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Supporting Information 

Materials and methods 

10H-Phenoxazine, tri-tert-butylphosphine solution (1.0 M in toluene), palladium(II) acetate, sodium 

tert-butoxide were purchased from Sigma Aldrich. 4-Bromo-N-(2-ethylhexyl)-1,8-naphthalimide 

(IMBr), 3,7-di-tert-butyl-10H-phenothiazine and 2,7-di-tert-butyl-9,9-dimethyl-9,10-dihydroacridine 

were synthesized according to reported literature procedures [1–3].
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2-(2-Ethylhexyl)-6-(10H-phenoxazin-10-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (1). 4-

Bromo-N-(2-ethylhexyl)-1,8-naphthalimide (IMBr) (0.5 g, 1.3 mmol), 10H-phenoxazine (0.29 g, 1.6 

mmol), palladium(II) acetate (0.006 g, 0.027 mmol), tri-tert-butylphosphine solution (1.0 M in toluene) 

(0.032 g, 0.158 mmol), sodium tert-butoxide (0.31 g, 3.23 mmol) were dissolved in 15 ml of toluene 

and heated at 120 oC for 24 h under nitrogen atmosphere. When the reaction was completed, the reaction 

mixture was diluted with ethylacetete. The product was purified by column chromatography (eluent – 

n-hexane/ethylacetate, 10:1), crystallized from the mixture of n-hexane and ethylacetate to get 1 as red 

crystals. FW = 490.60 g/mol; (yield 0.35 g, 57%); m. p. 176-177 oC. 1H NMR (400 MHz, CDCl3) δ = 

8.71 (d, J = 7.7 Hz, 1H), 8.58 (d, J = 7.7 Hz, 1H), 8.35 (d, J = 8.4 Hz, 1H), 7.77 (d, J = 7.7 Hz, 1H), 

7.66 (t, J = 7.9 Hz, 1H), 6.71 (d, J = 7.9 Hz, 2H), 6.62 (t, J = 7.7 Hz, 2H), 6.44 (t, J = 7.7 Hz, 2H), 5.62 

(d, J = 8.4 Hz, 2H), 4.17 – 4.00 (m, 2H), 1.96 – 1.83 (m, 1H), 1.42 – 1.20 (m, 8H), 0.94 – 0.76 (m, 6H). 
13C NMR (101 MHz, CDCl3) δ = 164.2, 163.8, 143.8, 141.5, 133.7, 132.5, 132.1, 130.4, 130.2, 129.6, 

128.1, 123.8, 123.5, 123.2, 122.2, 115.9, 113.4, 44.3, 38.0, 30.7, 28.7, 24.0, 23.1, 14.1, 10.6. IR, (KBr), 

cm-1: 3067 (CHAromatic), 2957, 2926, 2867 (CHAliphatic), 1698 (C=Oimide), 1660, 1618, 1584, 1486 

(C=CAromatic), 1353, 1334, 1291, 1268 (C-N), 1092, 1065, 1025 (C-O-C), 784, 758, 729, 673 (CHAromatic). 

MS (APCI+, 20 V), m/z: 491 ([M+H]+). Elemental analysis calcd (%) for C32H30H2O3: C, 78.34; H, 6.16; 

N, 5.71; O, 9.78. Found: C, 78.31; H, 6.14; N, 5.72.
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6-(3,7-Di-tert-butyl-10H-phenothiazin-10-yl)-2-(2-ethylhexyl)-1H-benzo[de]isoquinoline-1,3(2H)-

dione (2). Following the synthetic procedure used for the synthesis of derivative 1, compound 2 was 

obtained using 3,7-di-tert-butyl-10H-phenothiazine (0.29 g, 0.92 mmol) instead of 10H-phenoxazine. 

The product was purified by column chromatography (eluent – n-hexane/ethylacetate, 10:1), crystallized 

from the mixture of n-hexane and ethylacetate to get 2 as orange crystals. FW = 618.88 g/mol; Yield: 

0.24 g, 56%; m. p. 170-171 oC. 1H NMR (400 MHz, CDCl3) δ = 8.72 (d, J = 7.7 Hz, 1H), 8.56 (d, J = 

7.7 Hz, 1H), 8.45 (d, J = 8.6 Hz, 1H), 7.84 (d, J = 7.7 Hz, 1H), 7.64 (t, J = 7.7 Hz, 1H), 7.03 (d, J = 2.0 

Hz, 2H), 6.68 (dd, J1 = 8.6 Hz, J2 = 2.0 Hz, 2H), 5.90 (d, J = 8.6 Hz, 2H), 4.19 – 3.99 (m, 2H), 1.99 – 

1.85 (m, 1H), 1.43 – 1.20 (m, 8H), 1.14 (s, 18H), 0.94 – 0.75 (m, 6H). 13C NMR (101 MHz, CDCl3) δ 

= 164.3, 163.9, 146.1, 143.6, 141.1, 132.1, 131.9, 131.1, 130.5, 130.2, 128.0, 124.0, 123.8, 122.9, 119.8, 

115.2, 44.3, 38.0, 34.0, 31.1, 30.7, 28.7, 24.0, 23.1, 14.1, 10.6. IR, (KBr), cm-1: 3067 (CHAromatic), 2958, 

2926, 2860 (CHAliphatic), 1703 (C=Oimide), 1656, 1619, 1589, 1478 (C=CAromatic), 1387, 1357, 1269, 1180 

(C-N), 809, 788, 773, 751 (CHAromatic), 709, 673, 614 (C-S-C). MS (APCI+, 20 V), m/z: 620 ([M+H]+). 

Elemental analysis calcd (%) for C40H46N2O2S: C, 77.63; H, 7.49; N, 4.53; O, 5.17, S, 5.18. Found: C, 

77.67; H, 7.53; N, 4.56.

NO O
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6-(2,7-Di-tert-butyl-9,9-dimethylacridin-10(9H)-yl)-2-(2-ethylhexyl)-1H-benzo[de]isoquinoline-

1,3(2H)-dione (3). Following the synthetic procedure used for the synthesis of derivative 1, compound 

3 was obtained using 2,7-di-tert-butyl-9,9-dimethyl-9,10-dihydroacridine (0.4 g, 0.12 mmol) instead of 

10H-phenoxazine. The product was purified by column chromatography (eluent – n-

hexane/ethylacetate, 10:1), crystallized from the mixture of n-hexane and ethylacetate to get 3 as orange 

crystals. FW = 628.90 g/mol; Yield: 0.32 g, 50%; m. p. 176-177 oC. 1H NMR (400 MHz, CDCl3) δ = 

8.71 (d, J = 7.7 Hz, 1H), 8.56 (d, J = 7.7 Hz, 1H), 8.02 (d, J = 8.6 Hz, 1H), 7.69 (d, J = 7.7 Hz, 1H), 

7.56 (t, J = 7.7 Hz, 1H), 7.46 (d, J = 2.0 Hz, 2H), 6.78 (dd, J1 = 8.6 Hz, J2 = 2.0 Hz, 2H), 5.79 (d, J = 

8.6 Hz, 2H), 4.18 – 4.03 (m, 2H), 2.01 – 1.87 (m, 1H), 1.75 (d, J = 18.5 Hz, 6H), 1.42 – 1.24 (m, 8H), 

1.21 (s, 18H), 0.97 – 0.77 (m, 6H). 13C NMR (101 MHz, CDCl3) δ = 164.4, 164.1, 144.7, 143.4, 138.0, 

132.6, 131.9, 130.7, 129.3, 127.8, 123.7, 123.4, 122.7, 113.4, 44.3, 38.0, 36.4, 34.2, 32.5, 31.4, 30.7, 

28.7, 24.0, 23.1, 14.1, 10.6. IR, (KBr), cm-1: 3067 (CHAromatic), 2957, 2926, 2859 (CHAliphatic), 1699 

(C=Oimide), 1656, 1587, 1491, 1409 (C=CAromatic), 1387, 1363, 1236, 1186 (C-N), 806, 786, 745, 717 

(CHAromatic). MS (APCI+, 20 V), m/z: 630 ([M+H]+). Elemental analysis calcd (%) for C43H52N2O2: C, 

82.12; H, 8.33; N, 4.45; O, 5.09. Found: C, 82.17; H, 8.38; N, 4.47.

Instrumentations

1H (300 MHz) and 13C (75 MHz) NMR spectra were recorded on a Varian Unity Inova 300 apparatus 

at ambient temperature; spectra were analysed with the MestreNova program package. Infrared (IR), 

melting points, thermogravimetric analysis, differential scanning calorimetry (DSC) measurements, 

were carried out as described earlier [4]. Mass spectra were recorded on a Waters ZQ 2000 analytical 

system. Elemental analysis was performed with an Exeter Analytical CE-440 Elemental Analyzer. 

Theoretical calculations had been carried out with Gaussian 16 and Gaussview 6 softwares.
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Absorption, photoluminescence (PL) spectra of dilute solutions and of the films were recorded as 

described previously. To record PL and phosphorescence spectra as well as PL decays at different 

temperatures, variable temperature liquid nitrogen cryostat (Optistat DN2) was used. To record the 

dependencies of delayed emission intensity on laser flux of the samples, the Edinburgh Instruments 

FLS980 spectrometer and a PicoQuantLDH-D-C-375 laser (wavelength 374 nm) were utilized. 

Ionization potential measurements of the solid samples were performed by photoelectron emission 

method in air. 

Ionization potentials (IPPE) of compounds in solid-state were investigated by electron photoemission 

spectroscopy in air. Fluorine doped tin oxide (FTO) coated glass slides were applied as substrates for 

the preparation of samples for photoelectron emission spectrometry. The layers of the compounds were 

vacuum deposited onto the substrates. Photoelectron emission spectra were measured in the air using 

ASBN-D130-CM deep UV deuterium light source, CM110 1/8 m monochromator and Keithley 6517B 

electrometer/high resistance meter.

Electron and hole mobilities (e, h) were studied by time of flight technique. Samples for TOF 

measurements were prepared by physical vapor deposition method onto indium-tin-oxide substrates as 

one of the electrodes.

OLEDs were fabricated by vacuum deposition of organic layers onto cleaned ITO coated glass, vacuum 

of below 10-6 Barr was used. The active area of the obtained devices was 2×3 mm2, furthermore 

measurement was made after the device fabrications, in the air without passivation. The first step of the 

OLED device fabrication process was cleaning ITO substrates by detergent, acetone and deionized water 

in the ultrasonic bath, respectively and after that whole substrates UV-ozone treated for 30 min. All of 

the layers related to the fabricated devices were vacuum evaporated at vacuum pressure exceeding 2×10-

6 mbar. Tests of EL properties were provided immediately after the fabrication of OLEDs in the air 
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without passivation and out-coupling. The current density-voltage and luminance-voltage characteristics 

were investigated using a sourcemeter Keithley 2400C and calibrated photodiode PH100-Si-HA-D0 

together with the PC-Based power and energy monitor 11S-LINK. EL spectra were recorded with an 

UV-visible Avante spectrometer and CIE coordinates were calculated by using EL spectra. Device 

efficiencies were calculated using the recorded EL spectra, current density-voltage and luminance-

voltage characteristics.
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Figure S1. 1H and 13C NMR spectra of cpmpounds 1.
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Figure S2. 1H and 13C NMR spectra of cpmpounds 2.
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Figure S3. 1H and 13C NMR spectra of cpmpounds 3.
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Figure S5. PL spectra of as-prepared and deoxygenated toluene solutions of compounds 1-3. 
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Figure S6. PL spectra of compounds 2 and 3 in THF/water mixtures with different water fractions. 
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Figure S7. PL spectra of non-doped and doped films of compounds 1-3 under air and vacuum.
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Figure S8. PL spectra of doped film of compounds 1-3 at the different power of excitation.
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Figure S9. TOF transients for electrons (b) and holes (c) in film of compounds 1-3 at different applied 
voltages/electric fields.

Table S1. Comparison of reprecentive paramiters of TADF OLED emitters based on 1,8-naphthalimide 

moiety.  

Number Structure
PLQY 

(%)  
Film

EQE 
(%)

Non-doped or 
Doped OLED Ref.

1

NO O

N

21.5 11.2 Doped: 
mCPPFP:emitter

2
NO O

N

5.2 4.6 Doped: 
mCPPFP:emitter

[5]
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3 N

O

O

O

HO

N 6.0±2 1.02 Non-doped [6]

4 N

O

O

N S 55 7.13
Doped:

emitter CBP: 
emitter

5 N

O

O

N 39 5.38
Doped:

emitter CBP: 
emitter

[7]

6
N

N OO

77 8.2 Doped:
mCP:emitter

This study
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