Electronic Supplementary Material

Light Olefin Synthesis from a Diversity of Renewable and Fossil Feedstocks: State-of the-Art and Outlook

Sergei A. Chernyak^a, Massimo Corda^a, Jean-Pierre Dath^b, Vitaly V. Ordomsky^{a*}, Andrei Y. Khodakov^{a*}

^aUniversity of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lille, France
 ^bDirection Recherche & Développement, TotalEnergies SE, TotalEnergies One Tech Belgium, Zone Industrielle Feluy C, B-7181 Seneffe, Belgium

Table S1. Catalytic literature data used in Figure 11. Abbreviations: DDH – non-oxidative dehydration, ODH – oxidative dehydration, X – alkane conversion, S – selectivity to corresponding olefin, Y – molar yield of corresponding olefin

Catalyst	T (°C)	(°C) Alkane X S Y concentration (%) (mol.%) (mol.%)		Ref.		
		Propane I	DDH			
Pt/GaAL	620	20	40	96	38.4	1
PtZnald/SiO2	600	16.7	49	97	47.53	2
ZnO-S-1_3	550	40	31	87	26.97	3
Pt-Sn/SBA-15	600	50	30	93	27.9	4
PtLa/mz-deGa	580	100	42	98	41.16	5
0.1Pt0.17Zn/SiO2 IMA	600	50	48	97	46.56	6
Pt1Sn1/SiO ₂	580	16	63	99	62.37	7
Pt1Sn1/SiO ₂	580	100	40	98	39.2	7
PtZn4@S-1-H	600	25	66.7	90.8	60.5636	8
Sn-Beta-30	630	20	40	85	34	9
		Ethane D	DH			
Pt/M-TS-1	700	100	44	92	40.48	10
VN	680	5	30	65	19.5	11
OMS-2	770	Ethane	46.7	96	44.8	12

Propane ODH											
Catalyst	T (°C)	Propane : O ₂ ratio, propane concentration (%)	x	S	Y	Ref.					
DFNS/BN	450	1:1, 8	20	55	11	13					
h-BN/SiO ₂	520	2:3, 16.7	23	78	17.94	14					
g-C ₃ N ₄	515	4:1, 44	24	57	13.68	15					
B/SiO ₂	500	2:1, 10	20	60	12	16					
BS-1	570	1:1, 20	40	82*	32.8	17					
BN1450	530	23:15, 23	42	67	28.1	18					
N2-BN	520	2:3. 1/6	26	75	19.5	19					
BN	490	2:1, 30	14	79*	11.06	20					
Pt/(Al2O3@35cIn ₂ O ₃)	450	2:1, 10	47	77	36.2	21					
		Ethane O	DH								
Catalyst	т	Ethane : O ₂ ratio, ethane concentration (%)	x	S	Y	Ref.					
MoVNbTeOx@FoamSiC	460	3:2, 30	60.3	89.1	53.7	22					
HDS-MoVO	440	2:1, 10	12	77.3	9.3	23					
SnO ₂ -NiO	480	7:6, 7	40	55	22	24					
92NiNb-O	450	3:1, 10	18.5	86.2	15.947	25					

Propane CO ₂ -ODH											
Catalyst	T (°C)	Propane : CO ₂ ratio, propane concentration (%)	x	S	Y	Ref.					
CrOx/silicalite-1	550	5:1, 80	43	73	31.39	26					
V ₁₅ /ZSM-5	550	1:2, 2.5	37	96	35.52	27					
3Cr-ZrO	550	1:2, 2.5	60	67	40.2	28					
2Cr-Ca/ZrO ₂	550	1:3, 10	20.2	93.5	18.887	29					
Pt–Co–In/CeO₂	550	1:1, 25	50	97	48.5	30					
		Ethane CO ₂ -	ODH								
Catalyst	т	Ethane : CO ₂ ratio, ethane concentration (%)	x	S	Y	Ref.					
Cr/SBA-15@7	650	1:1, 50	25.8	81	20.898						
5Mo/5CeTi	600	1:1, 5	15	73	10.95	31					
SrCr/SiO ₂ #H2	700	1:1, 20	31.7	79.8	25.2966	32					
Cr-TUD-1	650	01:05.2	34	93	31.62	33					
Fe/NiMgZr	600	1.2:1	22	75	16.5	34					
PtCe@MZ	600	1:2	38	85	32.3	35					
		Looping ODH with	air/oxyg	en							
Catalyst	т	Alkane	х	S	Y	Ref.					
La _{0.8} Sr _{0.2} FeO ₃	700	Ethane	62	88	54.6	36					
Mo-V-O	500	Propane	36	89	32.04	37					
Na2WO4/CuMn2O4	720	Ethane	58.8	86.4	50.8	38					
NaW-LaMnO₃	750	Ethane	54.6	86.1	47	39					
VO _x /TiO ₂	500	Propane	20	80	16	40					
3Ni/HY	600	Ethane	18	97	17.46	41					
	.	Looping ODH v	vith CO ₂								
0.2Ce/SrFeO ₃	725	Ethane	28	68	19	42					
CeO ₂	600	Ethane	10	95	9.5	43					
OMS-2	770	Ethane	46.7	96	44.8	12					

Table S2. Methanol conversion to LO over different SAPO-34 and ZSM-5 zeolite catalysts ^a ethene+propene; ^b ethene+propene+butene

		WHS		MeOH	Tot LO	Sel	ectivity (%)		
	Catalyst	V	т (°С)	conversion (%)	Selectivity (%)	C₂H₄	C₃H ₆	C ₄ H ₈	Stability 19 min 35 min 69 min 55 min 124 min - 18 min - 210 min - 210 min - 35 0 h 35 h	Ref.
	SAPO-34 (SAPO-34-B)	5.0 h⁻¹	450	100	79.2 ª	-	-	-	19 min	44
	Sapo-34-B decorated with CLD of TEOS (SAPO-34-L)	5.0 h ⁻¹	450	100	73.6 ª	-	-	-	35 min	44
	Sapo-34-B etched with CH₃COOH (SAPO-34-H)	5.0 h⁻¹	450	100	81.6ª	-	-	-	69 min	44
	SAPO-34	4 h⁻¹	475	100	80 ^a	40	40	-	55 min	45
SAPO- 34	SAPO-34 with 1 μm crystal size (ZEOS)	6.6g _M еОнg _{cat} h ⁻¹	450	100	85 ª	49	36	-	124 min	46
	ZEOS precoked and steam treated	6.6 g _{МеОН} g _{cat} h ⁻¹	450	100	86	56	30	-	-	46
	SAPO-34 with 10 μm crystal size (ZEOL)	6.6 g _{меОн} g _{cat} h ⁻¹	450	100	75 ª	38	37	-	18 min	46
	ZEOL precoked and steam treated	6.6 g _{меОн} g _{cat} h ⁻¹	450	100	89	60	29	-	-	46
	SAPO-34 with n _{si} /(n _{si} +n _{Al} +n _P)=0.05	1 h ⁻¹	400	100	85 ª	45	40	-	210 min	47
	Zn modified SAPO-34	2 h⁻¹	475	100	83 ^a	56	27	-	-	48
	HZSM-5	0.16 h ⁻¹	400	100	68 ^b	19	31	18	-	49
	ZSM-5 containing Ta and Al	0.16 h ⁻¹	400	97	81.8 ^b	4.1	52	25.7	> 50 h	49
ZSM-5	ZSM-5 containing Sn and Al	5 h ⁻¹	450	100	77.4 ^b	9.8	42.5	25.1	35 h	50
	Hierarchical macro/microporous ZSM-5	2 h ⁻¹	450	100	53 ^b	17	25	11	28h	51
	ZSM-5	2 h⁻¹	450	100	61 ^b	20	2	39	17 h	51

Table S3. Ex-situ catalytic pyrolysis results with different types of lignocellulosic biomass feedstock.(C = cellulose; HC = hemicellulose; L = lignin; PT= pyrolysis temperature)

Feedstock	Composition (wt%)		PT (°C) Catalyst		Tot. LO Y (C-mol%)	Selecti (C-mol	Ref.			
	С	HC	L				C ₂ H ₄	C₃H ₆	C₄H₀ 9 4 7.17 0 1.50 2 5.07 9 5.88 5.7 7.5 7.5 5.9 - - 0 5 5.1 2.7	
Cellulose	100	0	0	600	ZSM-5	4	72	19	9	
		600	3%Fe/ZSM-5	6.98	63.99	28.84	7.17			
Hemicellulose	0	100	0	600	3%Fe/ZSM-5	4.11	79.00	19.50	1.50	52
Lignin	0	0	100	600	3%Fe/ZSM-5	1.39	82.61	12.32	5.07	
Corn stalk	-	-	-	600	3%Fe/ZSM-5	5.27	69.83	24.29	5.88	
Cellulose	100	0	0	500	HZSM-5	9.0	43.5	51.0	5.7	
Lignin	0	0	100	500	HZSM-5	4.0	53.6	39.1	7.5	53
Poplar wood	45.3	18.2	30.0	500	HZSM-5	7.7	50.5	43.7	5.9	
Pine wood	45.88	19.40	26.72	500	ZSM-5	4.2	-	-	-	
				500	Sn/M-ZSM-5	12.39	-	-	-	54
Lignin	0	0	100	600	ZSM-5	2.6	70	30	0	
0					3%Fe/ZSM-5	3.8	85	10	5	55
Cellulose	100	0	0	600	La/HZSM-5	30.9	54.0	40.9	5.1	
Hemicellulose	0	100	0	600	La/HZSM-5	27.6	54.9	42.4	2.7	
Lignin	0	0	100	600	La/HZSM-5	8.6	41.9	46.5	11.6	
Sugarcane bagasse	44	26	22	600	La/HZSM-5	21.2	62.7	33.4	3.9	- 56
Sawdust	42	19	30	600	La/HZSM-5	14.7	51.7	42.7	5.6	1
Rice husk	44	22	26	600	La/HZSM-5	20.1	58.6	37.3	4.1	

Catalyst	Temp.	Р	H ₂ /CO	СО	CO2	CO ₂ -free selectivity (%)				Ref.	
	(°C)	(bar)		conv.	select.	CH ₄	C2-	C ₂ -C ₄	C ₅₊	Оху	
				(%)	(%)		C4=	alkanes			
Co_1Mn_3 -Na ₂ S	240	1	2	0.8	0	17	54	3	26	-	57
	240	10	2	18	<3	4	30	7	59	-	
CoMn catalyst	250	1	2	31.8	47.3	5.0	60.8	2.0	31.4	0.8	58
(Advanced Research		1	1	11.5	48.0	3.7	50.0	1.3	43.5	1.5	
Institute)											
Fe/CNF	340	20	1	88	42	13	52	12	18	5	59
Fe/ α -Al ₂ O ₃ (25 wt %			1	80	40	11	53	6	21	9	
Fe)											
FeBi/CNT-in	350	10	1	60	45.2	25.5	45.0	12.0	17.5	-	60
FePbK/CNT-in				76.2	48.1	18.2	52.6	8.6	21.0		
FeMn@Si	320	20	2	50	14	9	27.5	4.6	-	-	61
Fe-S-Na/ a-Al-O-	350	1	1	_	_	15	64	2	19	-	62
	330	-	-	_	_	15	04	2	15	_	
Fe/SiO ₂	350	10	1	11	15	24	31	5	40	-	63
FeSn/SiO ₂				53	49	23	17	13	47		
FeSb/SiO ₂				47	47	14	17	10	59		
Fe@NaY	300	30	2	91.2	49.0	31.2	36.2	34.2	3.3		64
FeMn (4 :1)	260	20	1	5.49	20.72	18.9	48.7	-	-	-	65

Table S4. Catalytic data for LO production using FT synthesis

Table S5. Catalytic literature data for LO synthesis using the methanol mediated route. Data were used in Figures 29 and 30.

Abbreviations: SV means space velocity, $X - CO_2$ or CO conversion, S(CO) - selectivity to CO, S(LO) - CO-free selectivity to light olefins

Catalyst	P (bar)	T (°C)	SV	X(CO _x)	S (CO)	s(IO)	Ref
Catalyst	r (bai)	1(0)	(NL/g _{cat} /h)	(mol.%)	(mol.%)	S(LU)	
	10			10	65	86	66
	20			13	48	84	
	30	380		13	49	81	
	40			14	48	80	
	50		3.6	14	47	79	
		360	5.0	8	40	85	
		370		10	45	85	
		390		15	55	83	
		400		18	63	82	
ZnZrO/SAPO		370		10	45	85	
			1.8	16	55	68	
	20		5.4	10	46	86	
	20		9	8	40	89	
			15	7	35	92	
		380	20	6	33	94	
			3.6	14	60	76	
				12	55	78	
				10	47	82	
				8	46	84	
	10			20	80	45	67
	20		3.6	25	73	63	
Mn ₂ O ₃ -ZnO/SAPO-34	30	380		31	55	82	
	40			32	54	79	
	50			33	53	77	
	15	350		5	82	80	68
	15	375		7	83	90	
In ₂ O ₃ /ZrO ₂ -SAPO	15	400	12	12	86	90	
	15	425		17	90	90	
	15	450		24	94	86	
	30	300		2	19	72	69
	30	350		8	40	85	
ZnGa ₂ O ₄ /SAPO	30	370	5.4	12	48	85	
	30	400		22	60	82	
	30	450		37	82	45	
	20	350		12	56	70	70
	20	375		14	65	75	
NiCu/CeO ₂ -SAPO-34	20	400	12	16	71	72	
	20	425		18	76	70	
	20	450		21	85	60	

	30	250		0	0	8	71
Zn/ZrO ₂ /SSZ-13	30	300		3	10	21	
	30	350		10	27	42	
	30	400		23	42	72	
	30	450	3	27	40	52	
	10			10		87	
	20	400		15	n /d	80	
	30	400		24	nyu	73	
	40			28		65	

Reference

- 1 H. C. Kwon, Y. Park, J. Y. Park, R. Ryoo, H. Shin and M. Choi, *ACS Catal.*, 2021, **11**, 10767– 10777.
- 2 P. Ingale, K. Knemeyer, P. Preikschas, M. Ye, M. Geske, R. Naumann d'Alnoncourt, A. Thomas and F. Rosowski, *Catal. Sci. Technol.*, 2021, **11**, 484–493.
- D. Zhao, X. Tian, D. E. Doronkin, S. Han, V. A. Kondratenko, J.-D. Grunwaldt, A. Perechodjuk, T. H. Vuong, J. Rabeah, R. Eckelt, U. Rodemerck, D. Linke, G. Jiang, H. Jiao and E. V. Kondratenko, *Nature*, 2021, 599, 234–238.
- 4 J. Wang, X. Chang, S. Chen, G. Sun, X. Zhou, E. Vovk, Y. Yang, W. Deng, Z. J. Zhao, R. Mu, C. Pei and J. Gong, *ACS Catal.*, 2021, **11**, 4401–4410.
- 5 R. Ryoo, J. Kim, C. Jo, S. W. Han, J. C. Kim, H. Park, J. Han, H. S. Shin and J. W. Shin, *Nature*, 2020, **585**, 221–224.
- 6 S. Chen, Z. J. Zhao, R. Mu, X. Chang, J. Luo, S. C. Purdy, A. J. Kropf, G. Sun, C. Pei, J. T. Miller, X. Zhou, E. Vovk, Y. Yang and J. Gong, *Chem*, 2021, **7**, 387–405.
- 7 A. H. Motagamwala, R. Almallahi, J. Wortman, V. O. Igenegbai and S. Linic, *Science (80-.).*, 2021, **373**, 217–222.
- Q. Sun, N. Wang, Q. Fan, L. Zeng, A. Mayoral, S. Miao, R. Yang, Z. Jiang, W. Zhou, J. Zhang, T. Zhang, J. Xu, P. Zhang, J. Cheng, D. C. Yang, R. Jia, L. Li, Q. Zhang, Y. Wang, O. Terasaki and J. Yu, Angew. Chemie Int. Ed., 2020, 59, 19450–19459.
- 9 Y. Yue, J. Fu, C. Wang, P. Yuan, X. Bao, Z. Xie, J. M. Basset and H. Zhu, *J. Catal.*, 2021, **395**, 155–167.
- 10 Y. Pan, A. Bhowmick, W. Wu, Y. Zhang, Y. Diao, A. Zheng, C. Zhang, R. Xie, Z. Liu, J. Meng and D. Liu, *ACS Catal.*, 2021, **11**, 9970–9985.
- 11 X. Duan, L. Ye and K. Xie, *Catal. Sci. Technol.*, 2021, **11**, 6573–6578.
- 12 J. Liu, Y. Gao, X. Wang and F. Li, *Cell Reports Phys. Sci.*, 2021, **2**, 100503.
- 13 R. Belgamwar, A. G. M. Rankin, A. Maity, A. K. Mishra, J. S. Gómez, J. Trébosc, C. P. Vinod and O. Lafon, *ACS Sustain. Chem. Eng.*, 2020, **8**, 16124–16135.
- 14 D. Ding, B. Yan, Y. Wang and A. H. Lu, *ChemCatChem*, 2021, **13**, 3312–3318.
- 15 L. Cao, P. Dai, L. Zhu, L. Yan, R. Chen, D. Liu, X. Gu, L. Li, Q. Xue and X. Zhao, *Appl. Catal. B Environ.*, 2020, **262**, 118277.
- H. Yan, S. Alayoglu, W. Wu, Y. Zhang, E. Weitz, P. C. Stair and J. M. Notestein, ACS Catal., 2021, 11, 9370–9376.
- H. Zhou, X. Yi, Y. Hui, L. Wang, W. Chen, Y. Qin, M. Wang, J. Ma, X. Chu, Y. Wang, X. Hong, Z.
 Chen, X. Meng, H. Wang, Q. Zhu, L. Song, A. Zheng and F. S. Xiao, *Science (80-.).*, 2021, **372**, 76–80.
- 18 T. C. Wang, J. L. Yin, X. J. Guo, Y. Chen, W. Z. Lang and Y. J. Guo, *J. Catal.*, 2021, **393**, 149–158.
- 19 Z. Liu, B. Yan, S. Meng, R. Liu, W. D. Lu, J. Sheng, Y. Yi and A. H. Lu, *Angew. Chemie Int. Ed.*, 2021, **60**, 19691–19695.

- 20 J. T. Grant, C. A. Carrero, F. Goeltl, J. Venegas, P. Mueller, S. P. Burt, S. E. Specht, W. P. McDermott, A. Chieregato and I. Hermans, *Science (80-.).*, 2016, **354**, 1570–1573.
- H. Yan, K. He, I. A. Samek, D. Jing, M. G. Nanda, P. C. Stair and J. M. Notestein, *Science (80-.).*, 2021, **371**, 1257–1260.
- 22 P. Yan, Y. Chen and Y. Cheng, *Chem. Eng. J.*, 2022, **427**, 131813.
- 23 K. Shimoda, S. Ishikawa, K. Matsumoto, M. Miyasawa, M. Takebe, R. Matsumoto, S. Lee and W. Ueda, *ChemCatChem*, 2021, **13**, 3132–3139.
- 24 E. Moreno-Barrueta, C. Alvarado-Camacho, J. F. Durán-Pérez, A.-A. Morales-Pérez and C. O. Castillo, *Catal. Today*, 2022, **394–396**, 161–177.
- 25 D. Delgado, B. Solsona, R. Sanchis, E. Rodríguez-Castellón and J. M. López Nieto, *Catal. Today*, 2021, **363**, 27–35.
- 26 J. Wang, Y. H. Song, Z. T. Liu and Z. W. Liu, *Appl. Catal. B Environ.*, 2021, **297**, 120400.
- 27 S. Lawson, A. Farsad, B. Adebayo, K. Newport, K. Schueddig, E. Lowrey, F. Polo-Garzon, F. Rezaei and A. A. Rownaghi, *Adv. Sustain. Syst.*, 2021, **5**, 1–15.
- 28 Z. Xie, Y. Ren, J. Li, Z. Zhao, X. Fan, B. Liu, W. Song, L. Kong, X. Xiao, J. Liu and G. Jiang, J. Catal., 2019, **372**, 206–216.
- 29 Y. Gao, X. Jie, C. Wang, R. M. J. Jacobs, W. Li, B. Yao, J. R. Dilworth, T. Xiao and P. P. Edwards, Ind. Eng. Chem. Res., 2020, **59**, 12645–12656.
- 30 F. Xing, Y. Nakaya, S. Yasumura, K. Shimizu and S. Furukawa, *Nat. Catal.*, 2022, **5**, 55–65.
- 31 T. D. Nguyen, W. Zheng, F. E. Celik and G. Tsilomelekis, *Catal. Sci. Technol.*, 2021, **11**, 5791–5801.
- 32 X. Li, H. Chen, W. Liu, J. Shen, S. Luo and F. Jing, *Mol. Catal.*, 2021, **509**, 111658.
- 33 M. Numan, T. Kim, C. Jo and S. E. Park, *J. CO2 Util.*, 2020, **39**, 101184.
- 34 S. A. Theofanidis, C. Loizidis, E. Heracleous and A. A. Lemonidou, J. Catal., 2020, 388, 52–65.
- 35 M. Numan, E. Eom, A. Li, M. Mazur, H. W. Cha, H. C. Ham, C. Jo and S. E. Park, *ACS Catal.*, 2021, **11**, 9221–9232.
- 36 Y. Gao, X. Wang, J. Liu, C. Huang, K. Zhao, Z. Zhao, X. Wang and F. Li, *Sci. Adv.*, 2020, **6**, eaaz9339.
- 37 S. Chen, L. Zeng, R. Mu, C. Xiong, Z. J. Zhao, C. Zhao, C. Pei, L. Peng, J. Luo, L. S. Fan and J. Gong, J. Am. Chem. Soc., 2019, 141, 18653–18657.
- 38 T. Wang, Y. Gao, Y. Liu, M. Song, J. Liu and Q. Guo, *Fuel*, 2021, **303**, 121286.
- 39 W. Ding, K. Zhao, S. Jiang, Z. Zhao, Y. Cao and F. He, *Appl. Catal. A Gen.*, 2021, **609**, 117910.
- 40 S. Chen, C. Pei, X. Chang, Z. J. Zhao, R. Mu, Y. Xu and J. Gong, *Angew. Chemie Int. Ed.*, 2020, **59**, 22072–22079.
- 41 C. Wang, B. Yang, Q. Gu, Y. Han, M. Tian, Y. Su, X. Pan, Y. Kang, C. Huang, H. Liu, X. Liu, L. Li and X. Wang, *Nat. Commun.*, 2021, **12**, 5447.
- 42 X. Tian, C. Zheng and H. Zhao, *Appl. Catal. B Environ.*, 2021, **303**, 120894.
- 43 L. Ye, X. Duan and K. Xie, *Angew. Chemie*, 2021, **133**, 21914–21918.

- 44 S. Peng, M. Gao, H. Li, M. Yang, M. Ye and Z. Liu, *Angew. Chemie Int. Ed.*, 2020, **59**, 21945–21948.
- 45 N. Wang, Y. Zhi, Y. Wei, W. Zhang, Z. Liu, J. Huang, T. Sun, S. Xu, S. Lin, Y. He, A. Zheng and Z. Liu, *Nat. Commun.*, 2020, **11**, 1079.
- 46 J. Zhou, M. Gao, J. Zhang, W. Liu, T. Zhang, H. Li, Z. Xu, M. Ye and Z. Liu, *Nat. Commun.*, 2021, **12**, 17.
- 47 L. Yang, C. Wang, L. Zhang, W. Dai, Y. Chu, J. Xu, G. Wu, M. Gao, W. Liu, Z. Xu, P. Wang, N. Guan, M. Dyballa, M. Ye, F. Deng, W. Fan and L. Li, *Nat. Commun.*, 2021, **12**, 4661.
- 48 J. Zhong, J. Han, Y. Wei, S. Xu, T. Sun, X. Guo, C. Song and Z. Liu, *J. Energy Chem.*, 2019, **32**, 174–181.
- L. Lin, M. Fan, A. M. Sheveleva, X. Han, Z. Tang, J. H. Carter, I. da Silva, C. M. A. Parlett, F. Tuna,
 E. J. L. McInnes, G. Sastre, S. Rudić, H. Cavaye, S. F. Parker, Y. Cheng, L. L. Daemen, A. J.
 Ramirez-Cuesta, M. P. Attfield, Y. Liu, C. C. Tang, B. Han and S. Yang, *Nat. Commun.*, 2021, 12, 822.
- 50 Y. Xue, J. Li, P. Wang, X. Cui, H. Zheng, Y. Niu, M. Dong, Z. Qin, J. Wang and W. Fan, *Appl. Catal. B Environ.*, 2021, **280**, 119391.
- 51 S. Li, H. Yang, S. Wang, M. Dong, J. Wang and W. Fan, *Microporous Mesoporous Mater.*, 2022, **329**, 111538.
- 52 S. Zhang, M. Yang, J. Shao, H. Yang, K. Zeng, Y. Chen, J. Luo, F. A. Agblevor and H. Chen, *Sci. Total Environ.*, 2018, **628–629**, 350–357.
- 53 K. Wang, P. A. Johnston and R. C. Brown, *Bioresour. Technol.*, 2014, **173**, 124–131.
- 54 J. Shang, G. Fu, Z. Cai, X. Feng, Y. Tuo, X. Zhou, H. Yan, C. Peng, X. Jin, Y. Liu, X. Chen, C. Yang and D. Chen, *Bioresour. Technol.*, 2021, **330**, 124975.
- 55 M. Yang, J. Shao, Z. Yang, H. Yang, X. Wang, Z. Wu and H. Chen, *J. Anal. Appl. Pyrolysis*, 2019, **137**, 259–265.
- 56 W. Huang, F. Gong, M. Fan, Q. Zhai, C. Hong and Q. Li, *Bioresour. Technol.*, 2012, **121**, 248–255.
- 57 J. Xie, P. P. Paalanen, T. W. van Deelen, B. M. Weckhuysen, M. J. Louwerse and K. P. de Jong, *Nat. Commun.*, 2019, **10**, 1–10.
- 58 L. Zhong, F. Yu, Y. An, Y. Zhao, Y. Sun, Z. Li, T. Lin, Y. Lin, X. Qi, Y. Dai, L. Gu, J. Hu, S. Jin, Q. Shen and H. Wang, *Nature*, 2016, **538**, 84–87.
- 59 H. M. Torres Galvis, J. H. Bitter, C. B. Khare, M. Ruitenbeek, A. I. Dugulan and K. P. de Jong, *Science (80-.).*, 2012, **335**, 835–838.
- 60 B. Gu, S. He, D. V Peron, D. R. Strossi Pedrolo, S. Moldovan, M. C. Ribeiro, B. Lobato, P. A. Chernavskii, V. V Ordomsky and A. Y. Khodakov, *J. Catal.*, 2019, **376**, 1–16.
- Y. Xu, X. Li, J. Gao, J. Wang, G. Ma, X. Wen, Y. Yang, Y. Li and M. Ding, *Science (80-.).*, 2021, 371, 610–613.
- 62 H. M. Torres Galvis, A. C. J. Koeken, J. H. Bitter, T. Davidian, M. Ruitenbeek, A. I. Dugulan and K. P. de Jong, *J. Catal.*, 2013, **303**, 22–30.
- 63 D. V. Peron, A. J. Barrios, A. Taschin, I. Dugulan, C. Marini, G. Gorni, S. Moldovan, S. Koneti, R.

Wojcieszak, J. W. Thybaut, M. Virginie and A. Y. Khodakov, *Appl. Catal. B Environ.*, 2021, **292**, 120141.

- 64 C. C. Amoo, M. Li, A. Noreen, Y. Fu, E. Maturura, C. Du, R. Yang, X. Gao, C. Xing and N. Tsubaki, ACS Appl. Nano Mater., 2020, **3**, 8096–8103.
- 65 Z. Yang, Z. Zhang, Y. Liu, X. Ding, J. Zhang, J. Xu and Y. Han, *Appl. Catal. B Environ.*, 2021, **285**, 119815.
- 66 Z. Li, J. Wang, Y. Qu, H. Liu, C. Tang, S. Miao, Z. Feng, H. An and C. Li, *ACS Catal.*, 2017, 7, 8544–8548.
- J. Mou, X. Fan, F. Liu, X. Wang, T. Zhao, P. Chen, Z. Li, C. Yang and J. Cao, *Chem. Eng. J.*, 2021, 421, 129978.
- 68 J. Gao, C. Jia and B. Liu, *Catal. Sci. Technol.*, 2017, **7**, 5602–5607.
- 69 X. Liu, M. Wang, H. Yin, J. Hu, K. Cheng, J. Kang, Q. Zhang and Y. Wang, *ACS Catal.*, 2020, **10**, 8303–8314.
- 70 M. Ghasemi, M. Mohammadi and M. Sedighi, *Microporous Mesoporous Mater.*, 2020, **297**, 110029.
- 71 X. Liu, W. Zhou, Y. Yang, K. Cheng, J. Kang, L. Zhang, G. Zhang, X. Min, Q. Zhang and Y. Wang, *Chem. Sci.*, 2018, **9**, 4708–4718.