Supporting Information

Electronic and optical properties of a novel two-dimensional semiconductor material TIPt₂S₃: a first-principles study

Xin Yang^a, Yanqing Shen^{a,b,*}, Jiajia Liu^a, Xianghui Meng^a, Xu Gao^a,

Lingling Lv^a, Min Zhou^a, Yu Zhang^a, Yangdong Zheng^a,

Zhongxiang Zhou^{*a,b*}

^aSchool of Physics, Harbin Institute of Technology, Harbin, 150001, PR China
^bHeilongjiang Provincial Key Laboratory of Plasma Physics and Application
Technology, Harbin Institute of Technology, Harbin 150001, PR China

*Corresponding authors: Yanqing Shen, E-mail: <u>shenyanqing2004@163.com</u>

The phonon dispersion curve, the AIMD and the work function of bilayer $TIPt_2S_3$ have shown in Fig.S1. It can be seen that any negative phonon frequency is complete absence in the phonon dispersion curve of bilayer $TIPt_2S_3$, and neither phase transitions nor significant structural distortions is observed during the AIMD process, which indicates that the structure of bilayer $TIPt_2S_3$ is thermo-dynamically stable. The work function of the bilayer $TIPt_2S_3$ (4.98 eV) in the vacuum environment shows it is also chemical stability.

Fig. S1 (a) Phonon-dispersion spectrum for bilayer TlPt₂S₃. (b) Energy variations during the AIMD simulation under a temperature of 300 K. Inset plots show the bilayer TlPt₂S₃ structure before and after simulation. (c) Work function and electrostatic potential along the direction perpendicular to the plane.

Table S1 summarizes the corresponding values of μ^{2D} , C_{2D} , m^*/m_0 and E_d of the bilayer TlPt₂S₃. The electron mobility along the armchair direction is 13635.04 cm² V⁻¹ s⁻¹, whereas along the zigzag direction it is calculated to 12332.20 cm² V⁻¹ s⁻¹. The hole mobility along the armchair and zigzag direction are 3531.33 cm² V⁻¹ s⁻¹ and 858.55 cm² V⁻¹ s⁻¹, respectively. It can be found that these electron and hole mobilities are much higher than that of the monolayer TlPt₂S₃.

Table S1 Effective mass m^*/m_0 , DP constant E_d (eV), in-plane stiffness C_{2D} (N·m⁻¹) and carrier mobility μ (cm²·V⁻¹s⁻¹) for electrons and holes of bilayer TlPt₂S₃.

Carrier type		m^{*}/m_{0}	$E_{\rm d}({\rm eV})$	$C_{2\mathrm{D}} \left(\mathrm{N}\cdot\mathrm{m}^{-1}\right)$	$\mu ({\rm cm}^2 \cdot {\rm V}^{-1}{\rm s}^{-1})$
Electron	arm	0.78	0.57	108.45	13635.04
	zig	0.55	0.72	107.96	12332.20
Hole	arm	0.69	1.15	108.45	3531.33
	zig	0.75	2.23	107.96	858.55