Supporting Information

Elucidating the photoprotective properties of natural UV screening agents: ZEKE-PFI spectroscopy of methyl sinapate

Jiayun Fan^a, Laura Finazzi^a and Wybren Jan Buma^{*ab}

^a Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

^b Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands.

^{*} Email: w.j.buma@uva.nl

Table S1 Assignment of higher-intensity bands observed in ZEKE-PFI spectrum of D_0 after excitation from vibrationless level of S_1 of the *syn/cis* conformer of methyl sinapate for bands up to vibrational excess energies of ~500 cm⁻¹.

Frequency (cm ⁻¹) ^{a,d}	Intensity (%) ^b	Assignment ^c
0.0	100	
59.9	164	56 ¹
120.5	132	56 ²
162.8	22	55 ¹
180.1	72	56 ³
223.0	34	55 ¹ 56 ¹
235.1	33	53 ¹
240.3	37	56 ⁴
270.3	21	52 ¹
276.4	27	-
284.3	40	55 ¹ 56 ²
294.3	27	53 ¹ 56 ¹
298.6	19	56 ⁵
321.7	14	51 ¹
330.5	38	52 ¹ 56 ¹
336.2	41	$276.4 + 56^{1}$
344.5	31	55 ¹ 56 ³
354.5	20	53 ¹ 56 ²
380.5	15	51 ¹ 56 ¹
390.5	35	$52^{1}56^{2}$
395.3	33	$276.4 + 56^{2}$
404.5	22	55 ¹ 56 ⁴
411.7	16	53 ¹ 56 ³
439.7	19	51 ¹ 56 ²
455.1	22	52 ¹ 56 ³
473.2	15	53 ¹ 56 ⁴
432.4	7	52 ¹ 55 ¹
500.1	19	51 ¹ 56 ³

^a Frequency with respect to D_0 adiabatic ionization energy from vibrationless level of S_0 (60291.1 cm⁻¹).

^b Intensity with respect to intensity of $D_0 \leftarrow S_1$ 0-0 band. Starting from energies above ~200 cm⁻¹ bands are superimposed on a background signal that masks true band intensities.

^c Standard labelling vibrational modes: a'(1-56), a"(57-87) with decreasing frequencies.

^d For vibrational excess energies higher than \sim 500 cm⁻¹ the ZEKE-PFI spectrum still shows quite a number of bands with minor intensities but these cannot be assigned unambiguously.

Table S2 Assignment of higher-intensity bands observed in ZEKE-PFI spectrum of D_0 after excitation from vibrationless level of S_1 of the *anti/cis* conformer of methyl sinapate for bands up to vibrational excess energies of ~400 cm⁻¹.

Frequency (cm ⁻¹) ^{a,d}	Intensity (%) ^b	Assignment ^c
0.0	100	
60.2	69	56 ¹
119.8	25	56 ²
163.3	5	55 ¹
171.9	3	54 ¹
179.2	4	56 ³
223.7	4	55 ¹ 56 ¹
230.7	4	54 ¹ 56 ¹
267.9	5	52 ¹
277.5	2	-
281.4	1	55 ¹ 56 ²
291.8	1	54 ¹ 56 ²
319.7	1	51 ¹
326.6	2	52 ¹ 56 ¹
336.2	1	277.5+56 ¹
353.7	1	50 ¹
380.3	1	51 ¹ 56 ¹
386.9	1	52 ¹ 56 ²

^a Frequency with respect to D_0 adiabatic ionization energy from vibrationless level of S_0 (60366.9 cm⁻¹).

^b Intensity with respect to intensity of $D_0 \leftarrow S_1 0-0$ band.

^c Standard labelling vibrational modes: a'(1-56), a"(57-87) with decreasing frequencies.

^d For vibrational excess energies higher than ~400 cm⁻¹ the ZEKE-PFI spectrum still shows quite a number of bands with minor intensities but these cannot be assigned unambiguously.

Figure S1 Time-dependent ZEKE spectra obtained for excitation at the $S_1 \leftarrow S_0$ origin transition (31059.8 cm-1) of the *syn/cis* conformer of MS for a delay between excitation and ionization laser of -10 ns (red), 0 ns (black), and +10 ns (blue). For clarity traces have been displaced horizontally with respect to each other. Figure S1 is the full-range version of Figure 8 in the main article.