Electronic Supplementary Information (ESI) of "Nanoscale chemical characterization of biomolecules using tipenhanced Raman spectroscopy"

1. TERS characterization of biomolecules

Nanoscale lateral spatial optical resolution (SOR) down to 1 nm (and even below) can be obtained using tip-enhanced Raman spectroscopy (TERS). While intensities of TERS marker bands can fluctuate depending on experimental conditions, wavenumbers are most often consistent with those observed in surface-enhanced Raman scattering (SERS) experiments. Nucleic acids, proteins and lipids show characteristic bands in TERS spectra (Table S1).

Biomolecule/Biomaterial	SOR	Selected TERS marker bands (spectral regions in cm ⁻¹)	References
	(nm)		
DNA	< 1 nm	Adenine (710-740, 1320-1340, 1460-1500); Guanine (640-680);	1-7
		Cytosine (760-800, 1410-1430); Thymine (740-790); Deoxyribose	
		ring / OPO stretch (790-890).	
RNA	< 1 nm	Adenine (710-740, 1320-1340, 1460-1500); Guanine (640-680);	1, 5,8
		Cytosine (760-800; 1410-1430); Uracil (1250-1300).	
Haemoproteins	< 2 nm	Haem vibrations (Cytochrome c: 748-755, 1372-1378, 1493-1507,	9-14
		1565-1591, 1607-1636; Haemoglobin: 660-680, 749-754, 1124-	
		1128, 1298-1312, 1355-1378, 1545-1553).	
Amyloid aggregates	~ 1 nm	Cys/Met (650-775); Tyr (817-877); Pro (899-905); Phe (997-	1, 15-25
		1056); Amino acid =NH ₂ ⁺ and NH ₃ ⁺ vibrations (1051-1180); Amide	
		III bands (1218-1345); Amide I bands (1624-1700).	
Lipid membranes	< 20 nm	Ester C=O stretch (1720-1753); CH stretch (2800-3000).	20, 23, 26-
			29
Viruses	< 10 nm	Guanine (640-680); Cys/Met (655-690); Adenine (710-740);	30-35
		Cytosine (760-800); Tyr (824-854); Phe (1000-1045); Amino acid	
		=NH ₂ ⁺ and NH ₃ ⁺ vibrations (1051-1168); Amide III bands (1235-	
		1332); Amide I bands (1630-1680).	
Cells	< 10 nm	Cholesterol (690-708); Tyr (825-866); Phe (991-1039); Amide III	28, 36-41
		bands (1200-1338); Amide I bands (1618-1695), Ester C=O stretch	
		(1720-1753).	

Table S1 Best achieved spatial resolution (SOR) and TERS marker bands for different biomolecules and biomaterials

2. TERS sample preparation

The selection of an appropriate TERS substrate depends on several factors: (i) TERS configuration, where transparent substrates such as glass, are a requirement for bottom illumination; (ii) gap-mode TERS requires the use of a noble metal substrate, commonly Au; (iii) physicochemical properties of the chosen biomolecule. The three most commonly used non-metallic substrate materials for TERS are glass, silica, and mica. Their Raman spectra under laser irradiation at 633 nm are plotted in Figure S1. Borosilicate glass slides contribute as a background without narrow Raman bands. Si wafers mainly show an intense band centred at 520 cm⁻¹. As AFM tips are generally made of Si, this band can be used as a marker to estimate the evolution of the metal coating of TERS tips during an experiment with an AFM-based TERS system. The spectral signature of mica slides present Raman bands centred at 262, 410 and 701 cm⁻¹. As very few Raman bands of biomolecules are positioned below 550 cm⁻¹ (and even below 710 cm⁻¹), the substrate contribution does not hinder Raman features of interest to characterize biomolecules. Furthermore, when the substrate is coated with Au or covered by Au nanoplates to work in "gap-mode" configuration, the substrate contribution can be significantly reduced due to the screening effect of gold. If a surface treatment is applied however (silanization, functionalization with thiols, etc), the molecules grafted on the substrate can show a specific TERS signature that is superimposed onto the fingerprint of the biomolecule deposited on top (Table S2). Special care must be taken for spectral interpretations in this case.

The sample preparation method strongly depends on the biomolecule to deposit. Substrate treatments may be necessary and special care during the washing and drying steps is crucial. Table S2 describes different procedures to prepare samples convenient for TERS experiments. For simplicity, this table does not detail the preparation of liquid solutions and suspensions containing biomolecules. The reader can refer to bibliographical references for further information on this point.

Biomolecule/	Sample preparation	References
Biomaterial		
DNA	Mg^{2+} mediated DNA deposition on mica: Drop-casting of a 10 μ L aliquot of DNA solution	2
	(1–3 $\mu g/mL$ double-stranded DNA, 10 mM HEPES, 50 mM NaCl, 5 mM MgCl_2) on freshly	
	cleaved mica ($^{\sim}$ 0.1 mm thickness) \rightarrow 5 min incubation \rightarrow Surface washing with deionised	
	water (10 times) \rightarrow Drying with N ₂ flow.	
	$\underline{Mg^{2*}}$ mediated DNA deposition on mica: Drop-casting of a 20 μL aliquot of DNA solution	3
	(0.5 ng/µL double-stranded DNA, 2 mM MgCl_2) on freshly cleaved mica \rightarrow 10 min	
	incubation \rightarrow Surface washing with 1 mL of ultrapure water (2 times) \rightarrow Drying with N_2	
	flow.	
	DNA deposition on silanized mica: Deposition of a 15 μL aliquot of APTES solution (0.1 %	3
	(v/v) in ultrapure water) on freshly cleaved mica $ ightarrow$ 1 min incubation $ ightarrow$ Substrate washing	
	with 1 mL of ultrapure water (once) \rightarrow Drying with N_2 flow \rightarrow Drop-casting of a 20 μL	
	aliquot of dilute 0.5 ng/ $\!\mu\text{L}$ double-stranded DNA solution onto the silanized mica	
	substrate $ ightarrow$ 3 min incubation $ ightarrow$ Surface washing with 1 mL of ultrapure water (2 times)	
	\rightarrow Drying with N ₂ flow.	
	DNA combing on glass: Cleaning of glass coverslip by ultrasonication (5 min in acetone, 5	4
	min in isopropanol, 5 min in ultrapure water) $ ightarrow$ Drying with compressed air flow $ ightarrow$ UV-	
	ozone treatment (30 min) \rightarrow Immersion of the glass coverslip in 50 μL OTS diluted in 25	
	mL hexane (12 h under $\rm N_2$ atmosphere) \rightarrow Ultrasonication in hexane and chloroform (3	
	times, 2 min) \rightarrow Substrate rinsing with ultrapure water \rightarrow Drying with N_2 flow \rightarrow Drop-	
	casting of a 8 μL aliquot of DNA solution (18.2 $\mu\text{g}/\text{mL}$ double-stranded DNA in acetate	
	buffer solution) onto the treated glass coverslip $ ightarrow$ 10 min incubation $ ightarrow$ Sample tilting for	
	combing.	

Table S2 Sample preparation for different biomolecules and biomaterials

	Mg^{2+} mediated DNA deposition on mica: Drop-casting of 1 μ L aliquot of DNA solution (10-	5	
	100 ng/ μ L single-stranded DNA, 20 mM HEPES, 20 mM MgCl ₂) onto mica \rightarrow Incubation		
	under Ar atmosphere $ ightarrow$ Surface rinsing in distilled water (2 times) $ ightarrow$ Drying with Ar flow.		
	DNA deposition on Au nanoplates: Coating glass coverslip with 10 mM APTMS \rightarrow 2 h	6	
	incubation \rightarrow Substrate rinsing in ultrapure water \rightarrow Drying with N ₂ flow \rightarrow Deposition of		
	a few drops of Au nanoplates solution onto the substrate $ ightarrow$ 30 min incubation $ ightarrow$		
	Substrate rinsing with ultrapure water $ ightarrow$ Deposition of a 10-15 μ L aliquot of DNA solution		
	(prepared from 5 μg double-stranded DNA) $ ightarrow$ Surface washing with ultrapure water (a		
	few times).		
	DNA deposition on Au substrate: Au substrate cleaning with compressed air \rightarrow Drop-	7	
	casting of 0.4 nM – 40 pM single-stranded DNA solution in 1X TAE-Mg ²⁺ buffer (40 mM		
	Tris-HCl pH 7.5, 20 mM acetic acid, 2mM EDTA, 12.5 mM magnesium acetate) onto the		
	Au substrate \rightarrow 30 s incubation \rightarrow Removal of excess water in N ₂ atmosphere \rightarrow Surface		
	washing with 50 μ L of ultrapure water (once) \rightarrow Drying at room temperature.		
RNA	RNA deposition on Au nanoplates: Centrifugation of Au nanoplates on a clean glass	5	
	coverslip (3000 rpm, 10 min) \rightarrow Substrate washing in 70 °C water \rightarrow Drying under vacuum		
	\rightarrow Drop-casting of a 1 μ L aliquot of dilute RNA solution \rightarrow Incubation under Ar		
	atmosphere \rightarrow Surface rinsing in distilled water (2 times) \rightarrow Drying with Ar flow.		
	RNA deposition on Au substrate: Au substrate cleaning with compressed air \rightarrow Drop-	8	
	casting of a 50 μ L aliguot of heat-shocked 6.88 nM RNA solution in 1X TAE-Mg ²⁺ buffer		
	(40 mM Tris-HCl pH 7.5. 20 mM acetic acid. 2 mM EDTA. 12.5 mM magnesium acetate)		
	onto the Au substrate \rightarrow 30 s incubation \rightarrow Removal of excess water in N ₂ atmosphere \rightarrow		
	Surface washing with ultrapure water (once) \rightarrow Drying at room temperature.		
Haemoproteins	Deposition of cytochrome c on glass: Cleaning of a glass coverslip by ultrasonication (5	9	
	min in acetone. 5 min in absolute ethanol. 5 min in ultrapure water) \rightarrow Drving in N ₂ \rightarrow	-	
	Sputtering of 10 nm Au on the clean glass coverslip \rightarrow Incubation in the dark for 18 h in 2		
	mM ethanolic solution of MUA \rightarrow Copious substrate rinsing with absolute ethanol \rightarrow		
	Drop-casting of a 3 µL alignot of cytochrome c solution (0.1 mM in ultrapure water) \rightarrow		
	Drving in air at room temperature.		
	Deposition of cytochrome c on glass: Spin-coating of several uL of a commercial	10	
	cytochrome c aqueous solution \rightarrow Drying in air at room temperature	-	
	Deposition of haemoglobin on mica: Drop-casting of a 5 µL aliquot of haemoglobin	12	
	solution (1 pM in ultrapure water) onto ultra clean mica substrate (10 mm diameter, 0.21		
	mm thickness) \rightarrow Drving under vacuum.		
	Deposition of hybrid protein nanofibers on glass: Drop-casting of a 10 ul aliquot of	13	
	nanofiber solution (produced from 100 µg/mL human serum albumin and human		
	haemoglobin solutions in ultrapure water) onto cleaned glass coverslip.		
	Deposition of cytochrome c and deoxy-myoglobin on glass: Deposition of 0.3 mM	14	
	$\frac{1}{2}$ cvtochrome c solution and 0.1 mM deoxy-myoglobin solution onto a glass coverslip (~10		
	uL/cm ²).		
Amyloid	Deposition of AB1-42 fibrils on Au substrate: Cleaning of a Si wafer in acetone, ethanol and	15. 17	
aggregates	deionized water \rightarrow Drying with Ar flow \rightarrow 100 nm Au coating at a deposition rate of	, - .	
	0.03-0.04 nm/s onto the cleaned Si wafer \rightarrow Flame annealing of the resulting Au substrate		
	using a Bunsen burner (4 min) \rightarrow Gluing of the flame-annealed Au surface to clean Si		
	wafer \rightarrow Drving of the glue overnight in air \rightarrow Storage of the resulting Au substrate		
	template under vacuum until use \rightarrow Mechanical cleavage using a razor blade to expose a		
	contamination-free and flat Au surface \rightarrow Deposition of a 30-40 µL aligned of AB _{1 42} fibril		
	solution (prepared from 100 μ M solution of AB _{1.42} in DMSO. 10 mM HCl in ultrapure water		
	pH 2.0, phosphate buffer pH 7.4) \rightarrow 40-60 min incubation at ambient temperature \rightarrow		
	Surface rinsing with 0.5 mL of ultrapure water.		
	Deposition of insulin fibrils on glass: Drop-casting of a 10 μL aliquot of dilute insulin fibril	16, 18, 19	
	solution (prepared in HCl pH 1.5) on pre-cleaned glass coverslip \rightarrow 2-3 min incubation \rightarrow		
	Suction of the excess suspension using a pipette \rightarrow Surface washing with pH 1.5 HCl (2		
	times) \rightarrow Drying with Ar flow.		

	Deposition of hIAPP fibrils on glass: Deposition of a drop of hIAPP fibril solution (prepared	20	
	from 1 mg/mL hIAPP solution in ultrapure water dilute in 50mM phosphate buffer pH 2.0		
	or in 5mM phosphate buffer pH 7.8) onto glass coversitin \rightarrow 10 min incubation \rightarrow Surface		
	washing with ultranure water \rightarrow Drving with Ar flow		
	Deposition of insulin fibrils on Au paperlates: Immersion of a glass several in sourced by	21	
	<u>Deposition of insulin fibrils of Au nanoplates</u> . Infinersion of a glass coversite covered by	21	
	Au nanoplates in dilute insulin fibril solution (prepared in HCI pH 1.5) \rightarrow 20 h incubation		
	\rightarrow Surface washing with ultrapure water \rightarrow Drying with Ar flow.		
	Deposition of amyloid aggregates (A β_{1-42} and L34T fibrils, oG37C oligomers) on Au	22, 24	
	substrate: Cleaning of a glass coverslip by ultrasonication (5 min in acetone, 5 min in		
	absolute ethanol, 5 min in ultrapure water) \rightarrow Drying in $N_2 \rightarrow$ Sputtering of 10 nm Au		
	onto the clean glass coverslip $ ightarrow$ Spin-coating of a 3 μ L aliquot of concentrated amyloid		
	fibril solution onto the Au substrate.		
	Deposition of Tau(K18) fibrils on Au substrate: Cleaning of a glass coverslip by	23	
	ultrasonication (5 min in acetone, 5 min in absolute ethanol, 5 min in ultrapure water) \rightarrow		
	Drying in $N_2 \rightarrow Sputtering of 10 nm Au on the clean glass coversitin \rightarrow Dron-casting of a 3$		
	1 aligned of fibril solution onto the Augustrate \rightarrow Spreading of the solution and removal		
	μ and μ is preased on the solution onto the Au substrate γ spreading of the solution and removal		
	of the excess solution with v_2 how \rightarrow Drying under high vacuum (2 h).	25	
	Deposition of insulin fibrils on Au nanoplates: Deposition of Au nanoplates onto a clean	25	
	glass coverslip by centrifugation (5000 rpm, 15 min) \rightarrow Substrate washing in distilled		
	water \rightarrow Drying under vacuum \rightarrow Drop-casting of an aliquot (20-100 µL) of dilute insulin		
	fibril solution (prepared in HCl pH 2.4) on the glass coverslip covered by Au nanoplates $ ightarrow$		
	2-3 min incubation \rightarrow Removal of excess solution \rightarrow Surface washing with ultrapure water		
	\rightarrow Drying with Ar flow.		
Lipid	Deposition of a lipid monolayer on glass: Deposition of the lipid monolayer using a	20	
membranes	Langmuir-Blodgett trough with ultrapure water as the liquid phase (11 μ L of 1 mM		
	chloroform solution of DPPG lipid)		
	Deposition of a linid monolayer on Au substrate. Cleaning of a Si wafer in acetone	26	
	ethanol and deionized water \rightarrow Drying in N ₂ \rightarrow 100 nm Au coating at a denosition rate of	20	
	$0.02, 0.04$ nm/c onto the cleaned Giugefor \rightarrow Eleme appealing of the resulting Au substrate		
	U.05-0.04 min/s onto the cleaned Si water -> Flame annealing of the resulting Au substrate		
	using a Bunsen burner (4 min) \rightarrow Giung of the name-annealed Au surface to clean Si		
	water \rightarrow Drying of the glue overnight in air \rightarrow Storage of the resulting Au substrate		
	template under vacuum until use \rightarrow Mechanical cleavage using a razor blade to expose a		
	contamination-free and flat Au surface \rightarrow Air-plasma treatment (1 min) \rightarrow Direct		
	immersion in ultrapure water $ ightarrow$ Preparation of the lipid monolayer using a Langmuir-		
	Blodgett trough with the ultrapure water as liquid phase (25 μL of 1 mg/mL DOPC and		
	DPPC solution in chloroform, 10 min evaporation, compression rate 2 mm/min) \rightarrow		
	Monolayer transfer onto the Au substrate via vertical Langmuir-Blodgett technique at 2		
	mm/min at room temperature.		
	Deposition of a lipid monolayer on Au substrate: Preparation of Au(111) substrate using	27	
	the Clavilier method \rightarrow Annealing in a hydrogen-oxygen flame of the Au(111) substrate		
	\rightarrow UV-ozone cleaning for 10 min \rightarrow Transfer of the Au(111) substrate to a clean Langmuir-		
	Blodgett trough with the Au surface immersed in the water used as subphase \rightarrow		
	Prenaration of the linid monolayer (30 u) of 1 mg/ml DPPC solution in chloroform		
	α_{max} avaparation of the lipid monolayer (50 μ E of 1 m ₆ /m _E bire solution in emotion m,		
	evaporation so min, compression rate similymin) \rightarrow monorayer transfer onto the		
	Au(111) substrate via vertical Langmun-Biougett technique at 2 mm/min transfer speed		
	and 20 mN/m surrace pressure at room temperature.		
	Deposition of a lipid bilayer on mica: Cleavage of the mica substrate with adhesive tape	28, 29	
	ightarrow Immediate immersion of the freshly cleaved mica substrate in the lipid containing		
	buffer solution (4:1 POPC/DOPS mixture) \rightarrow 10 min incubation \rightarrow Removal of excess lipid		
	and buffer solution by surface washing with doubly distilled water (4 times) $ ightarrow$ Drying		
	with Ar flow.		
Viruses	Deposition of virus particles on glass: Cleaning with a mixture of concentrated nitric acid	30	
	and hydrogen peroxide of a glass coverslip (storage in Ar if necessary) \rightarrow Drop-casting of		
	a 10 μ L aliquot of virus solutions diluted in sterile filtered, deionized water onto the		

	cleaned glass coverslip \rightarrow Drying under ambient conditions \rightarrow Surface washing with 100	
	μL sterile filtered, deionized water \rightarrow Drying under ambient conditions.	
	Deposition of virus particles on mica: Drop-casting of a 2 µL aliquot of dilute virus	31
	solutions onto freshly cleaved mica or clean glass coverslip \rightarrow Drying under ambient	
	conditions.	
	Deposition of virus particles on Au nanoplates: Drop-casting of a 10 μL aliquot of virus	34
	solution onto 70 nm Au-coated mica or onto 70 nm-thick Au microplates \rightarrow 5 min	
	incubation \rightarrow Removal of the excess solution using a pipette \rightarrow Surface rinsing with	
	deionized water (4-5 times) \rightarrow Drying at room temperature.	
Cells	Deposition of human cells on glass: Fixation on a clean glass coverslip performed by	36, 41
	removing the culturing medium, washing the sample with phosphate-buffered saline	
	(PBS) and treating cells with 2% formaldehyde and PBS.	
	Deposition of spores on glass: Drop-casting of a 50 μ L aliquot of a 10 ⁵ spores/mL water	37
	suspension of mature wild-type spores on a clean glass coverslip $ ightarrow$ Drying under ambient	
	conditions.	
	Deposition of bacteria on glass: Deposition of a droplet of dilute bacterial water	38, 39
	suspension on a clean glass coverslip $ ightarrow$ Drying under ambient conditions.	
	<u>Deposition of bacteria on glass</u> : Drop-casting of a 10 μ L aliquot of a 1 μ M bacterial	40
	suspension in buffer solution on a clean glass coverslip $ ightarrow$ Drying with Ar flow.	

Fig. S1 Raman spectra of a Si wafer, a mica slide, and a borosilicate glass coverslip. *Experimental* parameters: excitation wavelength $\lambda = 633$ nm, laser power P = 7.5 mW, short-working-distance 50X objective (NA = 0.75), acquisition times 1-10 s.

3. References

- 1 S. Bonhommeau and S. Lecomte, *ChemPhysChem*, 2018, **19**, 8-18.
- E. Lipiec, R. Sekine, J. Bielecki, W. M. Kwiatek and B. R. Wood, *Angew. Chem. Int. Ed.*, 2014, 53, 169–172; *Angew. Chem.*, 2014, 126, 173–176.
- 3 E. Lipiec, A. Japaridze, J. Szczerbinski, G. Dietler and R. Zenobi, *Small*, 2016, **12**, 4821–4829.
- 4 S. Najjar, D. Talaga, L. Schué, Y. Coffinier, S. Szunerits, R. Boukherroub, L. Servant, V. Rodriguez and S. Bonhommeau, *J. Phys. Chem. C*, 2014, **118**,1174–1181.
- R. Treffer, X. Lin, E. Bailo, T. Deckert-Gaudig and V. Deckert, *Beilstein J. Nanotechnol.*, 2011, 2, 628–637.
- 6 F. Pashaee, M. Tabatabaei, F. A. Caetano, S. S. G. Ferguson and F. Lagugné-Labarthet, *Analyst*, 2016, **141**, 3251–3258.
- 7 Z. He, Z. Han, M. Kizer, R. J. Linhardt, X. Wang, A. M. Sinyukov, J. Wang, V. Deckert, A. V. Sokolov, J. Hu and M. O. Scully, *J. Am. Chem. Soc.*, 2019, **141**, 753-757.
- Z. He, W. Qiu, M. E. Kizer, J. Wang, W. Chen, A. V. Sokolov, X. Wang, J. Hu and M.O. Scully, *ACS Photonics*, 2021, **8**, 424-430.
- 9 D. Talaga, A. Bremner, T. Buffeteau, R. A. L. Vallée, S. Lecomte and S. Bonhommeau, *J. Phys. Chem. Lett.*, 2020, **11**, 3835-3840.
- B. S. Yeo, S. M\u00e4dler, T. Schmid, W. Zhang and R. Zenobi, J. Phys. Chem. C, 2008, 112, 4867– 4873.
- 11 R. Böhme, M. Mkandawire, U. Krause-Buchholz, P. Rösch, G. Rödel, J. Popp and V. Deckert, *Chem. Commun.*, 2011, **47**, 11453–11455.
- 12 B. R. Wood, M. Asghari-Khiavi, E. Bailo, D. McNaughton and V. Deckert, *Nano Lett.*, 2012, **12**, 1555–1560.
- 13 C. Helbing, T. Deckert-Gaudig, I. Firkowska-Boden, G. Wei, V. Deckert and K.D. Jandt, ACS Nano, 2018, **12**, 1211-1219.
- 14 I. Tanabe, M. Egashira, T. Suzuki, T. Goto and Y. Ozaki, *J. Phys. Chem. C*, 2014, **118**, 10329–10334.
- 15 E. Lipiec, J. Kaderli, J. Kobierski, R. Riek, K. Skirlińska-Nosek, K. Sofińska, M. Szymoński and R. Zenobi, *Angew. Chem. Int. Ed.* 2021, **60**, 4545-4550; *Angew. Chem.*, 2021, **133**, 4595-4600.
- 16 T. Deckert-Gaudig, D. Kurouski, M. A. B. Hedegaard, P. Singh, I. K. Lednev and V. Deckert, *Sci. Rep.*, 2016, **6**, 33575.
- E. Lipiec, D. Perez-Guaita, J. Kaderli, B. R. Wood and R. Zenobi, *Angew. Chem. Int. Ed.*, 2018, 57, 8519-8524; *Angew. Chem.*, 2018, 130, 8655-8660.
- 18 D. Kurouski, T. Deckert-Gaudig, V. Deckert and I. K. Lednev, *J. Am. Chem. Soc.*, 2012, **134**, 13323–13329.
- 19 D. Kurouski, T. Deckert-Gaudig, V. Deckert and I. K. Lednev, *Biophys. J.*, 2014, **106**, 263–271.
- 20 C. C. vandenAkker, T. Deckert-Gaudig, M. Schleeger, K. P. Velikov, V. Deckert, M. Bonn and G. H. Koenderink, *Small*, 2015, **11**, 4131–4139.
- 21 T. Deckert-Gaudig, E. Kämmer and V. Deckert, J. Biophotonics, 2012, 5, 215–219
- S. Bonhommeau, D. Talaga, J. Hunel, C. Cullin and S. Lecomte, *Angew. Chem. Int. Ed.*, 2017, 56, 1771–1774; *Angew. Chem.*, 2017, 129, 1797–1800.
- 23 D. Talaga, W. Smeralda, L. Lescos, J. Hunel, N. Lepejova-Caudy, C. Cullin, S. Bonhommeau and S. Lecomte, *Angew. Chem. Int. Ed.*, 2018, **57**, 15738-15742; *Angew. Chem.*, 2018, **130**, 15964-15968.
- 24 B. Zikic, A. Bremner, D. Talaga, S. Lecomte and S. Bonhommeau, *Chem. Phys. Lett.*, 2021, **768**, 138400.
- 25 V. Sereda and I. K. Lednev, *Appl. Spectrosc.*, 2017, **71**, 118–128.
- 26 L. Opilik, T. Bauer, T. Schmid, J. Stadler and R. Zenobi, *Phys. Chem. Chem. Phys.*, 2011, **13**, 9978-9981.
- 27 Y. Pandey, N. Kumar, G. Goubert and R. Zenobi, Angew. Chem. Int. Ed., 2021, 60, 19041-

19046; Angew. Chem., 2021, **133**, 19189-19194.

- 28 R. Böhme, M. Richter, D. Cialla, P. Rösch, V. Deckert and J. Popp, *J. Raman Spectrosc.*, 2009, **40**, 1452-1457.
- 29 R. Böhme, D. Cialla, M. Richter, P. Rösch, J. Popp and V. Deckert, *J. Biophoton.*, 2010, **3**, 455-461.
- 30 K. Olschewski, E. Kämmer, S. Stöckel, T. Bocklitz, T. Deckert-Gaudig, R. Zell, D. Cialla-May, K. Weber, V. Deckert and J. Popp, *Nanoscale*, 2015, **7**, 4545–4552.
- 31 P. Hermann, A. Hermelink, V. Lausch, G. Holland, L. Möller, N. Bannert and D. Naumann, *Analyst*, 2011, **136**, 1148–1152.
- 32 A. Hermelink, D. Naumann, J. Piesker, P. Lasch, M. Laue and P. Hermann, *Analyst*, 2017, **142**, 1342–1349.
- 33 V. Deckert, T. Deckert-Gaudig, D. Cialla-May, J. Popp, R. Zell, S. Deinhard-Emmer, A. V. Sokolov, Z. Yi and M. O. Scully, *P. Natl Acad. Sci. USA*, 2020, **10**, 27820-27824.
- 34 T. Dou, Z. Li, J. Zhang, A. Evilevitch and D. Kurouski, *Anal. Chem.*, 2020, **92**, 11297-11304.
- 35 D. Cialla, T. Deckert-Gaudig, C. Budich, M. Laue, R. Möller, D. Naumann, V. Deckert and J. Popp, *J. Raman Spectrosc.*, 2009, **40**, 240–243.
- 36 M. Richter, M. Hedegaard, T. Deckert-Gaudig, P. Lampen and V. Deckert, *Small*, 2011, **7**, 209–214.
- 37 G. Rusciano, G. Zito, R. Isticato, T. Sirec, E. Ricca, E. Bailo and A. Sasso, *ACS Nano*, 2014, **8**, 12300–12309.
- 38 U. Neugebauer, P. Rösch, M. Schmitt, J. Popp, C. Julien, A. Rasmussen, C. Budich and V. Deckert, *ChemPhysChem*, 2006, **7**, 1428-1430.
- 39 U. Neugebauer, U. Schmid, K. Baumann, W. Ziebuhr, S. Kozitskaya, V. Deckert, M. Schmitt and J. Popp, *ChemPhysChem*, 2007, **8**, 124-137.
- 40 T. Deckert-Gaudig, R. Böhme, E. Freier, A. Sebesta, T. Merkendorf, J. Popp, K. Gerwert and V. Deckert, *J. Biophotonics*, 2012, **5**, 582–591.
- 41 M. Watkins-Mariani, T. Deckert-Gaudig and V. Deckert, *Anal. Bioanal. Chem.*, 2014, **406**, 6993–7002.