformer-Dependent Reactivity of the Criegee Intermediate CH₃CHOO, *Science*, 2013, 340, 177–180.
- 41 L. Sheps, A. M. Scully and K. Au, UV absorption probing of the conformer-dependent reactivity of a Criegee intermediate CH₃CHOO, *Phys. Chem. Chem. Phys.*, 2014, **16**, 26701–26706.

- 42 K. T. Kuwata, M. R. Hermes, M. J. Carlson and C. K. Zogg, Computational Studies of the Isomerization and Hydration Reactions of Acetaldehyde Oxide and Methyl Vinyl Carbonyl Oxide, *J. Phys. Chem. A*, 2010, **114**, 9192–9204.
- 43 L. Jiang, R. Lan, Y.-S. Xu, W.-J. Zhang and W. Yang, Reaction of Stabilized Criegee Intermediates from Ozonolysis of Limonene with Water: Ab Initio and DFT Study, *Int. J. Mol. Sci.*, 2013, **14**, 5784–5805.
- 44 H.-L. Huang, W. Chao and J. J.-M. Lin, Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO₂, *Proc. Natl. Acad. Sci.*, 2015, 201513149.
- 45 X.-X. Lin, Y.-R. Liu, T. Huang, K.-M. Xu, Y. Zhang, S. Jiang, Y.-B. Gai, W.-J. Zhang and W. Huang, Theoretical studies of the hydration reactions of stabilized Criegee intermediates from the ozonolysis of βpinene, *RSC Adv.*, 2014, **4**, 28490–28498.
- 46 P. Aplincourt and J. M. Anglada, Theoretical Studies on Isoprene Ozonolysis under Tropospheric Conditions. 1. Reaction of Substituted Carbonyl Oxides with Water, *J. Phys. Chem. A*, 2003, **107**, 5798–5811.
- 47 Y.-H. Lin, C. Yin, K. Takahashi and J. J.-M. Lin, Surprisingly long lifetime of methacrolein oxide, an isoprene derived Criegee intermediate, under humid conditions, *Commun. Chem.*, 2021, **4**, 12.
- 48 H. J. Tobias and P. J. Ziemann, Kinetics of the Gas-Phase Reactions of Alcohols, Aldehydes, Carboxylic Acids, and Water with the C13 Stabilized Criegee Intermediate Formed from Ozonolysis of 1-Tetradecene, *J. Phys. Chem. A*, 2001, **105**, 6129–6135.
- 49 W. Chao, J.-T. Hsieh, C.-H. Chang and J. J.-M. Lin, Direct kinetic measurement of the reaction of the simplest Criegee intermediate with water vapor, *Science*, 2015, **347**, 751–754.
- 50 T. R. Lewis, M. A. Blitz, D. E. Heard and P. W. Seakins, Direct evidence for a substantive reaction between the Criegee intermediate, CH₂OO, and the water vapour dimer, *Phys. Chem. Chem. Phys.*, 2015, **17**, 4859–4863.
- 51 M. C. Smith, C.-H. Chang, W. Chao, L.-C. Lin, K. Takahashi, K. A. Boering and J. J.-M. Lin, Strong Negative Temperature Dependence of the Simplest Criegee Intermediate CH₂OO Reaction with Water Dimer, *J. Phys. Chem. Lett.*, 2015, 6, 2708–2713.
- 52 A. B. Ryzhkov and P. A. Ariya, The importance of water clusters (H₂O)_n (n=2,...,4) in the reaction of Criegee intermediate with water in the atmosphere, *Chem. Phys. Lett.*, 2006, **419**, 479–485.
- 53 D. Cremer, J. Gauss, E. Kraka, J. F. Stanton and R. J. Bartlett, A CCSD (T) investigation of carbonyl oxide and dioxirane. Equilibrium geometries, dipole moments, infrared spectra, heats of formation and isomerization energies, *Chem. Phys. Lett.*, 1993, 209, 547–556.
- 54 J. M. Anglada, J. M. Bofill, S. Olivella and A. Solé, Unimolecular Isomerizations and Oxygen Atom Loss in Formaldehyde and Acetaldehyde Carbonyl Oxides. A Theoretical Investigation, J. Am. Chem. Soc., 1996, 118, 4636–4647.
- 55 M. T. Nguyen, T. L. Nguyen, V. T. Ngan and H. M. T. Nguyen, Heats of formation of the Criegee formaldehyde oxide and dioxirane, *Chem. Phys. Lett.*, 2007, **448**, 183–188.
- 56 J. H. Lehman, H. Li, J. M. Beames and M. I. Lester, Ultraviolet photodissociation dynamics of the simplest Criegee intermediate CH₂OO, *J. Chem. Phys.*, 2013, **139**, 141103.
- 57 A. Karton, M. Kettner and D. A. Wild, Sneaking up on the Criegee intermediate from below: Predicted photoelectron spectrum of the CH₂OO⁻ anion and W3-F12 electron affinity of CH₂OO, *Chem. Phys. Lett.*, 2013, **585**, 15–20.
- 58 T.-N. Nguyen, R. Putikam and M. C. Lin, A novel and facile decay path of Criegee intermediates by intramolecular insertion reactions via roaming transition states, *J. Chem. Phys.*, 2015, **142**, 124312.
- 59 R. Dawes, B. Jiang and H. Guo, UV Absorption Spectrum and Photodissociation Channels of the Simplest Criegee Intermediate (CH₂OO), *J. Am. Chem. Soc.*, 2015, **137**, 50–53.
- 60 H. Li, Y. Fang, J. M. Beames and M. I. Lester, Velocity map imaging of O-atom products from UV photodissociation of the CH₂OO Criegee intermediate, *J. Chem. Phys.*, 2015, **142**, 214312.
- 61 R. Gutbrod, R. N. Schindler, E. Kraka and D. Cremer, Formation of OH radicals in the gas phase ozonolysis of alkenes: the unexpected role of carbonyl oxides, *Chem. Phys. Lett.*, 1996, **252**, 221–229.
- 62 P. Aplincourt and M. F. Ruiz-López, Theoretical Study of Formic Acid Anhydride Formation from Carbonyl Oxide in the Atmosphere, *J. Phys. Chem. A*, 2000, **104**, 380–388.
- 63 J. H. Kroll, S. R. Sahay, J. G. Anderson, K. L. Demerjian and N. M. Donahue, Mechanism of HOx Formation in the Gas-Phase Ozone-Alkene Reaction. 2. Prompt versus Thermal Dissociation of Carbonyl Oxides to Form OH, J. Phys. Chem. A, 2001, 105, 4446–4457.
- 64 C. Selçuki and V. Aviyente, Electrostatic solvent effects on the conversion of substituted carbonyl oxides to dioxiranes, *J. Mol. Model.*, 2001, **7**, 70–79.
- 65 D. Zhang and R. Zhang, Mechanism of OH Formation from Ozonolysis of Isoprene: A Quantum-Chemical Study, J. Am. Chem. Soc., 2002, **124**, 2692–2703.

- 66 D. Zhang, W. Lei and R. Zhang, Mechanism of OH formation from ozonolysis of isoprene: kinetics and product yields, *Chem. Phys. Lett.*, 2002, **358**, 171–179.
- 67 R. D. Bach, J. L. Andres, A. L. Owensby, H. B. Schlegel and J. J. W. McDouall, Electronic structure and reactivity of dioxirane and carbonyl oxide, *J. Am. Chem. Soc.*, 1992, **114**, 7207–7217.
- 68 M. Olzmann, E. Kraka, D. Cremer, R. Gutbrod and S. Andersson, Energetics, Kinetics, and Product Distributions of the Reactions of Ozone with Ethene and 2,3-Dimethyl-2-butene, *J. Phys. Chem. A*, 1997, **101**, 9421–9429.
- 69 J. Kalinowski, M. Räsänen, P. Heinonen, I. Kilpeläinen and R. B. Gerber, Isomerization and Decomposition of a Criegee Intermediate in the Ozonolysis of Alkenes: Dynamics Using a Multireference Potential, *Angew. Chem. Int. Ed.*, 2014, 53, 265–268.
- 70 B.-Z. Chen, J. M. Anglada, M.-B. Huang and F. Kong, The Reaction of CH₂(X³B₁) with O₂(X³S_g⁻): A Theoretical CASSCF/CASPT2 Investigation, *J. Phys. Chem. A*, 2002, **106**, 1877–1884.
- 71 J. Li, S. Carter, J. M. Bowman, R. Dawes, D. Xie and H. Guo, High-Level, First-Principles, Full-Dimensional Quantum Calculation of the Ro-vibrational Spectrum of the Simplest Criegee Intermediate (CH₂OO), *J. Phys. Chem. Lett.*, 2014, 5, 2364–2369.
- 72 D. Cremer, T. Schmidt, J. Gauss and T. P. Radhakrishnan, Formation of Dioxirane from Carbonyl Oxide, *Angew. Chem.-Int. Ed. Engl.*, 1988, **27**, 427–428.
- 73 R. Chhantyal-Pun, A. Davey, D. E. Shallcross, C. J. Percival and A. J. Orr-Ewing, A kinetic study of the CH₂OO Criegee intermediate self-reaction, reaction with SO₂ and unimolecular reaction using cavity ring-down spectroscopy, *Phys. Chem. Chem. Phys.*, 2015, **17**, 3617–3626.
- 74 D.-C. Fang and X.-Y. Fu, CASSCF and CAS+1+2 Studies on the Potential Energy Surface and the Rate Constants for the Reactions between CH₂ and O₂, *J. Phys. Chem. A*, 2002, **106**, 2988–2993.
- 75 T. L. Nguyen, M. C. McCarthy and J. F. Stanton, Relatively Selective Production of the Simplest Criegee Intermediate in a CH₄/O₂ Electric Discharge: Kinetic Analysis of a Plausible Mechanism, J. Phys. Chem. A, 2014, 119, 7197–7204.
- 76 C. Yin and K. Takahashi, How does substitution affect the unimolecular reaction rates of Criegee intermediates?, *Phys. Chem. Chem. Phys.*, 2017, **19**, 12075–12084.
- 77 L. A. Hull, Mindo-3 Calculations on Stability of Criegee Carbonyl Oxides, J. Org. Chem., 1978, 43, 2780–2785.
- 78 D. Cremer, Theoretical Determination of Molecular-Structure and Conformation. 6. Criegee Intermediate Evidence for a Stabilization of Its Syn Form by Alkyl Substituents, J. Am. Chem. Soc., 1979, **101**, 7199–7205.
- 79 R. Gutbrod, E. Kraka, R. N. Schindler and D. Cremer, Kinetic and Theoretical Investigation of the Gas-Phase Ozonolysis of Isoprene: Carbonyl Oxides as an Important Source for OH Radicals in the Atmosphere, J. Am. Chem. Soc., 1997, 119, 7330–7342.
- 80 T. L. Nguyen, R. Winterhalter, G. Moortgat, B. Kanawati, J. Peeters and L. Vereecken, The gas-phase ozonolysis of β-caryophyllene (C₁₅H₂₄). Part II: A theoretical study, *Phys. Chem. Chem. Phys.*, 2009, **11**, 4173–4183.
- 81 K. T. Kuwata, L. Luu, A. B. Weberg, K. Huang, A. J. Parsons, L. A. Peebles, N. B. Rackstraw and M. J. Kim, Quantum Chemical and Statistical Rate Theory Studies of the Vinyl Hydroperoxides Formed in *trans* -2-Butene and 2,3-Dimethyl-2-butene Ozonolysis, *J. Phys. Chem. A*, 2018, **122**, 2485–2502.
- 82 K. T. Kuwata, K. L. Templeton and A. S. Hasson, Computational Studies of the Chemistry of Syn Acetaldehyde Oxide, *J. Phys. Chem. A*, 2003, **107**, 11525–11532.
- 83 D. Zhang and R. Zhang, Ozonolysis of α-pinene and β-pinene: Kinetics and mechanism, J. Chem. Phys., 2005, 122, 114308.
- 84 F. Liu, J. M. Beames, A. S. Petit, A. B. McCoy and M. I. Lester, Infrared-driven unimolecular reaction of CH₃CHOO Criegee intermediates to OH radical products, *Science*, 2014, **345**, 1596–1598.
- 85 F. Liu, J. M. Beames, A. M. Green and M. I. Lester, UV Spectroscopic Characterization of Dimethyl- and Ethyl-Substituted Carbonyl Oxides, J. Phys. Chem. A, 2014, 118, 2298–2306.
- 86 F. Liu, Y. Fang, M. Kumar, W. H. Thompson and M. I. Lester, Direct observation of vinyl hydroperoxide, *Phys. Chem. Chem. Phys.*, 2015, **17**, 20490–20494.
- 87 T. Leonardo, L. Baptista, E. C. da Silva and G. Arbilla, Carbonyl Oxides Reactions from Geraniol-trans-(3,7-dimethylocta-2,6-dien-1-ol), 6-Methyl-5-hepten-2-one, and 6-Hydroxy-4-methyl-4-hexenal Ozonolysis: Kinetics and Mechanisms, J. Phys. Chem. A, 2011, 115, 7709–7721.
- 88 T. Berndt, T. Jokinen, R. L. Mauldin, T. Petäjä, H. Herrmann, H. Junninen, P. Paasonen, D. R. Worsnop and M. Sipilä, Gas-Phase Ozonolysis of Selected Olefins: The Yield of Stabilized Criegee Intermediate and the Reactivity toward SO₂, *J. Phys. Chem. Lett.*, 2012, **3**, 2892–2896.

- 89 O. Horie, P. Neeb and G. K. Moortgat, The reactions of the Criegee intermediate CH₃CHOO in the gas-phase ozonolysis of 2-butene isomers, *Int. J. Chem. Kinet.*, 1997, **29**, 461–468.
- 90 O. Horie, C. Schafer and G. K. Moortgat, High reactivity of hexafluoro acetone toward Criegee intermediates in the gas-phase ozonolysis of simple alkenes, *Int. J. Chem. Kinet.*, 1999, **31**, 261–269.
- 91 N. M. Kidwell, H. Li, X. Wang, J. M. Bowman and M. I. Lester, Unimolecular dissociation dynamics of vibrationally activated CH₃CHOO Criegee intermediates to OH radical products, *Nat. Chem.*, 2016, 8, 509–514.
- 92 T. L. Nguyen, L. McCaslin, M. C. McCarthy and J. F. Stanton, Communication: Thermal unimolecular decomposition of syn-CH₃CHOO: A kinetic study, *J. Chem. Phys.*, 2016, **145**, 131102.
- 93 A. M. Green, V. P. Barber, Y. Fang, S. J. Klippenstein and M. I. Lester, Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products, *Proc. Natl. Acad. Sci.*, 2017, **114**, 12372–12377.
- 94 T. A. H. Burd, X. Shan and D. C. Clary, Catalysis and tunnelling in the unimolecular decay of Criegee intermediates, *Phys. Chem. Chem. Phys.*, 2018, **20**, 25224–25234.
- 95 K. T. Kuwata, L. C. Valin and A. D. Converse, Quantum Chemical and Master Equation Studies of the Methyl Vinyl Carbonyl Oxides Formed in Isoprene Ozonolysis, *J. Phys. Chem. A*, 2005, **109**, 10710–10725.
- 96 J. M. Bowman, X. Wang and Z. Homayoon, Ab initio computational spectroscopy and vibrational dynamics of polyatomic molecules: Applications to syn and anti-CH₃CHOO and NO₃, *J. Mol. Spectrosc.*, 2015, **311**, 2–11.
- 97 T. Sun, Y. Wang, C. Zhang, X. Sun and W. Wang, The chemical mechanism of the limonene ozonolysis reaction in the SOA formation: A quantum chemistry and direct dynamic study, *Atmos. Environ.*, 2011, **45**, 1725–1731.
- 98 F. Liu, J. M. Beames and M. I. Lester, Direct production of OH radicals upon CH overtone activation of (CH₃)₂COO Criegee intermediates, J. Chem. Phys., 2014, 141, 234312.
- 99 H. Li, N. M. Kidwell, X. Wang, J. M. Bowman and M. I. Lester, Velocity map imaging of OH radical products from IR activated (CH₃)₂COO Criegee intermediates, J. Chem. Phys., 2016, 145, 104307.
- 100 G. T. Drozd, T. Kurtén, N. M. Donahue and M. I. Lester, Unimolecular Decay of the Dimethyl Substituted Criegee Intermediate in Alkene Ozonolysis: Decay Timescales and the Importance of Tunneling, *J. Phys. Chem. A*, 2017, **121**, 6036–6045.
- 101 J. M. Anglada and J. M. Bofill, Electronic Structure and Unimolecular Reactions of Cyclopropenone Carbonyl Oxide. A Theoretical Study, *J. Org. Chem.*, 1997, **62**, 2720–2726.
- 102 T. L. Nguyen, J. Peeters and L. Vereecken, Theoretical study of the gas-phase ozonolysis of β -pinene (C₁₀H₁₆), *Phys. Chem. Chem. Phys.*, 2009, **11**, 5643–5656.
- 103 L. Wang and L. Wang, Mechanism of gas-phase ozonolysis of sabinene in the atmosphere, *Phys. Chem. Chem. Phys.*, 2017, **19**, 24209–24218.
- 104 K. T. Kuwata and L. C. Valin, Quantum chemical and RRKM/master equation studies of isoprene ozonolysis: Methacrolein and methacrolein oxide, *Chem. Phys. Lett.*, 2008, **451**, 186–191.
- 105 D. Cremer, R. Crehuet and J. Anglada, The Ozonolysis of Acetylene: A Quantum Chemical Investigation, J. Am. Chem. Soc., 2001, **123**, 6127–6141.
- 106 C. Selçuki and V. Aviyente, How does the OH group affect the conversion of carbonyl oxide to dioxirane?, *J. Mol. Struct. THEOCHEM*, 2000, **530**, 97–107.
- 107 X. Lei, W. Wang, J. Gao, S. Wang and W. Wang, Atmospheric Chemistry of Enols: The Formation Mechanisms of Formic and Peroxyformic Acids in Ozonolysis of Vinyl Alcohol, J. Phys. Chem. A, 2020, 124, 4271–4279.
- 108 I. Ljubić and A. Sabljić, Theoretical Study of the Mechanism and Kinetics of Gas-Phase Ozone Additions to Ethene, Fluoroethene, and Chloroethene: A Multireference Approach, J. Phys. Chem. A, 2002, 106, 4745– 4757.
- 109 I. Ljubić and A. Sabljić, Fluorocarbonyl oxide: CASSCF/CASPT2 study of structure, cis effect and unimolecular decomposition paths, *Chem. Phys.*, 2005, **309**, 157–165.
- 110 S. Keßel, D. Cabrera-Perez, A. Horowitz, P. R. Veres, R. Sander, D. Taraborrelli, M. Tucceri, J. N. Crowley, A. Pozzer, C. Stönner, L. Vereecken, J. Lelieveld and J. Williams, Atmospheric chemistry, sources and sinks of carbon suboxide, C₃O₂, *Atmospheric Chem. Phys.*, 2017, **17**, 8789–8804.
- 111 M. E. Squillacote and F. T. Liang, Conformational thermodynamic and kinetic parameters of methyl-substituted 1,3-butadienes, *J. Org. Chem.*, 2005, **70**, 6564–6573.
- 112 Z. C. J. Decker, K. Au, L. Vereecken and L. Sheps, Direct Experimental Probing and Theoretical Analysis of the Reaction between the Simplest Criegee Intermediate CH₂OO and Isoprene, *Phys. Chem. Chem. Phys.*, 2017, 19, 8541–8551.
- 113 C. Fittschen, The reaction of peroxy radicals with OH radicals, Chem. Phys. Lett., 2019, 725, 102-108.
- 114 E. Assaf, L. Sheps, L. K. Whalley, D. E. Heard, A. Tomas, C. Schoemaecker and C. Fittschen, The Reaction between CH₃O₂ and OH Radicals: Product Yields and Atmospheric Implications, *Environ. Sci. Technol.*, 2017, 51, 2170–2177.
- 115 E. Assaf, B. Song, A. Tomas, C. Schoemaecker and C. Fittschen, Rate Constant of the Reaction between CH₃O₂ Radicals and OH Radicals Revisited, *J. Phys. Chem. A*, 2016, **120**, 8923–8932.
- 116 E. Assaf, C. Schoemaecker, L. Vereecken and C. Fittschen, Experimental and theoretical investigation of the reaction of RO₂ radicals with OH radicals: Dependence of the HO₂ yield on the size of the alkyl group, *Int. J. Chem. Kinet.*, 2018, **50**, 670–680.
- 117 A. Bossolasco, E. P. Farago, C. Schoemaecker and C. Fittschen, Rate constant of the reaction between CH₃O₂ and OH radicals, *Chem. Phys. Lett.*, 2014, **593**, 7–13.
- 118 R. L. Caravan, M. A. H. Khan, J. Zádor, L. Sheps, I. O. Antonov, B. Rotavera, K. Ramasesha, K. Au, M.-W. Chen, D. Rösch, D. L. Osborn, C. Fittschen, C. Schoemaecker, M. Duncianu, A. Grira, S. Dusanter, A. Tomas, C. J. Percival, D. E. Shallcross and C. A. Taatjes, The reaction of hydroxyl and methylperoxy radicals is not a major source of atmospheric methanol, *Nat. Commun.*, 2018, 9, 4343.
- 119 J.-F. Müller, Z. Liu, V. S. Nguyen, T. Stavrakou, J. N. Harvey and J. Peeters, The reaction of methyl peroxy and hydroxyl radicals as a major source of atmospheric methanol, *Nat. Commun.*, 2016, **7**, 13213.
- 120 M. F. Vansco, R. L. Caravan, K. L. Zuraski, F. A. F. Winiberg, K. Au, N. Trongsiriwat, P. J. Walsh, D. L. Osborn, C. J. Percival, M. A. H. Khan, D. E. Shallcross, C. A. Taatjes and M. I. Lester, Experimental Evidence of Dioxole Unimolecular Decay Pathway for Isoprene-Derived Criegee Intermediates, *J. Phys. Chem. A*, 2020, 124, 3542–3554.
- 121 L. Vereecken, The Reaction of Criegee Intermediates with Acids and Enols, *Phys. Chem. Chem. Phys.*, 2017, 19, 28630–28640.
- 122 N. M. Donahue, G. T. Drozd, S. A. Epstein, A. A. Presto and J. H. Kroll, Adventures in ozoneland: down the rabbit-hole, *Phys. Chem. Chem. Phys.*, 2011, **13**, 10848–10857.
- 123 S. Enami and A. J. Colussi, Reactions of Criegee Intermediates with Alcohols at Air-Aqueous Interfaces, J. *Phys. Chem. A*, 2017, **121**, 5175–5182.
- 124 M. R. McGillen, B. F. E. Curchod, R. Chhantyal-Pun, J. M. Beames, N. Watson, M. A. H. H. Khan, L. McMahon, D. E. Shallcross and A. J. Orr-Ewing, Criegee Intermediate–Alcohol Reactions, A Potential Source of Functionalized Hydroperoxides in the Atmosphere, ACS Earth Space Chem., 2017, 1, 664–672.
- 125 S. V. Tadayon, E. S. Foreman and C. Murray, Kinetics of the Reactions between the Criegee Intermediate CH₂OO and Alcohols, *J. Phys. Chem. A*, 2018, **122**, 258–268.
- 126 N. A. I. Watson, J. A. Black, T. M. Stonelake, P. J. Knowles and J. M. Beames, An Extended Computational Study of Criegee Intermediate-Alcohol Reactions, *J. Phys. Chem. A*, 2019, **123**, 218–229.
- 127 P. J. Ziemann, Formation of Alkoxyhydroperoxy Aldehydes and Cyclic Peroxyhemiacetals from Reactions of Cyclic Alkenes with O₃ in the Presence of Alcohols, *J. Phys. Chem. A*, 2003, **107**, 2048–2060.
- 128 S. Wolff, A. Boddenberg, J. Thamm, W. V. Turner and S. Gab, Gas-phase ozonolysis of ethene in the presence of carbonyl-oxide scavengers, *Atmos. Environ.*, 1997, **31**, 2965–2969.
- 129 P. Neeb, O. Horie and G. K. Moortgat, Gas-phase ozonolysis of ethene in the presence of hydroxylic compounds, *Int. J. Chem. Kinet.*, 1996, 28, 721–730.
- 130 L. Vereecken, A. R. Rickard, M. J. Newland and W. J. Bloss, Theoretical study of the reactions of Criegee intermediates with ozone, alkylhydroperoxides, and carbon monoxide, *Phys. Chem. Chem. Phys.*, 2015, 17, 23847–23858.
- 131 Y. Sakamoto, S. Inomata and J. Hirokawa, Oligomerization Reaction of the Criegee Intermediate Leads to Secondary Organic Aerosol Formation in Ethylene Ozonolysis, *J. Phys. Chem. A*, 2013, **117**, 12912–12921.
- 132 A. C. Rousso, N. Hansen, A. W. Jasper and Y. Ju, Identification of the Criegee intermediate reaction network in ethylene ozonolysis: impact on energy conversion strategies and atmospheric chemistry, *Phys. Chem. Chem. Phys.*, 2019, **21**, 7341–7357.
- 133 M. Chen, S. Tong, Z. Wang, W. Li, Y. Xu, S. Wang and M. Ge, Reaction mechanism and kinetics of Criegee intermediate and hydroperoxymethyl formate, *J. Environ. Sci.*, 2021, **105**, 128–137.
- 134 C. Cabezas and Y. Endo, Observation of hydroperoxyethyl formate from the reaction between the methyl Criegee intermediate and formic acid, *Phys. Chem. Chem. Phys.*, 2020, **22**, 446–454.
- 135 R. Chhantyal-Pun, B. Rotavera, M. R. McGillen, M. A. H. H. Khan, A. J. Eskola, R. L. Caravan, L. Blacker, D. P. Tew, D. L. Osborn, C. J. Percival, C. A. Taatjes, D. E. Shallcross and A. J. Orr-Ewing, Criegee Intermediate Reactions with Carboxylic Acids: A Potential Source of Secondary Organic Aerosol in the Atmosphere, ACS *Earth Space Chem.*, 2018, 2, 833–842.

- 136 E. S. Foreman, K. M. Kapnas and C. Murray, Reactions between Criegee Intermediates and the Inorganic Acids HCl and HNO₃ : Kinetics and Atmospheric Implications, *Angew. Chem. Int. Ed.*, 2016, **55**, 10419–10422.
- 137 M. Kumar, D. H. Busch, B. Subramaniam and W. Thompson, Barrierless Tautomerization of Criegee Intermediates via Acid Catalysis, *Phys Chem Chem Phys*, 2014, **16**, 22968–22973.
- 138 M. Kumar, J. Zhong, X. C. Zeng and J. S. Francisco, Reaction of Criegee Intermediate with Nitric Acid at the Air-Water Interface, J. Am. Chem. Soc., 2018, 140, 4913–4921.
- 139 M. Monge-Palacios, M. P. Rissanen, Z. Wang and S. M. Sarathy, Theoretical Kinetic Study of the Formic Acid Catalyzed Criegee Intermediate Isomerization: Multistructural Anharmonicity and Atmospheric Implications, *Phys. Chem. Chem. Phys.*, 2018, 20, 10806–10814.
- 140 M. Sipilä, T. Jokinen, T. Berndt, S. Richters, R. Makkonen, N. M. Donahue, R. L. Mauldin, T. Kurtén, P. Paasonen, N. Sarnela, M. Ehn, H. Junninen, M. P. Rissanen, J. Thornton, F. Stratmann, H. Herrmann, D. R. Worsnop, M. Kulmala, V.-M. Kerminen and T. Petäjä, Reactivity of stabilized Criegee intermediates (sCIs) from isoprene and monoterpene ozonolysis toward SO₂ and organic acids, *Atmospheric Chem. Phys.*, 2014, 14, 12143–12153.
- 141 C. A. Taatjes, R. L. Caravan, F. A. F. Winiberg, K. Zuraski, K. Au, L. Sheps, D. L. Osborn, L. Vereecken and C. J. Percival, Insertion products in the reaction of carbonyl oxide Criegee intermediates with acids: Chloro(hydroperoxy)methane formation from reaction of CH₂OO with HCl and DCl, *Mol. Phys.*, 2021, **119**, e1975199.
- 142 O. Welz, A. J. Eskola, L. Sheps, B. Rotavera, J. D. Savee, A. M. Scheer, D. L. Osborn, D. Lowe, A. Murray Booth, P. Xiao, M. Anwar H. Khan, C. J. Percival, D. E. Shallcross and C. A. Taatjes, Rate Coefficients of C1 and C2 Criegee Intermediate Reactions with Formic and Acetic Acid Near the Collision Limit: Direct Kinetics Measurements and Atmospheric Implications, *Angew. Chem.*, 2014, **126**, 4635–4638.
- 143 W.-C. Liang, P.-L. Luo and Y.-P. Lee, Infrared characterization of the products and the rate coefficient of the reaction between Criegee intermediate CH₂OO and HCl, *Phys. Chem. Chem. Phys.*, 2021, **23**, 11082–11090.
- 144 C.-A. Chung, J. W. Su and Y.-P. Lee, Detailed mechanism and kinetics of the reaction of Criegee intermediate CH₂OO with HCOOH investigated via infrared identification of conformers of hydroperoxymethyl formate and formic acid anhydride, *Phys. Chem. Chem. Phys.*, 2019, **21**, 21445–21455.
- 145 S. Liu, X. Zhou, Y. Chen, Y. Liu, S. Yu, K. Takahashi, H. Ding, Z. Ding, X. Yang and W. Dong, Experimental and Computational Studies of Criegee Intermediate syn-CH₃CHOO Reaction with Hydrogen Chloride, *J. Phys. Chem. A*, 2021, **125**, 8587–8594.
- 146 M. F. Vansco, K. Zuraski, F. A. F. Winiberg, K. Au, N. Trongsiriwat, P. J. Walsh, D. L. Osborn, C. J. Percival, S. J. Klippenstein, C. A. Taatjes, M. I. Lester and R. L. Caravan, Functionalized Hydroperoxide Formation from the Reaction of Methacrolein-Oxide, an Isoprene-Derived Criegee Intermediate, with Formic Acid: Experiment and Theory, *Molecules*, 2021, 26, 3058.
- 147 C. Cabezas and Y. Endo, The Criegee intermediate-formic acid reaction explored by rotational spectroscopy, *Phys. Chem. Chem. Phys.*, 2019, **21**, 18059–18064.
- 148 C. A. Taatjes, M. A. H. Khan, A. J. Eskola, C. J. Percival, D. L. Osborn, T. J. Wallington and D. E. Shallcross, Reaction of Perfluorooctanoic Acid with Criegee Intermediates and Implications for the Atmospheric Fate of Perfluorocarboxylic Acids, *Environ. Sci. Technol.*, 2019, 53, 1245–1251.
- 149 L. Vereecken, T. L. Nguyen, I. Hermans and J. Peeters, Computational study of the stability of α-hydroperoxylor α-alkylperoxyl substituted alkyl radicals, *Chem. Phys. Lett.*, 2004, **393**, 432–436.
- 150 O. M. Anglada, R. Crehuet and J. S. Francisco, The Stability of α-Hydroperoxyalkyl Radicals, *Chem.- Eur. J.*, 2016, **22**, 18092–18100.
- 151 L. Vereecken, in Advances in Atmospheric Chemistry: Volume 2: Organic Oxidation and Multiphase Chemistry, eds. J. R. Barker, A. L. Steiner and T. J. Wallington, World Scientific Publishing Co. Pte. Ltd., Singapore, 1st edn., 2019, pp. 377–527.