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Theory

Geometrical expressions for , , , and H1r 2r cdR ds

Using the geometric relationship in Fig. 3, the following relations are obtained,
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 can be directly obtained from Eq. (S1), 1r
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Substituting Eq. (S2) into Eq. (S3) gives, 
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To determine the variation of  along the axisymmetric surface, we assume an infinitesimal cR

virtual displacement, , (or correspondingly ) of the droplet and the resulted radius of ds d

curvature,  can be computed by (Fig. S1),'
cR
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l can be written as,
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Combining Eq. (S7) and the relation, , Eq. (S6) is converted to, sd ds R 
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Since , dividing both sides of Eq. (S8) by  and eliminating the tan( ) tanz zd    ds

infinitesimal quantity, Eq. (S8) becomes, 
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For a droplet with radius , its volume is .  For this droplet placed on dr
3

d d4 3V r

axisymmetric surfaces, the height of the droplet, H can be approximated by that of the droplet 

rested on a flat surface with the same volume.  If the contact radius of droplet on a flat surface is 

denoted as , the volume of the droplet can be expressed as,10r
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H can be computed by,
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Driving force for barrel shaped droplets

According to Eq. (1), by assuming  is a constant, Eq. (1) can be written as,mH
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Thus, the driving force can be computed by,

. (S13)
3

d
d 2

m

42 tan
( ) 3

rdPF V
ds R H

 
     



Work of adhesion

The MD system is modelled by a droplet resting on a cylinder, as shown in Fig. 3.  The total 

surface free energy change (per unit area) in forming a droplet from the cylinder equilibrated with 

vapor is (Fig. S5),2,3 
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where  represents the liquid-vapor interface area,  is liquid-solid interface area,  denote LVA LSA xzA

the project area of  onto the (x, z) plane,  and  are the solid to liquid and solid to vapor LSA SL SV

surface tensions respectively.  As displayed in Fig. 3(a), the shapes of  and  are both LSA xzA

ellipses.  Their surface areas equal to  and , where  and  denote the LSA ab ' '
xzA a b a 'a

length of the semi-minor axis, b and  are the length of the semi-major axis.  As illustrated in 'b

Fig. 3(b), it is obtained that  and , where  represent the tangent-chord angle a R   ' sina R   

and .  Since , the area ratio of  (defined as ) is equal to cR R 'b b LS xzA A 

.  ' sina a   

The work of adhesion is the work needed to separate the droplet and the solid surface 

perpendicularly from each other against the adhesive force between them.3  It is required that the 

droplet separated from the surface does not change its shape.  Under this condition, the total free 

energy of the constrained droplet (per unit area) as shown in Fig. S5 is,3
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The work of adhesion is the free energy change (per unit area) from the initial state to the final 

state (Fig. S5),
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According to the classical Young’s equation, 
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Plugging Eq. (S17) into Eq. (S16) gives,
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The form of Eq. (S18) is analogous to the modified Young-Duprè equation in Ref. 4-5, except that 

the coefficient  is different.  The tangent-chord angle  can be determined from the geometric  

relationship shown in Fig. 3(b),
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For convenience,  is approximated by .  Dividing both sides of Eq. (S19) by ,  2r 2 dr r sin 

can be expressed as,
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Theoretical model for f

The retentive force due to contact angle hysteresis is given by,6

, (S21)ca r a(cos cos )f kr     ds

where k is a coefficient that depends on the shape of droplets,  is the contact-area radius,  and car r

 are receding and advancing contact angle respectively.  Theoretically, the energy needed to a

move a droplet on the solid surface by a distance  should overcome the work of adhesion,4,5
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Plugging Eq. (S21) into Eq. (S22) yields,
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Combining Eq. (S21) and Eq. (S23), f can be written as,
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It is noted that  is approximated by the contact radius of a droplet with the same volume car

placed on a flat surface,
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Fig. S1 Schematic illustration of a droplet with a virtual displacement ds on an axisymmetric 

surface
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Fig. S2 Snapshots of MD simulation systems (  nm and  K) at the time  ns 3.5dr  ws 200  0t 

and  ns respectively for (a) , (b) , (c) , (d) .4t  =10o =25o =45o =65o
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Fig. S3 Velocity of the droplet (  nm) versus zm for various  with  K3.5dr   ws 200 
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Fig. S4 Comparison of the predictions of the driving force of a droplet (  nm) on the 3.5dr 

conical surface with  and  K using Eq. (7) and Eq. (S13).=45o ws 200 
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Fig. S5 The model for the free energy of adhesion
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