Electronic Supplementary Information

Plasmonic Photothermal Properties of Silver Nanoparticle Grating Films

Siriporn Anuthum,^{ab} Fugo Hasegawa,^a Chutiparn Lertvachirapaiboon,^a Kazunari

Shinbo,^a Keizo Kato,^a Kontad Ounnunkad,^{*b} and Akira Baba*^a

Graduate School of Science and Technology, Niigata University, 8050 Ikarashi-2-nocho, Nishi-ku, Niigata 950-2181, Japan.

E-mail: ababa@eng.niigata-u.ac.jp

Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.

E-mail: kontad.ounnunkad@cmu.ac.th

Figure S1. Schematic of the SPR reflectivity measurement of fabricated plasmonic photothermal films

AgNP grating film ($\Lambda = 640 \text{ nm}, \lambda = 450 \text{ nm}$)

AgNP grating film ($\Lambda = 640$ nm, $\lambda = 660$ nm)

non-NP Ag grating film ($\Lambda = 640 \text{ nm}, \lambda = 450 \text{ nm}$)

non-NP Ag grating film ($\Lambda = 640$ nm, $\lambda = 660$ nm)

Figure S2. Electric field distributions at an incident light angle of 0° with p-polarization obtained from the FDTD simulation with the grating pitch of 640 nm

Figure S3. UV–visible absorption property of a sufficiently thin spin-coated AgNP film and AgNP grating films on glass substrate

Figure S4. Reflectivity curves of the AgNP film/evaporated Ag film and AgNP grating film $(\Lambda = 320 \text{ nm and } 740 \text{ nm})$ /evaporated Ag film as a function of thickness of the evaporated Ag film at an incident light angle of 10° with p-polarization

Figure S5. Generated current versus time upon illumination