Supplementary Information to

Propane to Olefins Tandem Catalysis: a Selective Route Towards Light Olefins Production

Matteo Monai^a, Marianna Gambino^a, Sippakorn Wannakao^b and Bert. M. Weckhuysen^{a,*}

^a Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands

^b SCG Chemicals Co., Ltd., 1 Siam-cement Rd, Bang sue, Bangkok 1080, Thailand

*corresponding author: b.m.weckhuysen@uu.nl

Table of Contents 1 Socio-economical Contents

1.	Soci	o-economical Context2
	1.1	Olefin Markets details2
	1.2	Propylene/propane spread3
	1.3	List of PDH, MTO and OCT installations
	1.4	List of Patents9
	1.5	List of previous reviews12
2.	The	rmodynamics14
	2.1	Overall Thermodynamic Boundaries14
	2.2	PTO Stoichiometry-Restricted Calculations15
	2.3 Consta	Temperature Dependency of Reaction Enthalpy, Entropy, Free Energy and Equilibrium Int for the Dehydrogenation, Metathesis and Side Reactions
	2.3.	1 Propane Dehydrogenation17
	2.3.	2 Metathesis to trans-2-butene18
	2.3.	3 Metathesis to 2-cis-butene19
	2.3.4	4 Propane Cracking20
	2.3.	5 Propylene Hydrogenolysis20
	2.3.	6 Butene Cracking21
	2.3.	7 Butene Hydrogenolysis22
	2.3.	8 Propylene dimerization to benzene (coke initiation)23
	2.3.	9 Trans-2-butene isomerization to 1-butene24
	2.3.	10 Copper oxide reduction25
3.	Refe	erences

1. Socio-economical Context

1.1 Olefin Markets details

Compound Annual Growth Rate (CAGR) is defined as the rate of return of an investment growing from its beginning balance to its ending balance, assuming the profits are reinvested at the end of each year of the investment's lifespan. It is according to the formula:

 $CAGR (\%) = 100 \left[\left(\frac{balance_f}{balance_i} \right)^{\frac{1}{n}} - 1 \right]$

Where $balance_{f}$ and $balance_{i}$ are the final and initial balance over n years.

 Table S1. Global ethylene demand by application, as of 2019 [1].

Application	Demand (%)
Polyethylene	60.9
Ethylene Oxide	15.0
Ethylene	9.5
Dichloride	
Others	14.6

Table S2. Global propylene demand by application, as of 2019 [2].

Application	Demand (%)
Polypropylene	68
Propylene Oxide	9
Acrylonitrile	7
Others	16

Table S3. Global alpha-olefin market by type, as of 2019 [3].

Туре	Production (wt. %)
1-butene	19
1-hexene	29
1-octene	25
1-decene	11
1-dodecene	5
Others	10

Table S4. Market specifications for ethylene, propylene and alpha-olefins [1,2,4]

Olefin	Worldwide production in 2019 (Mt)	Market size (billion \$)	CAGR 2015-2019 (%)	Projected CAGR 2019-2023 (%) ^a
Ethylene	207.6	222.1	5.25	4.77

Propylene	110	83.7	2.95	-1.81
α-Olefins	4.6	9.5	3.9	4.2

^a The disruption caused by the coronavirus outbreak is not accounted for here, but it is set to negatively impact the markets.

1.2 Propylene/propane spread

Figure S1. Propylene-propane spread in \$ per ton, by region, over the years 2010-2019. Brent crude oil price is reported as a dashed line for reference. Adapted from [5].

1.3 List of PDH, MTO and OCT installations

Table S5. PDH installations worldwide, in alphabetical order, divided by Technology. The capacity of the plant is reported in thousands of metric tons per year, followed by the investment (if known) and the year of (expected) beginning of operation in brackets. For multiple installations on the same locations, each plan details are given separated by commas.

Title	Description	Technology	Longitude	Latitude
Arzew, Algeria	640 km.t./yr, 1.3 bn \$ (2022)	Oleflex	-0.31368	35.85635
Ba Ria City, Ba	306 km.t./yr, 1.2 bn \$ (-)	Oleflex	107.1688	10.49627
Ria-Vung Tau				
Province,				

Vietnam				
Ceyhan, Turkey	457 km.t./yr, 1.4 bn \$ (2023)	Oleflex	35.87123	37.05564
Freeport, Texas, United States of America	750 km.t./yr, - bn \$ (2016)	Oleflex	-95.3597	28.95414
Fujian, China,	600 km.t./yr, - bn \$ (2021)	Oleflex	117.8428	26.545
Houston, Texas, United States of America	658 km.t./yr, 2.1 bn \$ (2010)	Oleflex	-95.3633	29.76328
Jubail, Eastern Region, Saudi Arabia - Al- Waha Plant	450 km.t./yr, - bn \$ (2006)	Oleflex	49.66012	25.40929
Kuantan, Pahang, Malaysia	300 km.t./yr, - bn \$ (2000)	Oleflex	103.322	3.798564
Map Ta Phut, Rayong Province, Thailand	300 km.t./yr, - bn \$ (2007)	Oleflex	101.1679	12.71365
Mont Belvieu, Texas, United States of America - Enterprise PDH 2	750 km.t./yr, - bn \$ (2023)	Oleflex	-94.9408	29.83879
Police, Police County, Poland	400 km.t./yr, 1.5 bn EUR (2023)	Oleflex	14.56574	53.54864
Qinzhou, Guangxi, China	450 km.t./yr, - bn \$ (2021)	Oleflex	108.6208	21.96478
Strathcona County, Canada	525 km.t./yr, 2.7 bn \$ (2021)	Oleflex	-113.126	53.57627

Takreer, Abu Dhabi, Abu Dhabi Emirate, United Arab Emirates	500 km.t./yr, - bn \$ (2018)	Oleflex	54.53518	24.32352
Tarragona, Catalonia, Spain	350 km.t./yr, - bn \$ (2002)	Oleflex	1.254606	41.11724
The Palisades, Edmonton, AB, Canada	550 km.t./yr, 5 bn \$ (2023- delayed)	Oleflex	-113.55	53.60174
Tobolsk, Russia	510 km.t./yr, - bn \$ (2013)	Oleflex	68.25129	58.19981
Yanbu`, Al Madinah Region, Saudi Arabia - NATPET Plant	420 km.t./yr, - bn \$ (2009)	Oleflex	38.06668	24.0889
Zhangjiagang, Jiangsu, China,	600 km.t./yr, - bn \$ (2014)	Oleflex	120.5515	31.8783
Zhoushan, Zhejiang, China - Phase 1 and 2	400, 200 km.t./γr, - bn \$ (2019, 2020)	Oleflex	122.203	29.98733
Al Jubayl, Eastern Region, Saudi Arabia - SPC, APC Plant and future APC plant	455, 455, 843 km.t./yr, - bn \$ (2004, 2007, 2024)	Catofin	49.65322	27.0007
Antwerp, Belgium - INEOS	750 km.t./yr, - bn \$ (2023)	Catofin	4.399708	51.22111
Atyrau, Atyrau Region, Kazakhstan	630 km.t./yr, - bn \$ (2021)	Catofin	51.92445	47.10534

Beveren, East Flanders, Belgium - Borealis Plant	740 km.t./yr, 1.1 bn \$ (2022)	Catofin	4.27803	51.25195
Dalian, Liaoning, China	1000 km.t./yr, - bn \$ (2019)	Catofin	121.6283	38.91817
Dongguan, Guangdong Province, China	600 km.t./yr, - bn \$ (2021)	Catofin	113.7466	23.04447
Mont Belvieu, Texas, United States of America - Enterprise PDH1	750 km.t./yr, - bn \$ (2017)	Catofin	-94.8856	29.84478
Munich, Bavaria, Germany	750 km.t./yr, - bn \$ (2023)	Catofin	11.57538	48.13711
Seoul, South Korea - SK Advanced	600 km.t./yr, - bn \$ (2016)	Catofin	126.9783	37.56668
Asalouyeh, Bushehr Province, Iran	650 km.t./yr, - bn \$ (2020)	STAR Uhde	52.60704	27.476
Bandar-e- Mahshahr County, Iran	450 km.t./yr, - bn \$ (2020)	STAR Uhde	49.26043	30.35308
Kachchh, Mundra (CT), Gujarat, India	- km.t./yr, 4 bn \$ (2024)	STAR Uhde	69.72541	22.83737
Ludwigshafen am Rhein, Rhineland- Palatinate, Germany - test facility	300 km.t./yr, - bn \$ (2022)	STAR Uhde	8.438157	49.47041

Point Comfort,	545 km.t./yr, - bn \$ (2016)	STAR Uhde	-96.5603	28.67972
County. Texas.				
United States				
of America				
Port Said,	400 km.t./yr, 0.4 bn \$	STAR Uhde	32.30551	31.26324
Egypt	(2015)			
Bahia Blanca.	- km.t./vr bn \$ (-)	Unknown	-62.2655	-38.7177
Partido de				
Bahia Blanca,				
Argentina				
Binzhou City,	600 km.t./yr, - bn \$	Unknown	117.9647	37.38212
Shandong,	(planning)			
China				
Caofeidian.	600 km.t./vr bn Ś	Unknown	118.454	39.2725
Hebei, China	(planning)			
Chaozhou,	600*3 km.t./yr, - bn \$	Unknown	116.6205	23.65662
Guangdong	(planning)			
Province,				
China				
Hengshui City,	500 km.t./yr, - bn \$	Unknown	115.6677	37.73643
Hebei, China	(planning)			
Humen,	600*2 km.t./yr, - bn \$	Unknown	113.6539	22.80413
Guangdong	(planning)			
Province,				
China				
Jiaxing.	450 km.t./vr bn \$	Unknown	120.7511	30.74744
Zhejiang,	(planning)			
China				
Karachi, Sindh,	450 km.t./yr, 1.75 bn \$	Unknown	67.29624	24.82734
Pakistan	(2026)			
Lianvungang	1500. 600 km.t./vr hn \$	Unknown	119.2158	34.59786
City, Jiangsu	(planning)			
China	(1			
Luoyang City,	200 km.t./yr, - bn \$	Unknown	112.421	34.65569
Henan, China	(planning)			
			1	1

Ningbo, Zhejiang, China	660, 600, 600 km.t./yr, - bn \$ (2020, planning, planning)	Unknown	121.6204	29.86222
Pinghu, Zhejiang, China	450 km.t./yr, - bn \$ (2018)	Unknown	121.0116	30.67824
Qingdao City, Shandong, China	900 km.t./yr, - bn \$ (planning)	Unknown	120.3781	36.0638
Raigad, Usar, Maharashtra, India	500 km.t./yr, - bn \$ (2022)	Unknown	73.07777	18.42193
Rizhao City, Shandong, China	600*2 km.t./yr, - bn \$ (planning)	Unknown	119.5215	35.41507
Taixing City, Jiangsu, China	450*2, 600*2 km.t./yr, - bn \$ (planning)	Unknown	120.0161	32.16961
Tatneft, Tatarstan, Russia	390 km.t./yr, - bn \$ (2025)	Unknown	49.07583	55.80523
Ulsan, South Korea - Hyosung Corp	300 km.t./yr, - bn \$ (2019)	Unknown	129.3119	35.53917
Yangpu, Danzhou City, Hainan Province, China	300 km.t./yr, - bn \$ (planning)	Unknown	109.1859	19.73524
Zhangjiagang, Jiangsu, China	600 km.t./yr, - bn \$ (planning)	Unknown	120.5515	31.8783
Zhangzhou City, Fujian, China -SABIC	600 km.t./yr, 3.9 bn \$ (2021)	Unknown	117.6496	24.50819
Zibo City, Shandong, China	250 km.t./yr, - bn \$ (planning)	Unknown	118.0444	36.80478

Altamira, Mexico	400 km.t./yr, - bn \$ (-)	Proposed but	-98.1165	22.56302
		abandoned		
Cartagena, Colombia	300 km.t./yr, - bn \$ (-)	Proposed but abandoned	-75.5271	10.41958
Ras Lafan Industrial Services Area, Al Khor and Al Thakhira, Qatar	750 km.t./yr, - bn \$ (-)	Proposed but abandoned	51.41663	25.90836
Tarija, Bolivia	250 km.t./yr, - bn \$ (-)	Proposed but abandoned	-63.8333	-21.5833

1.4 List of Patents

 Table S6. List of most relevant dehydrogenation (DH), metathesis (Met) and DH-Met patents.

Dehydrogenation								
Title	Year	Inventor	Assignee	Number	Reference			
Group viii noble								
metal, tin and								
solid inorganic								
refractory metal								
oxide catalyst								
composites and		Everett	Chevron					
their use in		Clippinger,	Research and					
hydrocarbon		Bernard F	Technology					
dehydrogenations	1968	Mulaskey	Со	US3531543A	[6]			
Dehydrogenation								
with a catalytic								
composite								
containing								
platinum, rhenium		Richard E	Universal Oil					
and tin	1970	Rausch	Products Co	US3584060	[7]			
Multicomponent			Honeywell					
dehydrogenation	1973	John C Hayes	UOP LLC	US3878131	[8]			

catalyst					
Reduction of metal surface- initiated cracking in dehydrogenation reactors	1979	William M. Castor, Barbara S. Taylor	Dow Chemical Co	US4132743	[9]
Dehydrogenation of hydrocarbons with a halogen contacting step	1983	Tamotsu Imai, Chi-Wen Hung	Honeywell UOP LLC	US4438288	[10]
Dehydrogenation catalyst compositions and method of their preparation	1984	Tamotsu Imai, Hayim Abrevaya	Honeywell UOP LLC	US4595673	[11]
Dehydrogenation catalyst composition	1987	Tamotsu Imai	Honeywell UOP LLC	US4716143	[12]
Dehydrogenation catalyst composition and hydrocarbon dehydrogenation process	1988	Tamotsu Imai, Hayim Abrevaya, Jeffery C. Bricker, Deng- Yang Jan	Honeywell UOP LLC	US4827072	[13]
Dehydrogenation of isobutane over a zeolitic catalyst	1988	Stephen J. Miller	Chevron Research and Technology Co	US4727216	[14]
Dehydrogenation process	1989	Dwight L. McKay, Michael E. Olbrich	Phillips Petroleum Company, now ThyssenKrupp Industrial Solutions AG	US4902849	[15]
Dehydrogenation process	1989	Michael E. Olbrich, Dwight L.	Phillips Petroleum Company	US4926005	[16]

		McKay, B.			
		Jean			
Dehvdrogenation		John W.			
process,		Hevse, Paul G.			
equipment and		Johnson,	Chevron		
catalyst loads		Bernard F.	Chemical		
therefor	1994	Mulaskev	Company	USO05723707A	[17]
		Saeed			
Paraffin		Alerasool,	SABIC Global		
dehydrogenation		Harold	Technologies		
catalyst	2003	Manning	BV	US20030232720A1	[18]
New Catalyst for					
Higher Production					
Rates in					
Hydrocarbon		Mark G. Riley,	Honeywell		
Dehydrogenation	2010	Bipin V. Vora	UOP LLC	US20100240941A1	[19]
		Wolfgang			
		Ruettinger,			
		Michael J.			
		Breen,			
		Richard			
Alkane		Jacubinas,	SABIC Global		
dehydrogenation		Saeed	Technologies		
catalysts	2010	Alerasool	BV	US20100312035A1	[20]
Dehydrogenation		Vladimir			
process with heat		Fridman,			
generating		Michael A.	Clariant	US 2015/0259265	
material	2014	Urbancic	Corporation	A1	[21]
Ivietatnesis					
Title	Year	Inventor	Assignee	Number	Reference
			Phillips		
Conversion of		Louis F.	Petroleum		
Olefins	1965	Heckelsberg	Company	US3365513	[22]
			. ,		
Olefin		Lawrence G.	Shell Oil		
oligomerization	1968	Cannel	Company	US3592869	[23]
Isoamylanas from		Roland E.			
butonos	1076	Dixon,	Phillips		[24]
Dutenes	1970	Douglas P.	Petroleum	034003130	[24]

		Hann	Company					
DH-Met								
Title	Year	Inventor	Assignee	Number	Reference			
Disproportionation of saturated hydro carbons employing a catalyst that comprises platinum and tungsten	1973	Robert L. Burnett	Chevron Research Company	US3856876	[25]			
Combined dehydrogenation and disproportionation	1965	Louis F. Heckelsberg and Robert L. Banks	Phillips Petroleum Company	US3445541	[26]			
Dual catalyst system for alkane metathesis	2005	Alan Goldman, Maurice Brookhart, Amy Roy, Ritu Ahuja, Zheng Huang	University of North Carolina at Chapel Hill Rutgers State University of New Jersey	US20070060781A1	[27]			
A process for conversion of a hydrocarbon feed	2017	Kongkiat Suriye, Amnart Jantharasuk, Wuttithep Jareewatchara	SMH Co., Ltd.	WO/2017/001446	[28]			
A hydrocarbon conversion catalyst for producing less saturated hydrocarbon product	2017	Kongkiat Suriye, Amnart Jantharasuk, Wuttithep Jareewatchara	SMH Co., Ltd.	WO/2017/001445	[29]			
Catalyst system and process utilizing the catalyst system	2018	Kongkiat Suriye, Amnart Jantharasuk	SMH Co., Ltd.	WO/2018/108443	[30]			

1.5 List of previous reviews

Table S7. List of previous reviews on propane dehydrogenation and olefin metathesis.

Dehydrogenation						
Title	Year	Reference				
Alkane dehydrogenation over supported chromium oxide catalysts	1999	[31]				
Advanced Catalytic Dehydrogenation Technologies for Production of Olefins	2012	[32]				
Development of Dehydrogenation Catalysts and Processes	2012	[33]				
Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides	2014	[34]				
Molecular understandings on the activation of light hydrocarbons over heterogeneous catalysts	2015	[35]				
Light alkane dehydrogenation to light olefin technologies: a comprehensive review	2015	[36]				
Lower alkanes dehydrogenation: Strategies and reaction routes to corresponding alkenes	2016	[37]				
State-of-the-art catalysts for direct dehydrogenation of propane to propylene	2019	[38]				
Recent Progress in Commercial and Novel Catalysts for Catalytic Dehydrogenation of	2020	[39]				

Light Alkanes		
The role of heat transfer on the feasibility of a packed-bed membrane reactor for propane dehydrogenation	2020	[40]
Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies	2021	[41]
C–H bond activation in light alkanes: a theoretical perspective	2021	[42]
Metathesis		
Title	Year	Reference
Industrial applications of olefin metathesis	2004	[43]
From olefin to alkane metathesis: A historical point of view	2006	[44]
Olefin Metathesis by Supported Metal Oxide Catalysts	2014	[45]
Investigation of the preparation and catalytic activity of supported Mo, W, and Re oxides as heterogeneous catalysts in olefin metathesis	2016	[46]
Heterogeneous catalysts for gas-phase conversion of ethylene to higher olefins	2017	[47]
Olefin metathesis: what have we learned about homogeneous and heterogeneous catalysts from surface organometallic chemistry?	2021	[48]

2. Thermodynamics

Thermodynamics calculations have been performed using the software HSC 9.6.1, in the *Gem* equilibrium composition module for Gibbs free energy minimization and in the *Rea reaction* equations module for the calculation of ΔH , ΔS , ΔG and K.

2.1 Overall Thermodynamic Boundaries

The PTO reaction is affected by side reactions leading to formation of unwanted products such as paraffins and coke. When including all possible species in the thermodynamic calculations, one can gather some important information about trends in byproduct stability. Figure S2a reports the equilibrium amount when including all possible species in the PTO reaction (i.e. H_2 , graphitic carbon, methane, ethane, ethylene, propane, propylene, butanes, butenes, benzene, toluene). Unsurprisingly, the dominating species are methane and graphitic carbon, whose formation is coupled with H₂ evolution. Notably, methane is the dominant species at temperatures lower than approx. 450 °C, while coke is favored at higher temperature. When coke is not considered in the calculation, aromatics take over as the second-most stable species (Figure S2b). These are indeed observed as a side product in the DH reactions, and are precursors to the formation of coke. Removing coke and methane from the picture, ethane formation boundaries can be observed (Figure S2c). Similarly to methane, ethane dominates at lower temperatures, giving yield to unsaturated products and hydrogen at higher temperatures. Altogether, these calculations show how kinetic control is pivotal in the PTO reaction, since the targeted olefins are less thermodynamically stable than unwanted byproducts, and they give an indication on the proper choice of reaction temperature in order to hinder the production of a certain byproduct.

Figure S2: Equilibrium amount of species which can be produced during the PTO reaction, including: **a)** all main species (i.e. H₂, graphitic carbon, methane, ethane, ethylene, propane, propylene, butanes, butenes, benzene, toluene), **b)** all species but coke, and **c)** all species except for methane and coke. Equilibrium calculations were performed through HSC Chemistry 9.1 software.

2.2 PTO Stoichiometry-Restricted Calculations

The HSC 9 software provides powerful tools to calculate thermodynamics of complex systems using the Gibbs free energy minimization algorithm [49]. This method finds the free energy minimum of a given mixture of chemical species based on a very detailed and extensive database of

thermodynamic properties. Nonetheless, the algorithm doesn't allow to consider just a certain reaction or subset of reactions which would entangle some products in a certain stoichiometric ratio. This can be observed in Figure 7b in the main text for the metathesis reaction: the Gibbs energy minimization differs from the stoichiometric equilibrium because the metathesis stoichiometry is disregarded. The stoichiometric amounts of ethylene, propylene and butenes at equilibrium can be calculated using the reaction equation module of HSC 9, which gives a value of K, the equilibrium constant, for each reaction temperature.

This is a trivial task when calculating single reactions equilibria, but in order to find the equilibrium conversion in the case of the sequential PTO reaction, one must solve a system of two equations, as follows:

Reaction 1		C_3H_8 (g)	\leftrightarrow	$C_3H_6(g)$	+	H ₂ (g)
	Initial	1		-		-
	Equilibrium	1-x		x-2y		х
Reaction 2		2C ₃ H ₆ (g)	\leftrightarrow	$C_2H_4(g)$	+	$C_4H_8(g)$
	Initial	х		-		-
	Equilibrium	x-2y		У		у

The two reactions are subjected to the equilibrium constant K_1 and K_2 , as follows:

$$K_1 = \frac{(x - 2y)x}{1 - x}$$
(1)

$$K_2 = \frac{y^2}{(x - 2y)^2}$$
(2)

We can now solve the system of Equations 1 and 2 for each temperature (i.e. each set of K_1 , K_2), with the boundaries 0 < x < 1 and 0 < y < 0.5, to finally be able to calculate the equilibrium amount of specie, selectivity and yield at the stoichiometric restricted equilibrium (Figure S3).

Figure S3: **a)** equilibrium amount of species in the PTO reaction, restricted to the stoichiometric amounts of the dehydrogenation and metathesis reactions as a function of temperature; **b)** Respective products yield vs. temperature. The inset shows the selectivity at 600°C. Selectivity only varies of $\pm 1\%$ in the considered temperature range. Equilibrium constants were calculated in the reaction equilibrium module of the HSC Chemistry 9.1 software.

2.3 Temperature Dependency of Reaction Enthalpy, Entropy, Free Energy and Equilibrium Constant for the Dehydrogenation, Metathesis and Side Reactions

Table S8. Summary of parameters at 600 °C for the main and side reactions involved in PTO. Note that all side reactions are thermodynamically favored (ΔG values) with respect to DH and Met.

Reaction	ΔH (kJ mol ⁻¹)	ΔS (J K ⁻¹ mol ⁻¹)	ΔG (kJ mol⁻¹)	К	Log K
Propane Dehydrogenation	130.582	139.380	8.882	2.942E-001	-0.531
Propylene Metathesis					
(trans-2-butene)	0.704	-17.604	16.075	1.092E-001	-0.962
Propylene Metathesis (cis-					
2-butene)	2.198	-17.855	17.787	8.626E-002	-1.064
Propane Cracking	80.268	132.458	-35.388	1.310E+002	2.117
Propylene Hydrogenolysis	-50.314	-6.922	-44.270	4.453E+002	2.649
Butene Cracking	111.042	134.575	-6.462	2.436E+000	0.387

Butene Hydrogenolysis	-31.493	0.642	-32.054	8.274E+001	1.918
Propylene Coupling	59.715	162.540	-82.207	8.285E+004	4.918
Trans-2-butene Isomerization to 1-butene	8.515	5.883	3.378	6.279E-001	-0.202

2.3.1 Propane Dehydrogenation

H2(g)

2.016

4.572

1.000

2.016

22.414

T

Table S9. Temperature dependency of reaction parameters for the propane dehydrogenation reaction, calculated using the reaction equations module of HSC 9.1.

	Reaction Equation							
C3H8(g)=C3H6(PPYg) + H2(g)								
Reaction Data								
т	ΔН	ΔS	ΔG		к		Log K	
°C	kJ	J/K	kJ					
0.000	124.581	125.411	90.325	5.316	5E-018		-17.274	
50.000	125.568	128.730	83.969	2.667	7E-014		-13.574	
100.000	126.506	131.432	77.462	1.432	1E-011		-10.844	
150.000	127.350	133.558	70.835	1.800	DE-009		-8.745	
200.000	128.078	135.186	64.115	8.342	2E-008		-7.079	
250.000	128.686	136.409	57.324	1.888	3E-006		-5.724	
300.000	129.180	137.312	50.479	2.507	7E-005		-4.601	
350.000	129.573	137.971	43.596	2.215	5E-004		-3.655	
400.000	129.882	138.449	36.685	1.423	3E-003		-2.847	
450.000	130.131	138.806	29.754	7.090	DE-003		-2.149	
500.000	130.324	139.065	22.806	2.878E-002		-1.541		
550.000	130.470	139.248	15.848	9.868	.868E-002		-1.006	
600.000	130.582	139.380	8.882	2.942	2E-001	E-001 -0.531		
650.000	130.669	139.477	1.911	7.796	6E-001 -0.108		-0.108	
700.000	130.739	139.550	-5.065	1.870)E+000		0.272	
750.000	130.793	139.605	-12.044	4.120)E+000		0.615	
800.000	130.834	139.644	-19.025	8.435	5E+000		0.926	
850.000	130.861	139.669	-26.008	1.621	E+001		1.210	
900.000	130.874	139.680	-32.992	2.945	5E+001		1.469	
950.000	130.870	139.677	-39.976	5.097	'E+001		1.707	
1000.000	130.847	139.658	-46.959	8.449)E+001		1.927	
Species Data							1	
Formula	м	Conc.		Input An	nounts		Extrapolated	
	g/mol	wt-%	mol	g	Volume	Unit	From T(K)	
C3H8(g)	44.096	100.000	1.000	44.096	22.414			
C3H6(PPYg)	42.080	95.428	1.000	42.080	22.414	1	-	

2.3.2 Metathesis to trans-2-butene

Table S10. Temperature dependency of reaction parameters for the propylene metathesis reaction to the thermodynamically favored trans-2-butene, calculated using the reaction equations module of HSC 9.1.

Reaction Equation								
2C3H6(PPYg)= C2H4(g) + C4H8(T2Bg)								
Reaction Data								
т	ΔН	ΔS	ΔG		к		Log K	
°C	kJ	J/K	kJ					
0.000	0.587	-17.681	5.416	9.208	3E-002		-1.036	
50.000	0.676	-17.377	6.291	9.616	5E-002		-1.017	
100.000	0.634	-17.495	7.162	9.940	DE-002		-1.003	
150.000	0.531	-17.753	8.043	1.016	5E-001		-0.993	
200.000	0.441	-17.955	8.936	1.032	1E-001		-0.987	
250.000	0.403	-18.032	9.836	1.042	2E-001		-0.982	
300.000	0.408	-18.022	10.738	1.050	DE-001		-0.979	
350.000	0.448	-17.957	11.638	1.058	3E-001		-0.976	
400.000	0.506	-17.867	12.533	1.065	1.065E-001		-0.973	
450.000	0.569	-17.777	13.424	1.072E-001			-0.970	
500.000	0.627	-17.699	14.311	1.079E-001			-0.967	
550.000	0.674	-17.640	15.194	1.086	5E-001		-0.964	
600.000	0.704	-17.604	16.075	1.092	92E-001		-0.962	
650.000	0.715	-17.592	16.955	1.098	98E-001		-0.959	
700.000	0.704	-17.604	17.835	1.103	1.103E-001		-0.957	
750.000	0.669	-17.638	18.716	1.108	3E-001		-0.956	
800.000	0.611	-17.694	19.599	1.112	2E-001		-0.954	
850.000	0.529	-17.768	20.486	1.115	5E-001		-0.953	
900.000	0.423	-17.861	21.376	1.117	7E-001		-0.952	
950.000	0.287	-17.974	22.272	1.119	9E-001		-0.951	
1000.000	0.147	-18.087	23.174	1.120	DE-001		-0.951	
Species Data								
Formula	м	Conc.		Input Ar	nounts		Extrapolated	
	g/mol	wt-%	mol	g	Volume	Unit	From T(K)	
C3H6(PPYg)	42.080	100.000	2.000	84.159	44.827	<u> </u>	-	
C2H4(g)	28.053	33.333	1.000	28.053	22.414	1	-	
C4H8(T2Bg)	56.106	66.667	1.000	56.106	22.414	1	-	

2.3.3 Metathesis to 2-cis-butene

Table S11. Temperature dependency of reaction parameters for the propylene metathesis reaction to the thermodynamically unfavored cis-2-butene, calculated using the reaction equations module of HSC 9.1.

		F	Reaction	Equation			
		2C3H6(PF	PYg)=C2H	4(g)+C4⊦	18(C2Bg)		
Reaction Data	1						
т	ΔН	ΔS	ΔG		к		Log K
°C	kJ	J/K	kJ		N		LOGIN
0.000	4.756	-11.923	8.013	2.93	5E-002		-1.532
50.000	4.444	-12.968	8.634	4.020E-002			-1.396
100.000	4.000	-14.241	9.314	4.966	5E-002		-1.304
150.000	3.534	-15.415	10.057	5.734	4E-002		-1.242
200.000	3.155	-16.265	10.850	6.339	9E-002		-1.198
250.000	2.905	-16.768	11.677	6.824	4E-002		-1.166
300.000	2.719	-17.108	12.524	7.219	9E-002		-1.142
350.000	2.592	-17.321	13.385	7.549	9E-002		-1.122
400.000	2.501	-17.462	14.255	7.830	DE-002		-1.106
450.000	2.427	-17.568	15.131	8.072	2E-002		-1.093
500.000	2.357	-17.661	16.012	8.282	2E-002	-1.082	
550.000	2.283	-17.755	16.897	8.466	5E-002	-1.072	
600.000	2.198	-17.855	17.787	8.626	5E-002	-1.064	
650.000	2.098	-17.965	18.683	8.76	5E-002		-1.057
700.000	1.982	-18.088	19.584	8.886	5E-002		-1.051
750.000	1.848	-18.223	20.492	8.990	DE-002		-1.046
800.000	1.695	-18.368	21.407	9.07	7E-002		-1.042
850.000	1.525	-18.523	22.329	9.15	1E-002		-1.039
900.000	1.338	-18.686	23.259	9.21	1E-002		-1.036
950.000	1.127	-18.862	24.198	9.259	9E-002		-1.033
1000.000	0.913	-19.033	25.145	9.29	5E-002		-1.032
Species Data							
Formula	м	Conc.		Input Ar	nounts		Extrapolated
	g/mol	wt-%	mol	g	Volume	Unit	From T(K)
C3H6(PPYg)	42.080	100.000	2.000	84.159	44.827	1	-
C2H4(g)	28.053	33.333	1.000	28.053	22.414	I	-
C4H8(C2Bg)	56.106	66.667	1.000	56.106	22.414	1	-

2.3.4 Propane Cracking

Table S12. Temperature dependency of reaction parameters for propane cracking side reaction (propane giving methane and ethylene), calculated using the reaction equations module of HSC 9.1.

Reaction Equation

		C3I	H8(g) = CH	4(g) + C2	H4(g)		
Reaction D	ata						
т	ΔН	ΔS	ΔG		ĸ		Log K
°C	kJ	J/K	kJ		N		LUG K
0.000	82.359	134.910	45.509	1.980	DE-009		-8.703
50.000	82.608	135.754	38.740	5.464	4E-007		-6.262
100.000	82.735	136.122	31.941	3.376E-005			-4.472
150.000	82.752	136.168	25.133	7.894	4E-004		-3.103
200.000	82.674	135.995	18.328	9.473	3E-003		-2.024
250.000	82.514	135.674	11.536	7.049	9E-002		-1.152
300.000	82.286	135.260	4.762	3.682	1E-001		-0.434
350.000	82.005	134.791	-1.989	1.468	3E+000		0.167
400.000	81.687	134.299	-8.717	4.747	7E+000		0.676
450.000	81.351	133.817	-15.419	1.300)E+001		1.114
500.000	80.997	133.345	-22.099	3.113	3E+001		1.493
550.000	80.632	132.888	-28.754	6.681	LE+001		1.825
600.000	80.268	132.458	-35.388	1.310)E+002		2.117
650.000	79.911	132.061	-42.001	2.381	LE+002		2.377
700.000	79.567	131.698	-48.594	4.060)E+002		2.609
750.000	79.239	131.369	-55.171	6.559	9E+002		2.817
800.000	78.930	131.074	-61.732	1.012	2E+003		3.005
850.000	78.638	130.808	-68.279	1.499	9E+003		3.176
900.000	78.362	130.567	-74.813	2.145	5E+003		3.331
950.000	78.099	130.348	-81.336	2.977	7E+003		3.474
1000.000	77.848	130.147	-87.848	4.023	3E+003		3.605
Species Da	ta						
	м	Conc.		Input Am	nounts		Extrapolated
Formula	g/mol	wt-%	mol	g	Volume	Unit	From T(K)
C3H8(g)	44.096	100.000	1.000	44.096	22.414	I	-
CH4(g)	16.042	36.381	1.000	16.042 22.414		1	-
C2H4(g)	28.053	63.619	1.000	28.053	22.414	1	-

2.3.5 Propylene Hydrogenolysis

Table S13. Temperature dependency of reaction parameters for the propylene hydrogenolysis side reaction (propylene and hydrogen giving methane and ethylene), calculated using the reaction equations module of HSC 9.1.

			Reaction	Equation	
		СЗН6(РР	Yg)+H2(g)	=CH4(g)+C2H4(g)	
Reaction Data	à				
т	ΔН	ΔS	ΔG	K	Log K
°C	kJ	J/K	kJ	ĸ	LOG K

Formula	g/mol	wrt %	mol	g Volumo	Unit	Extrapolated
	м	Conc		Input Amounts		Extranolated
Species Data						
1000.000	-52.998	-9.511	-40.889	4.761E+001		1.678
950.000	-52.771	-9.329	-41.360	5.840E+001		1.766
900.000	-52.513	-9.113	-41.821	7.282E+001		1.862
850.000	-52.224	-8.861	-42.271	9.248E+001		1.966
800.000	-51.904	-8.570	-42.707	1.199E+002		2.079
750.000	-51.554	-8.236	-43.127	1.592E+002		2.202
700.000	-51.171	-7.852	-43.530	2.171E+002		2.337
650.000	-50.758	-7.417	-43.912	3.054E+002		2.485
600.000	-50.314	-6.922	-44.270	4.453E+002		2.649
550.000	-49.838	-6.360	-44.603	6.770E+002		2.831
500.000	-49.327	-5.720	-44.905	1.082E+003		3.034
450.000	-48.780	-4.988	-45.173	1.833E+003		3.263
400.000	-48.195	-4.149	-45.402	3.337E+003		3.523
350.000	-47.568	-3.180	-45.586	6.630E+003		3.821
300.000	-46.894	-2.053	-45.717	1.468E+004		4.167
250.000	-46.172	-0.735	-45.788	3.734E+004		4.572
200.000	-45.404	0.809	-45.787	1.136E+005		5.055
150.000	-44.598	2.610	-45.703	4.387E+005		5.642
100.000	-43.771	4.690	-45.521	2.359E+006		6.373
50.000	-42.960	7.024	-45.229	2.049E+007		7.312
0.000	-42.222	9.499	-44.817	3.724E+008		8.571

Formula	g/mol	wt-%	mol	g	Volume	Unit	From T(K)
C3H6(PPYg)	42.080	95.428	1.000	42.080	22.414	I	-
H2(g)	2.016	4.572	1.000	2.016	22.414	1	-
CH4(g)	16.042	36.381	1.000	16.042	22.414	I	-
C2H4(g)	28.053	63.619	1.000	28.053	22.414	I	-

2.3.6 Butene Cracking

Table S14. Temperature dependency of reaction parameters for the butene cracking side reaction(butene to ethylene), calculated using the reaction equations module of HSC 9.1.

	Reaction Equation C4H8(2BTg) = 2C2H4(g)								
Reaction Data	а	٨٢	٨G						
°C	kJ	J/K	kJ	к	Log K				
0.000	113.789	138.934	75.839	3.133E-015	-14.504				
50.000	113.794	138.952	68.891	7.300E-012	-11.137				
100.000	113.742	138.805	61.947	2.127E-009	-8.672				
150.000	113.639	138.549	55.013	1.616E-007	-6.791				
200.000	113.483	138.200	48.094	4.899E-006	-5.310				

C2H4(g)	28.053	100.000	2.000	56.106	44.827		_
C4H8(2BTg)	56.106	100.000	1.000	56.106	22.414	1	-
Formula	g/mol	wt-%	mol	g	Volume	Unit	Extrapolated From T(K)
	м	Conc.		Input An	nounts		Extranolated
Species Data							
1000.000	107.594	131.347	-59.629	2.797	'E+002		2.447
950.000	108.056	131.716	-53.053	1.844	IE+002		2.266
900.000	108.516	132.101	-46.458	1.171	LE+002		2.069
850.000	108.972	132.498	-39.843	7.131	LE+001		1.853
800.000	109.418	132.904	-33.208	4.135	5E+001		1.616
750.000	109.847	133.313	-26.552	2.268	3E+001		1.356
700.000	110.256	133.723	-19.876	1.167	7E+001		1.067
650.000	110.655	134.144	-13.180	5.569	9E+000		0.746
600.000	111.042	134.575	-6.462	2.436	6E+000		0.387
550.000	111.415	135.015	0.278	9.602	2E-001		-0.018
500.000	111.773	135.463	7.040	3.345E-001			-0.476
450.000	112.113	135.918	13.824	1.003	3E-001		-0.999
400.000	112.436	136.380	20.632	2.506	5E-002		-1.601
350.000	112.739	136.847	27.462	4.987	7E-003		-2.302
300.000	113.021	137.318	34.316	7.452	2E-004		-3.128
250.000	113.271	137.776	41.194	7.702	2E-005		-4.113

2.3.7 Butene Hydrogenolysis

Table S15. Temperature dependency of reaction parameters for the butene hydrogenolysis side reaction (butene and hydrogen giving ethane and ethylene), calculated using the reaction equations module of HSC 9.1.

	Reaction Equation C4H8(2BTg) +H2(g)= C2H6(g) + C2H4(g)								
Reaction Data	a I								
T °C	ΔH kJ	ΔS J/K	ΔG kJ	К	Log K				
0.000	-21.805	20.242	-27.334	1.689E+005	5.228				
50.000	-22.762	17.025	-28.264	3.707E+004	4.569				
100.000	-23.705	14.311	-29.045	1.165E+004	4.066				
150.000	-24.623	12.002	-29.702	4.642E+003	3.667				
200.000	-25.522	9.994	-30.250	2.187E+003	3.340				
250.000	-26.405	8.219	-30.705	1.164E+003	3.066				
300.000	-27.258	6.662	-31.076	6.798E+002	2.832				
350.000	-28.074	5.296	-31.374	4.267E+002	2.630				
400.000	-28.845	4.105	-31.609	2.838E+002	2.453				
450.000	-29.571	3.064	-31.787	1.978E+002	2.296				
500.000	-30.252	2.154	-31.917	1.434E+002	2.157				

550.000	-30.891	1.352	-32.004	1.074E+002	2.031
600.000	-31.493	0.642	-32.054	8.274E+001	1.918
650.000	-32.061	0.010	-32.070	6.528E+001	1.815
700.000	-32.596	-0.555	-32.056	5.257E+001	1.721
750.000	-33.101	-1.061	-32.015	4.311E+001	1.635
800.000	-33.586	-1.524	-31.951	3.592E+001	1.555
850.000	-34.053	-1.950	-31.864	3.034E+001	1.482
900.000	-34.498	-2.337	-31.756	2.595E+001	1.414
950.000	-34.916	-2.686	-31.631	2.243E+001	1.351
1000.000	-35.307	-2.999	-31.488	1.959E+001	1.292

Species Data							
Formula	м	Conc.		Input An	Extrapolated		
Formula	g/mol	wt-%	mol	g	Volume	Unit	From T(K)
C4H8(2BTg)	56.106	96.532	1.000	56.106	22.414	1	-
H2(g)	2.016	3.468	1.000	2.016	22.414	1	-
C2H6(g)	30.069	51.734	1.000	30.069	22.414	1	-
C2H4(g)	28.053	48.266	1.000	28.053	22.414	1	-

2.3.8 Propylene dimerization to benzene (coke initiation)

Table S16. Temperature dependency of reaction parameters for the propylene to benzene side reaction, calculated using the reaction equations module of HSC 9.1.

Reaction Equation 2C3H6(PPYg)=C6H6(BZEg)+3H2(g)										
		203110(115/-001	0(0228) 3112(8)						
Reaction Data										
т	ΔН	ΔS	ΔG	к	Log K					
°C	kJ	J/K	kJ		205 K					
0.000	41.179	124.367	7.208	4.183E-002	-1.379					
50.000	43.170	131.057	0.819	7.372E-001	-0.132					
100.000	45.106	136.630	-5.878	6.650E+000	0.823					
150.000	46.957	141.286	-12.829	3.835E+001	1.584					
200.000	48.727	145.242	-19.995	1.613E+002	2.208					
250.000	50.416	148.638	-27.344	5.375E+002	2.730					
300.000	52.024	151.573	-34.851	1.501E+003	3.176					
350.000	53.545	154.120	-42.495	3.650E+003	3.562					
400.000	54.978	156.332	-50.257	7.946E+003	3.900					
450.000	56.316	158.250	-58.123	1.580E+004	4.199					
500.000	57.555	159.908	-66.078	2.915E+004	4.465					
550.000	58.689	161.330	-74.110	5.049E+004	4.703					
600.000	59.715	162.540	-82.207	8.285E+004	4.918					
650.000	60.624	163.554	-90.360	1.298E+005	5.113					
700.000	61.413	164.387	-98.560	1.953E+005	5.291					
750.000	62.076	165.051	-106.796	2.836E+005	5.453					

800.000	62.606	165.558	-115.062 3.990E+005				5.601
850.000	63.015	165.930	-123.350	5.459E+005			5.737
900.000	63.351	166.223	-131.654	7.284	lE+005		5.862
950.000	63.616	166.444	-139.971	9.505	E+005		5.978
1000.000	63.816	166.605	-148.297	1.216	6E+006		6.085
Species Data							
Species Data	М	Conc.		Input Am	ounts		Extrapolated
Species Data Formula	M g/mol	Conc. wt-%	mol	Input Am	ounts Volume	Unit	Extrapolated From T(K)
Species Data Formula C3H6(PPYg)	M g/mol 42.080	Conc. wt-% 100.000	mol 2.000	Input Am g 84.159	ounts Volume 44.827	Unit	Extrapolated From T(K)
Species Data Formula C3H6(PPYg) C6H6(BZEg)	M g/mol 42.080 78.112	Conc. wt-% 100.000 92.814	mol 2.000 1.000	Input Am g 84.159 78.112	ounts Volume 44.827 22.414	Unit I	Extrapolated From T(K) -

2.3.9 Trans-2-butene isomerization to 1-butene

Table S17. Temperature dependency of reaction parameters for the isomerization of trans-2-butene to 1-butene, calculated using the reaction equations module of HSC 9.1.

Reaction Equation								
C4H8(2BTg) = C4H8(1BTg)								
۱ °C	ΔH ki	ΔS	ΔG kl	к	Log K			
0.000	8.497	5.935	6.875	4.843E-002	-1.315			
50.000	8.495	5.932	6.578	8.641E-002	-1.063			
100.000	8.482	5.894	6.283	1.320E-001	-0.880			
150.000	8.465	5.851	5.989	1.822E-001	-0.739			
200.000	8.445	5.806	5.698	2.349E-001	-0.629			
250.000	8.421	5.758	5.409	2.883E-001	-0.540			
300.000	8.408	5.734	5.121	3.414E-001	-0.467			
350.000	8.411	5.739	4.835	3.933E-001	-0.405			
400.000	8.432	5.771	4.547	4.437E-001	-0.353			
450.000	8.461	5.813	4.257	4.925E-001	-0.308			
500.000	8.491	5.853	3.966	5.396E-001	-0.268			
550.000	8.511	5.879	3.672	5.847E-001	-0.233			
600.000	8.515	5.883	3.378	6.279E-001	-0.202			
650.000	8.496	5.861	3.085	6.690E-001	-0.175			
700.000	8.460	5.824	2.792	7.081E-001	-0.150			
750.000	8.423	5.787	2.502	7.452E-001	-0.128			
800.000	8.381	5.747	2.214	7.803E-001	-0.108			
850.000	8.338	5.707	1.927	8.135E-001	-0.090			
900.000	8.295	5.670	1.643	8.450E-001	-0.073			
950.000	8.260	5.641	1.360	8.748E-001	-0.058			
1000.000	8.234	5.620	1.079	9.031E-001	-0.044			

Species Data								
Formula	м	Conc.		Input A	mounts		Extrapolated	
Formula	g/mol	wt-%	mol	g	Volume	Unit	From T(K)	
C4H8(2BTg)	56.106	100.000	1.000	56.106	22.414	I	-	
C4H8(1BTg)	56.106	100.000	1.000	56.106	22.414	I	-	

2.3.10 Copper oxide reduction

Copper oxide (supported on alumina) can be used as a heat-generating component in the endothermic dehydrogenation reaction, according to US patent 2015/0259265 A1 [21]. We here report some of the possible reactions producing Cu under reducing conditions typical of propane dehydrogenation, all showing negative Gibbs free energy.

Table S18. Temperature dependency of reaction parameters for the reduction of CuO(s) by H_2 or propane, calculated using the reaction equations module of HSC 9.1.

Reaction Equation									
CuO(s)+H2(g) =Cu(s) +H2O(g)									
T °C			ΔG		к		Log K		
200.000	NJ	J/K	106.941	6 251	E 011	11 706			
200.000	-07.210	41.469	100.041	7 425			10.971		
250.000	-88.048	39.805	-108.872	1.437			10.871		
300.000	-88.896	38.257	-110.823	1.261			10.101		
350.000	-89.748	36.833	-112.700	2.804	1E+009		9.448		
400.000	-90.599	35.519	-114.508	7.697	/E+008		8.886		
450.000	-91.446	34.305	-116.254	2.500)E+008		8.398		
500.000	-92.287	33.180	-117.940	9.307	'E+007		7.969		
550.000	-93.120	32.137	-119.573	3.876E+007			7.588		
600.000	-93.941	31.168	-121.155	1.772E+007		7.249			
650.000	-94.748	30.269	-122.691	8.766E+006		6.943			
700.000	-95.540	29.434	-124.183	4.637E+006		6.666			
750.000	-96.313	28.659	-125.635	2.598E+006		6.415			
800.000	-97.064	27.942	-127.050	1.530E+006		6.185			
850.000	-97.791	27.280	-128.431	9.407E+005		5.973			
900.000	-98.490	26.671	-129.779	6.011E+005		5.779			
950.000	-99.157	26.114	-131.098	3.972	2E+005	5.599			
1000.000	-99.792	25.605	-132.391	2.705	5E+005	5.432			
Species Data									
Formula	м	Conc.		Input Am		Extrapolated			
	g/mol	wt-%	mol	g	Volume	Unit	From T(K)		
CuO(s)	79.545	97.528	1.000	79.545	12.606	ml	-		
H2(g)	2.016	2.472	1.000	2.016	22.414	1	-		
Cu(s)	63.546	77.912	1.000	63.546	7.092	ml	-		

Reaction Equation 10CuO(s)+C3H8(g) = 10Cu(s) +3CO2(g) +4H2O(g) Reaction Data T ΔH ΔS ΔG K Log K °C kJ J/K kJ 105.57 200.000 -476.946 1012.972 -956.233 3.757E+105 105.57 250.000 -480.410 1006.019 -1006.709 3.348E+100 100.52 300.000 -484.302 998.920 -1056.833 2.107E+096 96.324 350.000 -488.547 991.822 -1106.601 5.848E+092 92.767 400.000 -493.084 984.821 -1156.017 5.145E+089 89.711	5							
T ΔH ΔS ΔG K Log K °C kJ J/K kJ 100.00 -956.233 3.757E+105 105.579 200.000 -476.946 1012.972 -956.233 3.757E+105 105.579 250.000 -480.410 1006.019 -1006.709 3.348E+100 100.529 300.000 -484.302 998.920 -1056.833 2.107E+096 96.324 350.000 -488.547 991.822 -1106.601 5.848E+092 92.767 400.000 -493.084 984.821 -1156.017 5.145E+089 89.711	5 5							
Reaction Data T ΔH ΔS ΔG K Log K °C kJ J/K kJ K Log K 200.000 -476.946 1012.972 -956.233 3.757E+105 105.573 250.000 -480.410 1006.019 -1006.709 3.348E+100 100.523 300.000 -484.302 998.920 -1056.833 2.107E+096 96.324 350.000 -488.547 991.822 -1106.601 5.848E+092 92.767 400.000 -493.084 984.821 -1156.017 5.145E+089 89.711	5 5							
T ΔH ΔS ΔG K Log K °C kJ J/K kJ K Log K 200.000 -476.946 1012.972 -956.233 3.757E+105 105.575 250.000 -480.410 1006.019 -1006.709 3.348E+100 100.525 300.000 -484.302 998.920 -1056.833 2.107E+096 96.324 350.000 -488.547 991.822 -1106.601 5.848E+092 92.767 400.000 -493.084 984.821 -1156.017 5.145E+089 89.711	5 5							
°C kJ J/K kJ K Log K 200.000 -476.946 1012.972 -956.233 3.757E+105 105.575 250.000 -480.410 1006.019 -1006.709 3.348E+100 100.525 300.000 -484.302 998.920 -1056.833 2.107E+096 96.324 350.000 -488.547 991.822 -1106.601 5.848E+092 92.767 400.000 -493.084 984.821 -1156.017 5.145E+089 89.711 <th>5 5 1</th>	5 5 1							
200.000 -476.946 1012.972 -956.233 3.757E+105 105.57 250.000 -480.410 1006.019 -1006.709 3.348E+100 100.52 300.000 -484.302 998.920 -1056.833 2.107E+096 96.324 350.000 -488.547 991.822 -1106.601 5.848E+092 92.767 400.000 -493.084 984.821 -1156.017 5.145E+089 89.711	5 5 1							
250.000 -480.410 1006.019 -1006.709 3.348E+100 100.52 300.000 -484.302 998.920 -1056.833 2.107E+096 96.324 350.000 -488.547 991.822 -1106.601 5.848E+092 92.767 400.000 -493.084 984.821 -1156.017 5.145E+089 89.711	5 L							
300.000 -484.302 998.920 -1056.833 2.107E+096 96.324 350.000 -488.547 991.822 -1106.601 5.848E+092 92.767 400.000 -493.084 984.821 -1156.017 5.145E+089 89.711	L							
350.000 -488.547 991.822 -1106.601 5.848E+092 92.767 400.000 -493.084 984.821 -1156.017 5.145E+089 89.711	96.324							
400,000 -493,084 984,821 -1156,017 5,145F+089 89,711	92.767							
	89.711							
450.000 -497.855 977.987 -1205.086 1.130E+087 87.053	3							
500.000 -502.826 971.341 -1253.818 5.201E+084 84.716	5							
550.000 -507.966 964.900 -1302.223 4.387E+082 82.642	<u>)</u>							
600.000 -513.233 958.689 -1350.312 6.121E+080 80.787	7							
650.000 -518.594 952.719 -1398.096 1.304E+079 79.115	79.115							
700.000 -524.014 947.002 -1445.588 3.978E+077 77.600	77.600							
750.000 -529.462 941.543 -1492.801 1.652E+076 76.218	76.218							
800.000 -534.906 936.347 -1539.747 8.957E+074 74.952	74.952							
850.000 -540.312 931.423 -1586.440 6.127E+073 73.787	73.787							
900.000 -545.643 926.779 -1632.894 5.140E+072 72.711	72.711							
950.000 -550.865 922.420 -1679.123 5.164E+071 71.713	}							
1000.000 -555.947 918.347 -1725.141 6.093E+070 70.785	5							
Species Data								
Formula g/mol wt-% mol g Volume Unit From	polated							
CuO(s) 79 545 94 748 10 000 795 454 126 062 ml	-							
C3H8(g) 44.096 5.252 1.000 44.096 22.414 L	_							
	_							
Cu(s) 63.546 75.691 10.000 635.460 70.922 ml	-							
CO2(g) 44.010 15.726 3.000 132.029 67.241 1	-							
H2O(g) 18.015 8.583 4.000 72.061 89.654 1	-							
Reaction Equation $3C_{11}O(s)+C3H8(a) = 3C_{11}(s) +3CO(a) +4H2(a)$								
$3CuO(s)+C3H\delta(g) = 3Cu(s) + 3CO(g) + 4HZ(g)$								
Reaction Data								
Τ ΔΗ ΔS ΔG								
°C kJ J/K kJ K Log k	Log K							
200.000 253.826 840.702 -143.953 7.823E+015 15.893	15.893							
250.000 254.997 843.064 -186.052 3.786E+018 18.578	18.578							
300.000 255.704 844.361 -228.241 6.350E+020 20.803								
350.000 256.002 844.864 -270.475 4.721E+022 22.674								
400.000 255.943 844.776 -312.718 1.854E+024 24.268								
450.000 255.580 844.258 -354.945 4.371E+025 25.641								

500.000	254.944	843.410	-397.138	6.811E+026	26.833
550.000	254.061	842.304	-439.282	7.549E+027	27.878
600.000	252.960	841.008	-481.365	6.299E+028	28.799
650.000	251.673	839.575	-523.380	4.140E+029	29.617
700.000	250.222	838.044	-565.321	2.222E+030	30.347
750.000	248.625	836.445	-607.184	1.002E+031	31.001
800.000	246.904	834.804	-648.965	3.895E+031	31.590
850.000	245.077	833.140	-690.664	1.329E+032	32.124
900.000	243.162	831.472	-732.279	4.051E+032	32.608
950.000	241.177	829.815	-773.811	1.118E+033	33.048
1000.000	239.139	828.182	-815.261	2.826E+033	33.451

Species Data

Formula	м	Conc.		Extrapolated			
ronnala	g/mol	wt-%	mol	g	Volume	Unit	From T(K)
CuO(s)	79.545	84.404	3.000	238.636	37.819	ml	-
C3H8(g)	44.096	15.596	1.000	44.096	22.414	I	-
Cu(s)	63.546	67.427	3.000	190.638	21.277	ml	-
CO(g)	28.010	29.721	3.000	84.030	67.241	1	-
H2(g)	2.016	2.852	4.000	8.064	89.654	I	-

3. References

- [1] Ethylene (ET): 2020 World Market Outlook and Forecast up to 2029, (n.d.). https://mcgroup.co.uk/researches/ethylene (accessed April 13, 2020).
- [2] Propylene: 2020 World Market Outlook and Forecast up to 2029, (n.d.). https://mcgroup.co.uk/researches/propylene (accessed April 13, 2020).
- [3] Alpha Olefin Market Industry Analysis and Forecast (2019-2026) By Product, By Application And By Region., (n.d.). https://www.maximizemarketresearch.com/market-report/alpha-olefin-market/13674/ (accessed April 13, 2020).
- [4] 2020 Global Ethylene Market and Propylene Industry Research Analysis by TBRC, (n.d.). https://www.prnewswire.com/news-releases/2020-global-ethylene-market-and-propyleneindustry-research-analysis-by-tbrc-301014325.html (accessed April 13, 2020).
- [5] On Purpose What's Driving New Propane Dehydrogenation Projects in North America?, (n.d.). https://www.nexant.com/resources/purpose-what-s-driving-new-propanedehydrogenation-projects-north-america (accessed April 14, 2020).
- [6] E. Clippinger, B.F. Mulaskey, Group viii noble metal, tin and solid inorganic refractory metal oxide catalyst composites and their use in hydrocarbon dehydrogenations, US3531543A, 1970.
- [7] R.E. Rausch, Dehydrogenation with a catalytic composite containing platinum, rhenium and tin, US3584060, 1971.
- [8] J.C. Hayes, Multicomponent dehydrogenation catalyst, US3878131, 1975.

- [9] W.M. Castor, B.S. Taylor, Reduction of metal surface-initiated cracking in dehydrogenation reactors, (1979).
- [10] T. Imai, C.-W. Hung, Dehydrogenation of hydrocarbons with a halogen contacting step, US4438288, 1984.
- [11] T. Imai, H. Abrevaya, Dehydrogenation catalyst compositions and method of their preparation, US4595673, 1986.
- [12] T. Imai, Dehydrogenation catalyst composition, US4716143, 1987.
- [13] T. Imai, H. Abrevaya, J.C. Bricker, D.-Y. Jan, Dehydrogenation catalyst composition and hydrocarbon dehydrogenation process, US4827072, 1989.
- [14] S.J. Miller, Dehydrogenation of isobutane over a zeolitic catalyst, US4727216, 1988.
- [15] D.L. McKay, M.E. Olbrich, Dehydrogenation process, US4902849, 1990.
- [16] M.E. Olbrich, D.L. McKay, B. Jean, Dehydrogenation process, US4926005, 1989.
- [17] J.V. Heyse, P.G. Johnson, B.F. Mulaskey, Dehydrogenation processes, equipment and catalyst loads therefor, USOO5723707A, 1975. https://patents.google.com/patent/US5723707A/en.
- [18] S. Alerasool, H. Manning, Paraffin dehydrogenation catalyst, US20030232720A1, 2003.
- M.G. Riley, B. V. Vora, New Catalyst for Higher Production Rates in Hydrocarbon Dehydrogenation, US20100240941A1, 2010. https://patentimages.storage.googleapis.com/3b/c9/82/c283c7b24afe69/US20100019677A1 .pdf.
- W. Ruettinger, M.J. Breen, R. Jacubinas, S. Alerasool, Alkane dehydrogenation catalysts, US20100312035A1, 2010. https://patentimages.storage.googleapis.com/3b/c9/82/c283c7b24afe69/US20100019677A1 .pdf.
- [21] V. Fridman, M.A. Urbancic, Dehydrogenation process with heat generating material, US 2015/0259265 A1, 2015.
- [22] L.F. Heckelsberg, Conversion of Olefins, US3365513, 1965. https://dl.acm.org/doi/10.1145/178951.178972.
- [23] L.G. Cannel, Olefin oligomerization, US3592869, 1968. https://www.jstor.org/stable/1190003?origin=crossref.
- [24] R.E. Dixon, P.D. Hann, Isoamylenes from butenes, US4085158A, 1978.
- [25] R. Burnett, Disproportionation of saturated hydrocarbons employing a catalyst that comprises platinum and tungsten, US3856876A, 1974. https://patents.google.com/patent/US3856876A/en.
- [26] L.F. Heckelsberg, R.L. Banks, Dehydrogenation and disproportionation of hydrocarbons., US3445541A, 1969. https://patents.google.com/patent/US3445541A/en.
- [27] M.D. Groaning, R.A. Johnstoston, David A Gabel, Dual Catalyst System for Alkane Metathesis, US20070060781A1, 2007.

- [28] K. Suriye, A. Jantharasuk, W. Jareewatchara, A process for conversion of a hydrocarbon feed, WO/2017/001446, 2017. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017001446&tab=PCTBIBLIO.
- [29] K. Suriye, A. Jantharasuk, W. Jareewatchara, A hydrocarbon conversion catalyst for producing less saturated hydrocarbon product, WO/2017/001445, 2017. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017001445&tab=PCTBIBLIO.
- [30] A. Jantharasuk, K. Suriye, Catalyst system and process utilizing the catalyst system, WO/2018/108443, 2018.
 https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2018108443&tab=PCTBIBLIO.
- [31] B.M. Weckhuysen, R.A. Schoonheydt, Alkane dehydrogenation over supported chromium oxide catalysts, Catal. Today. 51 (1999) 223–232. doi:10.1016/S0920-5861(99)00047-4.
- [32] J.C. Bricker, Advanced Catalytic Dehydrogenation Technologies for Production of Olefins, Top. Catal. 55 (2012) 1309–1314. doi:10.1007/s11244-012-9912-1.
- [33] B. V. Vora, Development of dehydrogenation catalysts and processes, Top. Catal. 55 (2012) 1297–1308. doi:10.1007/s11244-012-9917-9.
- [34] J.J.H.B. Sattler, J. Ruiz-martinez, E. Santillan-Jimenez, B.M. Weckhuysen, Catalytic Dehydrogenation of Light Alkanes on Metals and Metal Oxides, Chem. Rev. 114 (2014) 10613–10653. doi:10.1021/cr5002436.
- [35] Z.J. Zhao, C.C. Chiu, J. Gong, Molecular understandings on the activation of light hydrocarbons over heterogeneous catalysts, Chem. Sci. 6 (2015) 4403–4425. doi:10.1039/c5sc01227a.
- [36] Z. Nawaz, Light alkane dehydrogenation to light olefin technologies: a comprehensive review, Rev. Chem. Eng. 31 (2015) 413–436. doi:10.1515/revce-2015-0012.
- [37] O.O. James, S. Mandal, N. Alele, B. Chowdhury, S. Maity, Lower alkanes dehydrogenation: Strategies and reaction routes to corresponding alkenes, Fuel Process. Technol. 149 (2016) 239–255. doi:10.1016/j.fuproc.2016.04.016.
- [38] Z.-P. Hu, D. Yang, Z. Wang, Z.-Y. Yuan, State-of-the-art catalysts for direct dehydrogenation of propane to propylene, Chinese J. Catal. 40 (2019) 1233–1254. doi:10.1016/S1872-2067(19)63360-7.
- [39] G. Wang, X. Zhu, C. Li, Recent Progress in Commercial and Novel Catalysts for Catalytic Dehydrogenation of Light Alkanes, Chem. Rec. (2019) 1–14. doi:10.1002/tcr.201900090.
- [40] C.J. Dittrich, The role of heat transfer on the feasibility of a packed-bed membrane reactor for propane dehydrogenation, Chem. Eng. J. 381 (2020) 122492. doi:10.1016/j.cej.2019.122492.
- [41] S. Chen, X. Chang, G. Sun, T. Zhang, Y. Xu, Y. Wang, C. Pei, J. Gong, Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies, Chem. Soc. Rev. 50 (2021) 3315–3354. doi:10.1039/D0CS00814A.
- [42] Y. Wang, P. Hu, J. Yang, Y.A. Zhu, D. Chen, C-H bond activation in light alkanes: A theoretical perspective, Chem. Soc. Rev. 50 (2021) 4299–4358. doi:10.1039/d0cs01262a.
- [43] J. Mol, Industrial applications of olefin metathesis, J. Mol. Catal. A Chem. 213 (2004) 39–45. doi:10.1016/j.molcata.2003.10.049.

- [44] J.M. Basset, C. Copéret, D. Soulivong, M. Taoufik, J. Thivolle-Cazat, From olefin to alkane metathesis: A historical point of view, Angew. Chem. Int. Ed. 45 (2006) 6082–6085. doi:10.1002/anie.200602155.
- [45] S. Lwin, I.E. Wachs, Olefin metathesis by supported metal oxide catalysts, ACS Catal. 4 (2014) 2505–2520. doi:10.1021/cs500528h.
- [46] N. Gholampour, M. Yusubov, F. Verpoort, Investigation of the preparation and catalytic activity of supported Mo, W, and Re oxides as heterogeneous catalysts in olefin metathesis, Catal. Rev. - Sci. Eng. 58 (2016) 113–156. doi:10.1080/01614940.2015.1100871.
- [47] M. Ghashghaee, Heterogeneous catalysts for gas-phase conversion of ethylene to higher olefins, Rev. Chem. Eng. 34 (2018) 595–655. doi:10.1515/revce-2017-0003.
- [48] C. Copéret, Z.J. Berkson, K.W. Chan, J. de Jesus Silva, C.P. Gordon, M. Pucino, P.A. Zhizhko, Olefin metathesis: what have we learned about homogeneous and heterogeneous catalysts from surface organometallic chemistry?, Chem. Sci. 12 (2021) 3092–3115. doi:10.1039/d0sc06880b.
- [49] W.B. White, S.M. Johnson, G.B. Dantzig, Chemical Equilibrium in Complex Mixtures, J. Chem. Phys. 28 (1958) 751–755. doi:10.1063/1.1744264.