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Binding Reactions at Finite Systems - SI Comparisons with Analytical Methods

SI-1 Comparisons with Analytical/Numerical Methods

We now compare the value of the equilibrium constant using Eq. 16 to two well-known analytical

expressions derived from evaluations of the single-particle, q
A
and q

B
, and pair-particle, q

AB
, parti-

tion functions. In the first method, these partition functions are evaluated by integration over the

coordinates of the particles, whereas in the second method, q
AB

is obtained by integrations over

the coordinates and momenta of the center-of-mass and relative motions of the bound state.

For the purpose of comparisons, we choose a finite, N ◦
A = N

◦
B = 1, model system at c◦

A
= c◦

B
=

0.00462963 molecule/nm3 (corresponding to Lbox = 6.0 nm) in which the reference expressions

(see below) can be easily calculated analytically or numerically if we describe A and B as single-site

particles*, A ≡ a and B ≡ b. We also modified the well-depth of the Lennard-Jones potential to

εLJ
AB

= 22.15 kJ/mol so that its magnitude is similar to the effective attraction between A and B

in the simulations with diatomic monomers described above. All other simulation parameters are

unchanged.

MC simulations of 1012 trial moves, with same relevant characteristics as described above, were

performed to yield an acceptance-ratio of 0.44 and an equilibrium constant, calculated by Eq. 16,

of 51.09. In addition two MD simulations, using Nosé-Hoover and velocity-rescaling thermostats,

were ran for 48 µs and 160 µs resulting with a value of K of 50.93 and 52.20, respectively (see

Table SI-1.2).

I. K from Integration over Particle’s Coordinates

If T and U are the kinetic and potential parts of the Hamiltonian, the pair-particle partition function

can be written as,

q
AB

( ~p
A
, ~p

B
, ~r

A
, ~r

B
) =

1

h6

∫ ∞
−∞

. . .

∫ ∞
−∞

e−βT ( ~pA , ~pB )d ~p
A
d ~p

B

∫
~r
A

d ~r
A

∫ rc

0

e−βU(r)d~r , (SI-1.1)

where h is Planck’s constant and rc the cutoff distance defining the bound state. The integrals

over the momenta of each particle are of three dimensions, as is the integral over ~r
A
, i.e. over all

*The potential danger of products other than the AB bound state is now removed by restricting the simulations

to a system with N◦

A = N
◦

B = 1.
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Binding Reactions at Finite Systems - SI Comparisons with Analytical Methods

possible coordinates of particle A, which yields V . In Eq. SI-1.1 we assumed the potential energy

of the system depends only on the relative distance between A and B particles, r = | ~r
A
− ~r

B
|.

Further assuming U vanishes for r > rc, the single-particle partition function, q
A
, is

q
A

(r) =
1

h3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−βT ( ~pA )d ~p
A

∫
~r
A

d ~r
A

=
V

h3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−βT ( ~pA )d ~p
A

, (SI-1.2)

and a corresponding expression holds for q
B
. In the ratio for K, the integrals over momenta

cancel-out and we are left with,

K =
q
AB
V

q
A
· q

B

· c∅ = c∅
∫ rc

0

e−βU(r)d~r = c∅
∫ rc

0

e−βU(r)4πr2dr . (SI-1.3)

If there had been other degrees of freedom in the system, integratable at fixed values of r, then

instead of U(r) we would have had w(r), the potential of the averaged force acting between A and

B due to those other degrees of freedom1. Thus, the need for additional simulations to calculate

the potential of mean force is avoided here because A and B are mono-atomic particles, and we

can solve Eq. SI-1.3 numerically using the Lennard-Jones potential described above. This gives

K = 51.04.

II. K from a Molecular Partition Function

The Hamiltonian of the pair-particle partition function can also be written in terms of generalized

coordinates and momenta describing translation of the center-of-mass, as well as, rotations and

vibrations of the bound AB state. If the rotational and vibrational modes are decoupled, the

expression of K becomes,

K =
qtrans(AB) qrot qvib e

−βε
AB

qtrans(A) qtrans(B)

V c∅ , (SI-1.4)

where ε
AB

equals −εLJ
AB
/NAvogadro set above. We use textbooks2 results for the translational and

high-temperature (rigid-rotor) rotational partition functions. These are,

qtrans =

(
2πmk

B
T

h2

)3/2

V , (SI-1.5)

and,

qrot =
8π2Ik

B
T

h2
, (SI-1.6)
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where m is the mass of the translating body, I = µR2
eq is the moment of inertia with µ the reduced

mass and Req = 21/6σ
AB

= 0.2020 nm, the equilibrium distance between A and B particles in the

bound state. We also assume high-temperatures for the vibrational partition function, arising from

the oscillatory motion around the minimum of the LJ potential, and perform numerical integration

instead of discrete summation. Here, the Hamiltonian includes a one-dimensional kinetic term of

a body with a reduced mass µ and the Lennard-Jones potential is shifted by εLJ
AB

so its minimum

is at zero energy. We therefore have,

qvib =
1

h

∫ ∞
−∞

e−βp
2/2µd~p

∫ rc

0

e−β[ULJ (r)+ε
LJ
AB

]dr =

(
2πµk

B
T

h2

)1/2 ∫ rc

0

e−β[ULJ (r)+ε
LJ
AB

]dr .

(SI-1.7)

We calculate these different elements of the molecular partition function for the system introduced

above and present the results in Table SI-1.1. Inserting these values in Eq. SI-1.4 we obtain

Table SI-1.1: The value of different elements in the molecular partition function of a diatomic gas,

along with the corresponding monoatomic partition functions and the Boltzmann’s factor, necessary

to compute the equilibrium constant in Eq. SI-1.4, at T = 300 K. The quantities qtrans/V are given

in units of m−3.

qtrans(AB)/V qrot qvib e−βεAB qtrans(A)/V = qtrans(B)/V

8.734 · 1031 252.4 0.4854 7187 3.088 · 1031

K = 48.57.

In Table SI-1.2 we summarize the results obtained from the simulations, as well as, from the

two analytical/numerical methods. The agreement of the MC and MD-NH simulations with the

numerical evaluation of Eq. SI-1.3 is excellent. The result of MD-VR is slightly less good where

it converges to a different value than that determined by Eq. SI-1.3, nevertheless the discrepancy

of 0.056 kJ/mol in ∆G∅ is rather small. A mild discrepancy, relative to the other four results,

is also observed when we evaluate K by the molecular partition function using Eq. SI-1.4 with a

magnitude that translates to 0.12 − 0.18 kJ/mol for the value of ∆G∅. This is not surprising

given the assumptions made in Eq. SI-1.4 and is likely to be the least accurate method. The most

questionable assumption is the neglect of coupling between vibrational and rotational degrees of
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Table SI-1.2: Comparison between values of the equilibrium constant K computed by five different

methods, for the reaction described in Eq. 1 using the simplified system of single-site monomers

detailed in this section. Simulations utilizing Monte-Carlo (MC) and two Molecular Dynamics, one

with a Nosé-Hoover (MD-NH) and one with a velocity-rescaling (MD-VR) thermostats, methods

were performed. In these simulations, K was obtained by calculating the ratio between the product

and correlated-reactants concentrations according to Eq. 16. The analytical/numerical calculations

were based on integration of the particles coordinates (Eq. SI-1.3), as well as on partition functions

describing relative motions of a diatomic molecule (Eq. SI-1.4). In addition to the values of K, we

also provide (in kJ/mol) the corresponding change in the standard Gibbs energy, ∆G∅, using the

definition in Eq. 5.

Simulations (Eq. 16) Analytical/Numerical Evaluations

MC MD-NH MD-VR Eq. SI-1.3 Eq. SI-1.4

K 51.09 ± 0.06 50.93 ± 0.25 52.20 ± 0.13 51.04 48.57

∆G∅ −9.812 ± 0.003 −9.804 ± 0.012 −9.865 ± 0.006 −9.809 −9.686

freedom in a system of bound particles held together by an intermolecular potential that, for a

rigid-rotor approximation, is rather soft.

Comparing the Radial Distribution Functions

We write the total partition function of the system of one A and one B particles based on the

way we defined q
AB

in Eq. SI-1.1 but with an upper bound of the integral over r that includes all

possible values of the relative distances between A and B,

Q( ~p
A
, ~p

B
, ~r

A
, ~r

B
) =

1

h6

∫ ∞
−∞

. . .

∫ ∞
−∞

e−βT ( ~pA , ~pB )d ~p
A
d ~p

B

∫
~r
A

d ~r
A

∫ rbox

0

e−βU(r)4πr2dr .

(SI-1.8)

Note that computer simulations often use rectangular-shaped boxes which are not so convenient

to integrate by a spherically symmetric coordinate system. This is easy to solve if we recall our

assumption that U(r) vanishes for r > rc, because for these values of r the integrand is 1 and

we are integrating only the relative spatial coordinates. Thus all we need to do is to perform the
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integration from 0 to rc and add the remaining volume element, V − 4πr3c/3. Alternatively, we

can integrate from 0 to rbox, as indicated in Eq. SI-1.8, where we set rbox = (3V/4π)1/3, i.e.,

substituting the rectangular box with a sphere of the same volume.

The probability density of finding particle B at a distance r from particle A is,

P (r) =
1
h6

∫∞
−∞ . . .

∫∞
−∞ e

−βT ( ~p
A
, ~p

B
)d ~p

A
d ~p

B
V e−βU(r)4πr2

Q
, (SI-1.9)

whereas for a random distribution this probability density is,

Prandom(r) =
4πr2

V
. (SI-1.10)

The radial distribution function is exactly the ratio between these two probabilities,

g
AB

(r)
N

◦
A

=N
◦
B

=1
=

P (r)

Prandom(r)
=

V∫ rbox
0

e−βU(r)4πr2dr
e−βU(r) , (SI-1.11)

which can be easily solved numerically given the above mentioned LJ potential. In Fig. SI-1.1

we compare this numerical result to the three different simulations. The MC simulations produce

almost identical radial distribution function to that obtained from Eq. SI-1.11. The agreement of

MD-NH is again excellent, however, MD-VR displays small but significant discrepancies in line with

the slight overestimation of K (Table SI-1.2).
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Figure SI-1.1: The radial distribution function between A and B in the single-site monomers model

calculated numerically using Eq. SI-1.11, as well as, from the trajectories of the MC, MD-NH, and

MD-VR simulations (a). In (b) we magnified a section around the maximum, representing the

bound state, and added symbols to the plots of the simulations.
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SI-2 Computational Details

The model system consists of two types of molecules where each molecule is represented by two

sites, A ≡ ah and B ≡ bh, ’covalently’ bonded with a bond-length of 0.15 nm as shown schemat-

ically in Fig. SI-2.1. The role of the h atoms is to prevent any clustering of the molecules, apart

h
h

a

h

h

a
b

b

A

B
AB

Figure SI-2.1: Simulation model for the association process between A and B molecules to pro-

duce the bound state AB. Molecule A and molecule B consist of, uncharged LJ, a− h and b− h

atom-sites, respectively. The interaction between a and b is strongly attractive, whereas other

intermolecular interactions are repulsive (see Table SI-2.1). Within each molecule, the intramolec-

ular distance between the two atom-sites, having a value of 0.15 nm, is either fixed (Monte-Carlo

simulations) or held together by a harmonic potential (molecular-dynamics simulations).

from product formation. All atom-sites have zero charge, qa = qb = qh = 0.0 e, and their inter-

molecular interactions are described by Lennard-Jones (LJ) potentials truncated at a distance of

2.0 nm. The different possible σ and ε parameters are specified in Table SI-2.1, yielding essentially

repulsive interactions between all sites except for a strong attraction between the a and b atoms.

This model results in a two-state system of unbound, A + B, and bound, AB, gas particles. Based

on the location of the first minimum of gab(r) (see Fig. SI-5.1b), the bound state is defined for

rab < 0.4 nm. We did not encounter any product other than this bound, AB, state in all frames

of all simulations.

Periodic boundary conditions were applied along all three Cartesian axes. The total number

of A molecules is denoted by N ◦
A = NA + NAB and that of B molecules by N ◦

B = NB + NAB.

Three main series of simulations were designed. In the first, labeled R1, we changed the value

of N ◦
A = N

◦
B from 1 to 4096, and concomitantly, the volume of the cubic simulation box, V ,

keeping the concentrations, c◦
A

= N
◦
A/V and c◦

B
= N

◦
B/V , constant at 0.015625 molecules/nm3

8



Binding Reactions at Finite Systems - SI Computational Details

Table SI-2.1: Lennard-Jones parameters between all atom sites for a system with A(ah) and B(bh)

molecules.

σ [nm] ε [kJ/mol]

a · · · a 1.00 0.1

b · · · b 1.00 0.1

h · · ·h 0.50 0.1

a · · ·h 0.35 0.1

b · · ·h 0.35 0.1

a · · · b 0.18 30.0

(∼ 0.026 M). In the second series of simulations, R2, we considered only one molecule of A,

N
◦
A = 1, and one molecule of B, N ◦

B = 1, and increased V by increasing the length of the cubic

box from Lbox = 4.0 nm to Lbox = 28.0 nm. The third series of simulations, R3, consisted of

asymmetrical concentrations of the A and B molecules, in which N ◦
A = 1 is fixed whereas N ◦

B varied

from 1 to 4096, coupled to changes of V to satisfy c◦
B

= 0.015625 molecules/nm3. In order to

further examine the validity of the approximation to predict composition from K at finite systems

whereN ◦
A > 1 (see below) a fourth series of simulations, R4, also with asymmetrical concentrations,

was conducted. In this case, N ◦
B = 8 and V = 512 nm3 (i.e., c◦

B
= 0.015625 molecules/nm3)

were kept constant whereas N ◦
A varied from 1 to 8.

All four series of simulations were performed by the Monte-Carlo (MC) technique (coded in-

house in double-precision) where the canonical ensemble emerges naturally from the generated

configurations3,4. The Metropolis acceptance criteria5 was applied to either accept or reject trial

moves. Each trial move is composed of randomly selecting one A and one B molecules which

are then displaced, in each of the three Cartesian-axes, and rotated around each of the two axes

perpendicular to the molecular axis. The displacements and rotations are performed, as rigid bodies,

on each of the molecules separately. Their magnitudes and directions were determined randomly

from a uniform distribution with maximum values of 0.4 nm for displacements along each of the

Cartesian-axes, 0.1 for cos θ when rotating around angle θ (0 ≤ θ ≤ π), and 0.314 rad for rotations

around angle φ (0 ≤ φ ≤ 2π). These trial moves resulted in acceptance-ratios that varied from

9
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0.313, for the system with the largest N ◦
A = N

◦
B in R1, to 0.996, for the system with the largest

Lbox in R2. The number of trial moves applied for each simulation was inversely proportional to the

size of the system. More specifically, the equilibration and data collection stages ranged from 104

and 1.4 · 1012 moves, respectively, for the smallest system of N◦A = N◦B = 1, to 109 and 1.5 · 1010

moves for the largest system of N◦A = N◦B = 4096.

Unless stated differently, the simulations were carried out at T = 300 K. Nonetheless, we

also performed the R1 series of simulations at temperatures of 200, 250, 400, 500, 600, and

1200 K. Here N ◦
A = N

◦
B ranged from 1 to 64, and the number of trial moves for data collection

at the lowest two temperatures, 1.5 · 1011, was three times larger than that at the highest four

temperatures. Note that for the system N
◦
A = N

◦
B = 1, the average number of bound particles

at the lowest temperature (200 K) is 0.997 whereas at the highest temperature (1200 K) it is

0.003, spanning a wide range of values for the equilibrium constant. This system (N◦A = N◦B = 1)

at 1200 K exhibited the largest acceptance-ratio of 0.995 whereas the smallest acceptance-ratio,

0.0034, was recorded at 200 K for the largest four systems. Larger systems at lower temperatures

are more difficult to equilibrate and reach convergence. Nevertheless, the results presented here

are converged as demonstrated in Fig. SI-2.2 and Table SI-2.2 for the most challenging system.
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a
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<
N
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N

B
>

b

Figure SI-2.2: (a) The average number of bound particles as a function of MC steps for the system

of N ◦
A = N

◦
B = 64 (R1 series) at T = 200 K. Six curves corresponding to six different runs are

shown where each spans 2.5 · 1010 MC steps plotted every 5 · 105 steps. (b) The same as (a) but

for the average of the product of the number of unbound A and unbound B particles.

We also attempted simulations at T = 150 K, however, with the number of trial-moves specified
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Table SI-2.2: Results obtained from six independent simulations, each with 2.5·1010 MC trial-moves,

for the system N
◦
A = N

◦
B = 64 of R1 series at T = 200 K. The table presents the average number

of bound particles, the average of the product between unbound A and unbound B particles, and

the variance σ2 = L(NAB, NAB) = L(NA, NB) defined in Eq. 21. Unlike Fig. SI-2.2, here all

averages are calculated over all MC steps.

Simulation # 〈NAB〉 〈NANB〉 σ2

1 60.70 12.60 1.74

2 60.65 13.05 1.83

3 60.73 12.45 1.73

4 60.70 12.59 1.72

5 60.76 12.35 1.83

6 60.67 12.82 1.76

above convergence was not attained and therefore the results were not considered.

Besides MC, we also performed molecular-dynamics (MD) simulations for the R1 and R2 series

utilizing the software package GROMACS version 4.6.56 (single-precision). A time step of 0.002 ps

was employed to integrate the equations of motion and a mass of 10.0 amu was assigned to all

atom-sites. The a−h and b−h ’covalent’ bonds were represented by a harmonic potential with

bond-length of 0.15 nm and force-constant of 2 · 105 kJ/(mol · nm2). A temperature of 300.0 K

was maintained by applying either the Nosé-Hoover7,8 (MD-NH) or the velocity-rescaling9 (MD-

VR) thermostats. In the first, the equations of motion were propagated by the velocity-Verlet

algorithm in which the kinetic energy is determined by the average of the two half-steps (see the

Gromacs manual). Due to systems with very few degrees of freedom, we applied 10 chained Nose-

Hoover thermostats10 and the coupling strength determining the friction coefficient was set to 0.1.

In simulations with the second thermostat, the leap-frog algorithm was used for integrating the

equations of motion and the particles’ velocities were scaled with a coupling-time of 0.1 ps. Note

that for the systems described here, MD simulations were less efficient than MC, and therefore,

we applied them only to R1 and R2 (up to a box length of Lbox = 16.0 nm) series of simulations.
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Equilibration time of at least 1 µs was conducted prior to data collection for each system. For R1,

the time period for collecting data ranged from 224 µs for the smallest system to 3.84 µs for the

largest system. For R2, data was collected for 224 µs.

In order to analyze the dynamics of the forward and backward reactions we performed the R1

and R2 series of simulations by the MD-NH and MD-VR techniques again. However, this time

the trajectories were saved more frequently; from a frequency of every 200 steps for N ◦
A = 1 to a

frequency of every step for N ◦
A = N

◦
B ≥ 16. These frequencies corresponded to, approximately,

the lowest frequencies for which trial calculations of the rate constants were not affected upon an

increase of the trajectory-saving frequency. At the same time, the duration of trajectories were also

smaller than those described above and ranged from 24 µs for the smallest system to 12 ns for the

largest system. To keep the size of the trajectories manageable, each run was split into few shorter

runs. The rates of the forward and backward reactions were calculated by counting the number of

transitions per period of time divided by V . A transition between the two states is identified when

the distance rab crossed the cutoff-value of 0.4 nm plus, or minus, a distance of 0.1 nm on either

side of the cutoff (i.e., 0.3 nm for an unbound-to-bound transition and 0.5 nm for the opposite

transition) to avoid counting return-trajectories originating from transient species in the proximity

of the transition state.

12
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SI-3 Supplementary Figures & Tables
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Figure SI-3.1: The equilibrium constant K defined by Eq. 16, as well as the value of K ′ defined

by Eq. 17, from Monte-Carlo R1 series of simulations (i.e., constant c◦
A
= c◦

B
= 0.026 M) at

four different temperatures. Here the number of particles, N◦A = N◦B, ranges from 1 to 64. Note

the scales of the y-axis are substantially different for the different temperatures and at the lowest

temperature, T = 200 K, is not linear but logarithmic.
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Figure SI-3.2: The difference of the relative correlations, l(NAB, NAB) − l(NAB, NANB), as a

function of the reciprocal average of bound AB particles for MC R1 series of simulations at

different temperatures. The results at T = 300 K displayed in Fig. 5a are included here as well as

a reference. Linear regression results (obtained by xmgrace) of all data points are indicated. The

dashed black line is a y = x line, plotted as a reference for perfect predictions.
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Figure SI-3.3: The expression for predicting relative fluctuations in the number of bound particles,

V c∅/(KN
◦
B), for the case N ◦

A = 1 (N ◦
B ≥ N

◦
A) as described in Eq. 33, plotted against the

fluctuations themselves for R2 (N ◦
A = N

◦
B = 1) and R3 (N ◦

A = 1, c◦
B

= 0.026 M) series of

simulations. Note that because in R3 series, the ratio V/N ◦
B is constant, all points in this series

have the same value. Linear regression results are presented in Table SI-3.1 below.

Table SI-3.1: Linear-regression analyses (performed by xmgrace) of the predictions of the values of

l(NAB, NAB) shown in Fig. SI-3.3 above for R2 series of simulations using three different simulation

methods.

Correlation coef. Slope Intercept

MC 1.000000 1.000014± 8 · 10−6 −0.0001± 0.0009

MD-NH 1.000000 1.00006± 3 · 10−5 0.0007± 0.0006

MD-VR 1.000000 1.00011± 3 · 10−5 −0.0006± 0.0007
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Figure SI-3.4: Approximation results obtained for MC R1 series of simulations at different tem-

peratures. The graph displays the relative fluctuations, l(NAB, NAB), as a function of predicted

values given by Eq. 34 with λ = [1 +K/(V c∅ lnN
◦
B)]−1. Linear regression results are presented in

Table SI-3.2 below.

Table SI-3.2: Linear-regression analyses of the predictions of the values of l(NAB, NAB) shown in

Fig. SI-3.4 above at each temperature.

Correlation coef. Slope Intercept

200 0.9882321 1.07± 0.06 −0.0003± 0.0002

250 0.9948747 0.91± 0.03 0.001± 0.002

300 0.993245 0.93± 0.04 0.001± 0.013

400 0.9997421 0.992± 0.008 −0.02± 0.03

500 0.9999818 0.998± 0.002 −0.02± 0.03

600 0.9999963 0.999± 0.001 −0.03± 0.03

1200 0.9999997 0.9998± 0.0003 −0.03± 0.03
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Figure SI-3.5: Concentrations of the bound AB particles calculated by Eq. 30 using approximated

predictions for the values of l(NAB, NAB) as shown in Fig. SI-3.4, along with the concentrations

obtained directly from the MC R1 simulations. The dashed maroon lines are the corresponding

values at the thermodynamic limit, l(NAB, NAB) → 0, calculated by Eq. 31 at each value of

N
◦
A = N

◦
B. For temperatures in the rage 500 − 1200 K, the predictions are more accurate than

those exhibited at T = 400K (graphs not shown). At T = 300 K, the actual curves end at

N
◦
A = N

◦
B = 4096, however, the last four points are not shown because the predictions obtained

are more accurate than that of the last point displayed at N ◦
A = N

◦
B = 64. At all temperatures,

the predictions of the concentrations for N ◦
A = N

◦
B = 1 are almost identical to those found in the

simulations because in this case, the value of the exponent (λ = 0) given in Eq. 35 makes the

expression of l(NAB, NAB) in Eq. 34 exact.
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Figure SI-3.6: Approximation results obtained from MC R4 series of simulations. In this series, N ◦
A

and N ◦
B are not equal and N ◦

A is not fixed at the value of 1. More specifically, N ◦
A varied from 1

to 8, whereas N ◦
B = 8, V = 512 nm3, and T = 300 K are fixed. (a) The corresponding plot to

that of Fig. SI-3.4 and (b) the corresponding plot to Fig. SI-3.5.
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Figure SI-3.7: The ratio between K ′ and K, which equals l(NA, NB) + 1 and thereby is a measure

of correlations between the reactants, from MC simulations at T = 300 K. (a) Results from R4

series where V = 512 nm3 and N ◦
B = 8 are constants and only N ◦

A is varied. (b) Resutls from R1

and R2 series as a function of V . In both series N ◦
A = N

◦
B, however in R2 these numbers equal 1,

whereas in R1 their value varies and is indicated below the symbols in the figure.
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SI-4 An Alternative Derivation of the Relation between Concentrations

and Fluctuations

Given the setup specified in the manuscript, i.e., a system subject to the process described in Eq. 1

in the canonical ensemble (N ◦
A, N

◦
B, V , T ) where N ◦

A and N ◦
B are the total number of A and B

particles, satisfying N ◦
A ≤ N

◦
B. We then express the partition function of the system as,

Q =

N
◦
A∑

i=0

W i
N

◦
A,N

◦
B
e−βH(i) =

N
◦
A∑

i=0

W i
N

◦
A,N

◦
B
e−β[T +U(i)] =

N
◦
A∑

i=0

W i
N

◦
A,N

◦
B
e−β[T +iεAB ] , (SI-4.1)

where as before, we mapped the sum over energy states onto the sum over i ≡ NAB, the number

of bound AB particles. The Hamiltonian of the system, H(i), along with its potential energy

component, U(i), are functions of i, whereas the kinetic energy term, T , is not. In the last

equality, U(i) is expressed explicitly by the energy liberated upon the formation of i bound AB

particles, and for simplicity we assume no other intra-molecular potential energy terms. The term

W i
N

◦
A,N

◦
B

which corrects the overcounting due to the indistinguishable character of the particles is

defined in Eq. 4.

We start by expressing* 〈N2
AB〉,

〈N2
AB〉 =

1

Q

N
◦
A∑

i=0

i2 W i
N

◦
A,N

◦
B
e−βH(i) = − 1

Q

1

εAB

 ∂

∂β

N
◦
A∑

i=0

i W i
N

◦
A,N

◦
B
e−βH(i) +

N
◦
A∑

i=0

i TW i
N

◦
A,N

◦
B
e−βH(i)


= − 1

εAB

[
1

Q

∂

∂β
(〈NAB〉Q) + 〈NABT 〉

]
= − 1

εAB

[
∂〈NAB〉
∂β

+
〈NAB〉
Q

∂Q

∂β
+ 〈NABT 〉

]
= − 1

εAB

[
∂〈NAB〉
∂β

+ 〈NAB〉
∂ lnQ

∂β
+ 〈NABT 〉

]
= − 1

εAB

[
∂〈NAB〉
∂β

− εAB〈NAB〉2 − 〈NAB〉〈T 〉+ 〈NABT 〉
]

= − 1

εAB

∂〈NAB〉
∂β

+ 〈NAB〉2 , (SI-4.2)

*When writing partial derivatives we will omit the specification of the parameters which are kept constant. That

means, in our case of the canonical ensemble, partial derivatives with respect to temperature are taken when N◦

A,

N
◦

B , and V are constant.
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where the last equality is obtained because, by definition, the value of the kinetic energy in the

canonical ensemble is constant. Then, the fluctuations in the number of bound AB particles can

be expressed by,

L(NAB, NAB) = − 1

εAB

∂〈NAB〉
∂β

. (SI-4.3)

Using the relation in Eq. 16 we write,

L(NAB, NAB) = − 1

εAB

∂ [K〈NANB〉]
V c∅∂β

= − K

εABV c∅

[
〈NANB〉

1

K

∂K

∂β
+
∂〈NANB〉

∂β

]
= −〈NAB〉

εAB

∂ lnK

∂β
− K

εABV c∅
∂〈NANB〉

∂β
. (SI-4.4)

We now evaluate the first partial derivative after the last equality by using the definition of K in

Eq. 5, (
∂ lnK

∂β

)
V

= − 1

R

∂(∆G∅/T )

∂β
= − 1

R

∂(∆F∅/T + V∆P∅/T )

∂β
= − 1

R

∂(∆F∅/T )

∂β

=
T 2

NAvogadro

∂(∆F∅/T )

∂T
= − ∆U∅

NAvogadro
= −εAB . (SI-4.5)

The third equality in Eq. SI-4.5 holds for ideal gases, V∆P∅/T = R∆n∅ (for reactions described

by Eq. 1, the change in the number of moles of gas particles under standard conditions, ∆n∅,

equals 1) and for reactions in solution where the change in pressure is negligible, V∆P∅ ' 0. It

is worth pointing that Eq. SI-4.5 is the equivalent of the van’t Hoff relation, which is applicable at

constant pressure, to processes at constant volume.

Next, we evaluate the second partial derivative after the last equality in Eq. SI-4.4,

∂〈NANB〉
∂β

=
∂

∂β

 1

Q

N
◦
A∑

i=0

(N
◦

A − i)(N
◦

B − i) W i
N

◦
A,N

◦
B
e−βH(i)


= − 1

Q

N
◦
A∑

i=0

H(i)NA(i)NB(i) W i
N

◦
A,N

◦
B
e−βH(i) − 1

Q2

∂Q

∂β

N
◦
A∑

i=0

NA(i)NB(i) W i
N

◦
A,N

◦
B
e−βH(i) ,

(SI-4.6)

where NA(i) = (N
◦
A − i) designates the number of unbound A particles, and a corresponding
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notation, NB(i), designates the unbound B particles. We continue,

∂〈NANB〉
∂β

= −〈HNANB〉 −
∂ lnQ

∂β
〈NANB〉 = −〈(T + U)NANB〉+ 〈H〉〈NANB〉

= −〈T NANB〉 − 〈εABNABNANB〉+ 〈T + εABNAB〉〈NANB〉

= −εAB〈NABNANB〉+ εAB〈NAB〉〈NANB〉 = −εABL(NAB, NANB) . (SI-4.7)

Again, because the kinetic energy in the canonical ensemble is constant, the two terms containing

the value of T cancel each other. Now we take the results obtained in Eq. SI-4.5 and Eq. SI-4.7

and insert them into Eq. SI-4.4 to calculate L(NAB, NAB),

L(NAB, NAB) = 〈NAB〉+
K

V c∅
L(NAB, NANB) = 〈NAB〉+

〈NAB〉
〈NANB〉

L(NAB, NANB) . (SI-4.8)

If we divide both sides of Eq. SI-4.8 by 〈NAB〉2 we can express a relation between two relative

deviations as,

l(NAB, NAB) =
1

〈NAB〉
+ l(NAB, NANB) , (SI-4.9)

which is identical to Eq. 27.
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SI-5 Transformations between g(r) of Systems with Different Sizes

As demonstrated in Fig. 4c, the radial distribution function of the product, gab(r), depends on the

system size even if the total concentrations of the A and B particles (c◦A and c◦B) are not altered.

Obviously, this is because the equilibrium concentrations do depend on the size of the system.

However, because we can predict 〈c
AB
〉 for a macroscopic system from a finite-system (Eq. 31),

we can perform the corresponding transformation for gab(r). If the formation of trimers can be

ignored, as we actively prevented in our model, the transformation of gab(r) for the bound state,

i.e. for distances around the first-minumum and lower, r < r
fm

, can be performed by using the

ratio of the concentrations as a scaling-factor,

gab(r)∞ = gab(r)finite ·
〈c

AB
〉∞

〈c
AB
〉finite

for r < r
fm

. (SI-5.1)

On the other hand, the scaling-factor for larger distances, r ≥ r
fm

, is different. To obtain it, we

calculate the probability of finding a and b sites at distances r ≥ r
fm

apart,

Pab(r ≥ r
fm

) =
N

◦
AN

◦
B − 〈NAB〉
N

◦
AN

◦
B

= 1− 〈NAB〉
N

◦
AN

◦
B

, (SI-5.2)

where we subtracted in the numerator the average number of bound particles from the overall

possible number of pairs. We consider this probability, for both, finite and macroscopic systems.

For the latter case, given −βε
AB

is not too large, we have Pab(r ≥ r
fm

)∞ → 1, thus gab(r)∞ for

distances larger than the first-minimum, r ≥ r
fm

, can be obtained by,

gab(r)∞ = gab(r)finite ·
Pab(r ≥ r

fm
)∞

Pab(r ≥ r
fm

)finite
= gab(r)finite ·

1

1− 〈NAB〉finite

(N
◦
AN

◦
B)finite

for r ≥ r
fm

.

(SI-5.3)

This conversion of gab(r)finite obtained at a finite system to that of a macroscopic system is

demonstrated in Fig. SI-5.1 utilizing Eq. 31 to calculate 〈c
AB
〉∞. Although the region describing the

bound state and the unbound state are very well reproduced, the transition region, not surprisingly,

is not. In addition in this transition region, the conversion from the system of N ◦
A = N

◦
B = 1

exhibits larger deviations compare to those from any other finite systems. Plausibly because this

system, N ◦
A = N

◦
B = 1, is the only one that does not contain the pure repulsion between the

like-type sites (thus between a · · · a or between b · · · b sites).
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Figure SI-5.1: Transformations of the radial distribution functions, gab(r) (of R1 MC simulations,

also displayed in Fig. 4c), obtained at different system sizes and shown on the left panel (a)-

(c), to a corresponding distribution of a system with an infinite-size, gab(r)∞, shown on the right

panel (d)-(f). The segment of the distribution up to around the minimum defining the bound state,

r < 0.625 nm thus (a) and (b), is converted by applying the ratio of the bound-state concentrations

in the two systems as the scaling factor (Eq. SI-5.1). The segment of the distribution with larger

values of r, (c), is converted according to Eq. SI-5.3. These transformations break-down in the

range, 0.57 nm < r < 1.00 nm, whereas for N ◦
A = 1 it is not valid for a wider range, up to

r ∼ 1.5 nm. The x-axes in (a) and (d) end at a point where the x-axes of (b) and (e) start, and

the latter end at a point where the x-axes of (c) and (f) start.
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