Supporting Information for

High-Performance Five-Ring-Fused Organic Semiconductors for Field-

Effect Transistors

Hui Jiang,^{*}^a Shengli Zhu,^{*}^a Zhenduo Cui,^a Zhaoyang Li,^a Yanqin Liang,^a Jiamin Zhu,^a Peng Hu,^b Haoli Zhang,^{*c, d} Wenping Hu,^{*d, e}

- ^{a.} School of Materials Science and Engineering, Tianjin University, 300072 China E-mail: <u>h.jiang@tju.edu.cn</u>; <u>slzhu@tju.edu.cn</u>
- b. School of Physics, Northwest University, Xi'an 710069, China
- ^{c.} State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

E-mail: <u>haoli.zhang@lzu.edu.cn</u>

- ^{d.} Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China E-mail: huwp@tju.edu.cn
- e. Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China

Table of Contents

Table S1. The source data of Fig. 1 in the main text4
Table S2. The performance statistics of five-ring-fused organic molecules listed in Fig. 3 of the main text6
Table S3. The performance statistics of five-ring-fused organic molecules listed in Fig. 5 of the main text8
Table S4. The performance statistics of five-ring-fused organic molecules listed in Fig. 6 of the main text9
Table S5. The performance statistics of five-ring-fused organic molecules listed in Fig. 8 of the main text.11
Table S6. The performance statistics of five-ring-fused organic molecules listed in Fig. 10 of the main text.
Table S7. The performance statistics of five-ring-fused organic molecules listed in Fig. 11 of the main text.
Table S8. The performance statistics of five-ring-fused organic molecules listed in Fig. 13 of the main text. 18
Table S9. The performance statistics of five-ring-fused organic molecules listed in Fig. 15 of the main text. 19
Table S10. The performance statistics of five-ring-fused organic molecules listed in Fig. 16 of the main text.
Table S11. The performance statistics of five-ring-fused organic molecules listed in Fig. 17 of the main text.
Table S12. The performance statistics of five-ring-fused organic molecules listed in Fig. 19 of the main text.
Table S13. The performance statistics of five-ring-fused organic molecules listed in Fig. 20 of the main text.
Table S14. The performance statistics of five-ring-fused organic molecules listed in Fig. 21 of the main text.
Table S15. The performance statistics of five-ring-fused organic molecules listed in Fig. 23 of the main text.
Table S16. The performance statistics of five-ring-fused organic molecules listed in Fig. 24 of the main text.
Table S17. The performance statistics of five-ring-fused organic molecules listed in Fig. 25 of the main text.
Table S18. The performance statistics of five-ring-fused organic molecules listed in Fig. 26 of the main text.
Table S19. The performance statistics of five-ring-fused organic molecules listed in Fig. 27 of the main text.
Table S20. The performance statistics of five-ring-fused organic molecules listed in Fig. 28 of the main text.
Table S21. The performance statistics of five-ring-fused organic molecules listed in Fig. 29 of the main text.
Table S22. The performance statistics of five-ring-fused organic molecules listed in Fig. 31 of the main text.

Table S23. The performance statistics of five-ring-fused organic molecules listed in Fig. 32 of the main text.
Table S24. The performance statistics of five-ring-fused organic molecules listed in Fig. 34 of the main text.
Table S25. The performance statistics of five-ring-fused organic molecules listed in Fig. 35 of the main text.
Table S26. The performance statistics of five-ring-fused organic molecules listed in Fig. 36 of the main text.
Table S27. The performance statistics of five-ring-fused organic molecules listed in Fig. 37 of the main text.
Table S28. The performance statistics of five-ring-fused organic molecules listed in Fig. 38 of the main text.
Table S29. The performance statistics of five-ring-fused organic molecules listed in Fig. 39 of the main text.
Table S30. The performance statistics of five-ring-fused organic molecules listed in Fig. 40 of the main text.
Table S31. The performance statistics of five-ring-fused organic molecules listed in Fig. 41 of the main text.
Table S32. The performance statistics of five-ring-fused organic molecules listed in Fig. 42 of the main text.
Table S33. The performance statistics of five-ring-fused organic molecules listed in Fig. 43 of the main text.
Table S34. The performance statistics of five-ring-fused organic molecules listed in Fig. 44 of the main text.
Reference

Table S1. The source data of Fig. 1 in the main text.

Fig. 1a

Name	Method	Morphology	Туре	Mobility	On/off	Refe
				$(cm^2 V^{-1} s^{-1})$		rence
Anthracene	Physical Vapor Deposition	Single Crystal	р	0.02	-	1
Tetracene	Physical Vapor Deposition	Single Crystal	p	0.15	2 x 10 ⁷	2
	Physical Vapor Deposition	Single Crystal	р	0.4	-	3
	Physical Vapor Deposition	Single Crystal	р	1	-	4
	Physical Vapor Deposition	Single Crystal	р	1.3	-	5
	Physical Vapor Deposition	Single Crystal	р	0.2	2.7 x 10 ⁴	6
	Physical Vapor Deposition	Single Crystal	р	0.1	109	7
	Physical Vapor Deposition	Single Crystal	р	0.5	5 x 10 ⁵	8
	Physical Vapor Deposition	Single Crystal	р	0.03	-	9
	Physical Vapor Deposition	Single Crystal	р	5 x 10 ⁻⁴	-	10
	Physical Vapor Deposition	Single Crystal	р	6 x 10 ⁻⁵	-	11
	Physical Vapor Deposition	Single Crystal	р	2.4	10 ⁵ -10 ⁸	12
	Physical Vapor Deposition	Single Crystal	Ambi	0.16 (p)	-	13
			polar	0.037 (n)		
	Physical Vapor Deposition	Single Crystal	р	1.6	-	14
	Physical Vapor Deposition	Single Crystal	р	0.016	-	15
	Physical Vapor Deposition	Single Crystal	р	0.56	105	16
	Physical Vapor Deposition	Single Crystal	р	6.38 x 10 ⁻⁴	-	17
	Vapor-Liquid-Solid	Single Crystal	р	0.3	-	18
Pentacene	Physical Vapor Deposition	Single Crystal	р	0.3	5 x 10 ⁶	19
	Physical Vapor Deposition	Single Crystal	р	0.3	-	2
	Physical Vapor Deposition	Single Crystal	р	0.5	-	20
	Physical Vapor Deposition	Single Crystal	р	1.4	-	5
	Physical Vapor Deposition	Single Crystal	р	35	-	21
	Physical Vapor Deposition	Single Crystal	р	0.4	-	22
	Physical Vapor Deposition	Single Crystal	р	0.2	-	23
	Physical Vapor Deposition	Single Crystal	р	0.2	-	6
	Vacuum Deposition	Single Grain	р	2	-	24
	Physical Vapor Deposition	Single Crystal	р	2.2	-	25
	Physical Vapor Deposition	Single Crystal	р	0.3	105	26
	Physical Vapor Deposition	Single Crystal	р	2.3	-	27
	Physical Vapor Deposition	Single Crystal	р	1.9	10 ³ -10 ⁴	12
	Physical Vapor Deposition	Single Crystal	р	0.35	-	9
	Vacuum Deposition	Single Grain	р	1.1	10 ⁵	28
	Physical Vapor Deposition	Single Crystal	р	40	-	29
	Physical Vapor Deposition	Single Crystal	p	0.4	106	30
	Physical Vapor Deposition	Single Crystal	Ambi	0.29 (p)	-	31
			polar	0.35 (n)		
	Drop Cast	Single Crystal	p	0.6	-	32

	Vacuum Deposition	Single Grain	р	0.39	106	33
	Physical Vapor Deposition	Single Crystal	р	0.7	-	34
	Physical Vapor Deposition	Single Crystal	р	2	-	35
	Flux-Mediated Vacuum	Single Crystal	р	5	104	36
	Deposition		_			
Hexacene	Physical Vapor Deposition	Single Crystal	р	4.28 (max)	10 ⁵ (max)	37
			_	0.88 (ave)	104-106	
					(ave)	

Fig. 1b

Name	Method	Morphology	Туре	Mobility	On/off	Refe
				$(cm^2 V^{-1} s^{-1})$		rence
phenanthre	Bridgeman	Single Crystal	р	0.21	-	38
ne	Bridgeman	Single Crystal	р	0.15	-	38
	Bridgeman	Single Crystal	р	0.63	-	38
	Bridgeman	Single Crystal	р	0.52	-	38
	-	Single Crystal	р	0.26	-	39
	-	Single Crystal	р	2.86	-	39
Chrysene	-	Single Crystal	р	0.23	-	39
	-	Single Crystal	р	2.3	-	39
Picene	Physical Vapor Deposition	Single Crystal	р	1.3	~104	40
	Physical Vapor Deposition	Single Crystal	р	9	-	41
	-	Single Crystal	р	0.64	-	39
	-	Single Crystal	р	4.74	-	39
[6]phenace	-	Single Crystal	р	0.56	-	42
ne						

Number	Method	Morphology	Туре	Mobility	On/off	Reference
				$(cm^2 V^{-1} s^{-1})$		42
001	-	-	-	-	-	43
002	Vacuum Deposition	Thin Films	р	1.2 x 10 ⁻²	103	44
003	-	-	-	-	-	43
004	-	-	p ^a	1.1×10^{-4}	105	46
005	Solvent Exchange	Single Crystal	Ambipolar	7×10^{-4} (p);		47
00(Dever Cant	Starle Carrietele		3×10^{-5} (n)	> 103	48
006	Drop Cast	Single Crystals	р	1.44	>10 ³	10
	Drag Cast	(a Phase)		0.29	> 1.03	48
	Drop Cast	Single Crystals	p	0.28	>105	-10
	Spin Costina	(p Phase)		0.10.0.16	107 108	49
007	Veguum Denosition	Thin Films	<u> </u>	0.10-0.10	107-108	50
	Vacuum Deposition	Thin Films	<u> </u>	0.1	10^{3} (vac)	50
	vacuum Deposition		11	3×10^{-3} (vac)	10^{2} (vac) 10^{1} (oir)	
	Vacuum Deposition	Thin Films	n	5×10^{-3} (uno)	$10^{-}(an)$	50
	vacuum Deposition		11	7×10^{-3} (vac)	$10^{4} (vac)$	
	Spin Coating	Thin Films	n	7×10 (all)	$10^{(all)}$	51
	Vacuum Deposition	Thin Films	n	0.10	10	51
008	Solution-Shearing	Thin Films	Ambipolar	0.10	10^{10}	52
000	Solution-Shearing		Amorpolai	(n)	$1.1 \times 10^{-} (p)$ 1.0 x 10 ⁴ (n)	
				0 13+0 012	1.0 X 10 (II)	
				(n)		
009	Spin Coating	Thin Films	Ambipolar	$1 \times 10^{-4} (p)$	10^{5} (p)	51
005	spin counig			$1 \times 10^{-3} (n)$	$10^{4} (n)$	
010	-	_	_	-	-	51
011	Spin Coating	Thin Films	n	1 x 10 ⁻³	104	51
012	Vacuum Deposition	Thin Films	-	_	-	53
013	Vacuum Deposition	Thin Films	n	0.17	2 x 10 ⁷	53
	-	-	n	6.6 x 10 ⁻²	2 x 10 ⁴	53
	OMBD	Thin Films	n	0.14	1.2 x 10 ⁵	54
014	Vacuum Deposition	Thin Films	n	1.8 x 10 ⁻²	2 x 10 ⁷	53
015	Vacuum Deposition	Thin Films	n	9.9 x 10 ⁻³	4 x 10 ⁶	53
016	Vacuum Deposition	Thin Films	-	<10-7	-	55
017	Vacuum Deposition	Thin Films	Ambipolar	0.71 (p)	$10^{5} (p)$	55
	1		1	0.65 (n)	10^4 (n)	
018	Vacuum	Thin Films	р	1.03	105	55
	Deposition					
019	Solution-Shearing	Thin Films	Ambipolar	0.02 (p)	$2.1 \times 10^2 (p)$	56
			_	0.12 (n)	8.5 x 10 ⁵ (n)	
	Droplet-Pinned	Thin Films	Ambipolar	$2.5 \times 10^{-4} (p)$	$5.3 \times 10^{4} (p)$	56
	Crystallization			7.7 x 10 ⁻⁴ (n)	3.1 x 10 ² (n)	
	Drop Cast	Thin Films	Ambipolar	8.2 x 10 ⁻⁴ (p)	$1.5 \times 10^2 (p)$	56

Table S2. The performance statistics of five-ring-fused organic molecules listed in Fig. 3 of the main text.

				$1.6 \ge 10^{-3} (n)$	$2.8 \times 10^{6} (n)$	
020	Spin Coating	Thin Films	Ambipolar	$2 \times 10^{-4} (p)$	10^4 (p)	51
			F	$2 \times 10^{-4} (n)$	10^4 (n)	
	Vacuum Deposition	Thin Films	Ambipolar	$6 \times 10^{-4} (p)$	10^{7} (p)	51
			F	$1 \times 10^{-2} (n)$	$10^{6} (n)$	
021	Solution-Shearing	Thin Films	Ambipolar	0.01±0.001	2.2×10^{6}	52
	8		1	(p)	(p); 1.4 x	
				0.02 ± 0.002	10^{5} (n)	
				(n)		
	Solution-Shearing	Thin Films	Ambipolar	3.3 x 10 ⁻⁴ (p)	$1.2 \ge 10^5 (p)$	56
	6		1	0.04 (n)	2.2×10^{5} (n)	
	Droplet-Pinned	Thin Films	Ambipolar	2.7×10^{-4} (p)	$4.2 \times 10^4 (p)$	56
	Crystallization		1	0.013 (n)	1.2×10^4 (n)	
	Drop Cast	Thin Films	Ambipolar	5.3 x 10 ⁻⁷ (p)	5.9×10^3 (p)	56
	1		1	1.5×10^{-4} (n)	6.7×10^5 (n)	
022	Spin Coating	Thin Films	р	1 x 10 ⁻⁴	104	51
023	OMBD	Thin Films	n	0.07	5.4 x 10 ⁵	54
024	OMBD	Thin Films	n	0.16	6.8 x 10 ⁵	54
	OMBD	Thin Films	n	0.05	5.1 x 10 ⁴	57
				(NH ₂ -)	(NH ₂ -)	
				0.18	4.4 x 10 ⁵	
				(PS-)	(PS-)	
				0.02	5.8 x 10 ⁴	
				(CH ₃ -)	(CH ₃ -)	
				1.8 x 10 ⁻³	9 x 10 ⁴	
				(CF ₃ -)	(CF ₃ -)	
025	Vacuum Deposition	Thin Films	n	2.93 x 10 ⁻⁵	105	58
026	-	-	n	0.06	-	59
027	-	-	n	0.485	-	59
028	-	-	n	1.8 x 10 ⁻²	-	59
	-	-	-	-	-	48
029	Spin Coating	Thin Films	-	-	-	51
030	Vacuum Deposition	Thin Films	Ambipolar	6 x 10 ⁻⁴ (p)	10 ⁷ (p)	51
				0.01 (n)	$10^{6} (n)$	
	Spin Coating	Thin Films	р	1 x 10 ⁻³	104	51
031	Vacuum Deposition	Thin Films	р	0.32 ± 0.04	2.5 x 10 ⁴	60, 61
032	-	-	Ambipolar	5.8 (p) ^a	-	60
				0.2 (n) ^a		
033	-	-	Ambipolar	2.9 (p) ^a		60
				0.6 (n) ^a		
034	-	Thin Films	n	1.02 x 10 ⁻³	6.3 x 10 ⁵	62
035	-	Thin Films	n	4.6 x 10 ⁻⁶	103-104	62
036	-	-	-	_	_	62

Number	Method	Morphology	Туре	Mobility (cm ² V ⁻¹ s ⁻¹)	On/off Ratio	Reference
037	-	-	-	-	-	51
038	-	-	-	-	-	51
039	-	-	-	-	-	51
040	Spin Coating	Thin Films	р	1 x 10 ⁻³	104	51
041	-	-	_	-	-	51
042	Spin Coating	Thin Films	Ambipolar	2 x 10 ⁻⁴ (p) 2 x 10 ⁻⁴ (n)	$10^4 (p)$ $10^4 (n)$	51
043	-	-	-	-	-	51
044	-	-	-	-	-	51
045	-	-	-	-	-	51
046	Spin Coating	Thin Films	р	1 x 10 ⁻²	105	51
047	Spin Coating	Thin Films	р	2.5×10^{-5} (Linear)	-	63
			р	3.5 x 10 ⁻⁶ (Linear) 4.6 x 10 ⁻⁶ (Saturated)	-	63
048	Spin Coating	Thin Films	р	3.5 x 10 ⁻⁵ (Linear) 1.1 x 10 ⁻⁴ (Saturated)	-	63
			р	3.5 x 10 ⁻⁶ (Linear) 1.0 x 10 ⁻⁵ (Saturated)	-	63
049	Spin Coating	Thin Films	р	0.2 (TG); 0.09 (BG)	-	64
050	Spin Coating	Thin Films	р	0.67	107	65
051	Drop Cast	Thin Films	p	>10 ^{-2 a}	-	66
052	Spin Coating	Thin Films	р	5 x 10 ⁻³	105	67
053	Spin Coating	Thin Films	р	2 x 10 ⁻²	105	67
054	Spin Coating	Thin Films	p	2 x 10 ⁻²	105	67
055	Spin Coating	Thin Films	p	4 x 10 ⁻²	106	67

Table S3. The performance statistics of five-ring-fused organic molecules listed in Fig. 5 of the main text.

a- Time-of-flight measurement

Number	Method	Morphology	Туре	Mobility ($cm^2 V^{-1} s^{-1}$)	On/off	Reference
056	Vacuum Deposition	Thin Films	p	0.31 ± 0.11	1.3×10^{6}	68
	Vacuum Deposition	Thin Films	p P	0.245	106	69
	Vacuum Deposition	Thin Films	p P	0.31	-	70
	Vacuum Deposition	Thin Films	p	0.55	105	71
057	1	_	-		_	72
058	Vacuum Deposition	Thin Films	p	0.79±0.05	2 x 10 ⁷	73
059	Vacuum Deposition	Thin Films	p	<10-4	-	72
060	Vacuum Deposition	Thin Films	p	10-4	-	74
	Vacuum Deposition	Thin Films	p	0.298±0.06	2 x 10 ⁷	72
061	Vacuum Deposition	Thin Films	p	<10-4	-	72
062	Vacuum Deposition	Thin Films	p	0.23±0.04	5 x 10 ⁷	73
063	Vacuum Deposition	Thin Films	p	<10-4	-	72
064	Vacuum Deposition	Thin Films	p	0.064	106	69
065	Vacuum Deposition	Thin Films	p	0.801±0.25	105	75
066	Vacuum Deposition	Thin Films	p	10-4	-	75
067	Vacuum Deposition	Thin Films	p	0.006±0.001	2 x 10 ⁴	75
068	Vacuum Deposition	Thin Films	Ambi	0.0569±0.007	$5 \times 10^2 (p)$	74
	Ĩ		polar	(p)	3×10^{5} (n)	
			-	0.216±0.08		
				(n)		
069	Vacuum Deposition	Thin Films	Ambi	0.225±0.05 (p)	$4 \times 10^{2} (p)$	76
			polar	0.561±0.1 (n)	$10^{5}(n)$	
	-	-	Ambi	0.63-4.79 (p) ^a	-	77
			polar	0.48-1.46 (n) ^a		
070	Vacuum Deposition	Thin Films	р	0.241±0.02	3 x 10 ⁶	72
071	Vacuum Deposition	Thin Films	р	0.293±0.09	104	72
072	Vacuum Deposition	Thin Films	р	0.41	105	78, 79
073	Self-Assembly	Single Crystals	р	1.66	106	80
074	Self-Assembly	Single Crystals	р	1.66	106	80
075	Vacuum Deposition	Thin Films	р	2.6 x 10 ⁻³	-	81
076	Vacuum Deposition	Thin Films	р	0.012	104	81
077	Vacuum Deposition	Thin Films	р	1.8 x 10 ⁻⁵	-	81
078	Vacuum Deposition	Thin Films	р	7 x 10 ⁻³	106	81
079	Vacuum Deposition	Polycrystals	р	1.1	-	82
	Solution	Single Crystals	р	1.5	-	82
080	Vacuum Deposition	Polycrystals	р	0.45	-	82
	Solution	Single Crystals	р	1.0	-	82
081	Vacuum Deposition	Polycrystals	р	3.7	-	82
	Solution	Single Crystals	р	9.5	-	82
	Vacuum Deposition	Thin Films	р	1.2	2.5 x 10 ⁶	83
082	Vacuum Deposition	Polycrystals	р	4.0	-	82
	Solution	Single Crystals	р	6.5	-	82

Table S4. The performance statistics of five-ring-fused organic molecules listed in Fig. 6 of the main text.

083	Physical Vapor Transport	Single Crystals	р	0.5-1.6	104	84
084	Drop Cast	Single Crystals	р	4.7	10 ⁵	85

Mobility Number Method Morphology Type On/off Referenc $(cm^2 V^{-1} s^{-1})$ e Vacuum Deposition 105 86 085 Thin Films 0.012 р 87 Vacuum Deposition Thin Films 0.12 (anti-) р 71 10^{4} Vacuum Deposition Thin Films 0.14 р 87 086 Vacuum Deposition Thin Films 0.02 (syn-)р 10^{3} 86 087 Vacuum Deposition Thin Films 0.3 р 88 Vacuum Deposition Thin Films 0.084 (syn-) р 0.41 (anti-) 89 088 Vacuum Deposition **Thin Films** 1.3 3.5 x 10⁶ р 4.8×10^{-2} (p) 86 089 Vacuum Deposition Thin Films 10^{6} (p) р $3.0 \ge 10^{-4}$ (n) 10^{3} (n) n 90 090 Vacuum Deposition Thin Films 0.15 ± 0.02 р 91 Vacuum Deposition Thin Films 0.01-0.02 р 90 091 Vacuum Deposition Thin Films 0.14 ± 0.02 р -90 Vacuum Deposition 092 Thin Films 0.06 ± 0.01 р 92 **10⁴-10⁶** 093 Physical Vapor **Single Crystals** 4.08 р Transport 93 094 Drop Cast Thin Films 5 x 10⁻⁴ 10³ р 93 10^{2} 095 Drop Cast Thin Films 1 x 10⁻³ р 93 1.5 x 10⁻³ 10^{4} 096 Thin Films Drop Cast р 94 097 Thin Films 0.013 104 Drop Cast р 95 10^{4} Spin Coating Thin Films 0.12 ± 0.02 р 96 098 Thin Films Spread р 96 099 Spread **Thin Films** 1.0 **10**⁷ р 97 $2 \ge 10^3$ Spin Coating Thin Films 0.11 ± 0.09 р Lamination Thin Films 0.19 ± 0.06 98 р 99 0.1 Spin Coating Thin Films р -100 Thin Films Spin Coating р 101 10^{5} Thin Films Drop Cast 0.1-0.4 р 102 Spin Coating Thin Films 0.47 106 р 103 Drop Cast Thin Films 0.04 ± 0.011 3 x 10⁶ р 104 >106 **Spin Coating Thin Films** 1.1 р 105 106 Spin Coating Thin Films 0.84 р 106 10^{6} Spin Coating Thin Films 0.68 ± 0.04 р 107 **Drop Cast Thin Films 10**⁹ 1.3 р 108 Thin Films 0.37 ± 0.03 $10^{3}-10^{4}$ Spin Coating р 109 Spin Coating Thin Films 0.1-0.4 р 110 **Spin Coating Thin Films** 1.38 **10**⁷ р 111 Spin Coating 107 Thin Films 0.56 р 112 **Dip Coating** Thin Films 1.82 р -113 Solvent-Assisted Thin Films 0.06 ± 0.01 (a) _ р Crystallization 0.22 ± 0.03 (β)

Table S5. The performance statistics of five-ring-fused organic molecules listed in Fig. 8 of the main text.

	Spin Coating	Thin Films	р	1.3-1.6	-	114
	Drop Cast	Thin Films	р	2.1	107	115
	Spin Coating	Thin Films	р	1.32	>106	116
	Spin Coating	Thin Films	р	0.80±0.07	1.46 x 10 ⁶	117
	Spin Coating	Thin Films	р	3.08	-	118
	Spin Coating	Thin Films	р	1.65 x 10 ⁻³	-	119
	Spin Coating	Thin Films	р	0.3	105	120
	Spin Coating	Thin Films	р	0.36	-	121
	Solvent Assisted Crystallization	Thin Films	р	0.11±0.02	-	122
	Vibration Assisted Crystallization	Thin Films	р	0.2±0.01	-	122
	Spin Coating	Thin Films	р	0.303±0.044	106	123
	Spin Coating	Thin Films	p	0.34	106	124
	Spin Coating	Thin Films	p	0.29	106	125
100	Spin Coating	Thin Films	p	1.5	-	100
	Spin Coating	Thin Films	р	4.3±0.8	-	126
	Spin Coating	Thin Films	р	0.1-0.2	-	127
	Spin Coating	Thin Films	р	0.4±0.1	-	128
	Physical Vapor Transport	Single Crystals	р	6	108	129
	Spin Coating	Thin Films	n	1.5	_	130
	Spin Coating	Thin Films	n p	0.1-0.2	_	131
	Physical Vapor Transport	Single Crystals	p	0.6 (250K) 1.4 (330K)	-	132
	Spin Coating	Thin Films	р	0.1-0.2	-	133
	Drop Cast	Thin Films	р	0.002-0.029	-	134
	Spray	Thin Films	р	0.2	107	135
	Spin Coating	Thin Films	р	2.4	-	136
	Spin Coating	Thin Films	р	2.47±0.3	-	137
	Spin Coating	Thin Films	р	>1	-	138
	Dip Coating	Thin Films	р	0.92-1.5	105	139
	Physical Vapor Transport	Single Crystals	р	1.01-1.07	106	140
	Spin Coating	Thin Films	р	>0.1	-	141
	Spin Coating	Thin Films	р	0.3±0.052	1.3 x 10 ⁷	142
	Solvent Assisted Crystallization	Thin Films	р	0.8±0.4	-	122
	Vibration Assisted Crystallization	Thin Films	р	2.5±0.8	-	122
	Spin Coating	Thin Films	р	1-3	-	143
	Inkjet Printing	Thin Films	p	0.4	-	144
	Spin Coating	Thin Films	p	0.09	-	145
	Spin Coating	Thin Films	p	2-6	-	146
	Spin Coating	Thin Films	р	0.52±0.22	>107	147
	Spin Coating	Thin Films	р	1.5	1.2 x 10⁵	148
	Spin Coating	Thin Films	р	0.7	-	149

	Inkjet Printing	Thin Films	р	0.68±0.23	-	150
	Spin Coating	Thin Films	p	-	-	151
	Spin Coating	Thin Films	p	1.5±0.7	-	152
	Spray	Thin Films	p	>1	-	153
	Printing	Thin Films	р	0.07	107	154
	Spin Coating	Thin Films	р	0.07	107	155
	Drop Cast	Thin Films	p	-	-	156
	Spin Coating	Thin Films	p	-	-	157
	Coating	Thin Films	p	0.19±0.07	104	158
	Spin Coating	Thin Films	p	-	-	159
	Blade Coating	Thin Films	D D	3.6	_	160
	Sprav	Thin Films	n n	1.7	7.9 x 10 ³	161
	Spin Coating	Thin Films	n n	>2	-	162
	Drop Cast	Thin Films	p P	0.7	_	163
	Bar-Assisted	Thin Films	p p	0.04	_	164
	Meniscus Shearing		P			
	Spin Coating	Thin Films	n	8	_	165
	Inkiet Printing	Thin Films	p P	0.2	_	166
	Spin Coating	Thin Films	n P	0.004-7.7	~104	167
	Spin Coating	Thin Films	p P	0.34+0.01	107	168
	Coating	Thin Films	n P	0.8	106	169
	Spin Coating	Thin Films	p n	-	-	170
	Solution Shearing	Thin Films	n p	13	105	171
	Blade Coating	Thin Films	p n	5 54	10	172
	Bar-Assisted	Thin Films	p n	-		173
	Meniscus Shearing		Р	_	_	
	(BAMS)					
	Blade Coating	Thin Films	n	0 14-0 57	_	174
	Blade Coating	Thin Films	n p	2.48	_	175
	Water-Surface	Thin Films	p n	16.1	106	176
	Drag Coating		Р	10.1	10	
101	-	_	_	_	_	140
102	Dron Cast	Thin Films	n	_	_	134
102	Drop Cast	Thin Films	p n	0.1-0.4	105	101
104	Drop Cast	Thin Films	p n	<10-4	-	101
105	Drop Cast	Thin Films	p n	10-3-10-4		101
105	Drop Cast	Single Crystals	P	-	_	177
107	Spread	Thin Films	n	<10-4	103	96
107	Drop Cast	Single Crystals	p n	0.1	-	100
	Spin Coating	Thin Films	p n	0.1	_	178
108	Drop Cast	Single Crystals	p n	0.5-0.0		100
100	Spin Costing	Thin Films	p n	0.03.0.11	-	178
	Drop Cost	Thin Films	P n	0.03-0.11	-	134
	Diop Cast Dhysical Vanar	Single Crystele	р р	0.002-0.029	-	140
	Transport	Single Crystals	P	0.3-0.41	10°	
	Solvent Assisted	Thin Films	n	0.02±0.02		122
	Crystallization		P	0.03±0.02	-	
	Crystamzation					

	Vibration Assisted Crystallization	Thin Films	р	0.11±0.03	-	122
109	-	-	-	-	-	134
110	-	-	-	-	-	140
111	Spin Coating	Thin Films	р	0.07	107	179
112	Solvent Assisted	Thin Films	p	2.5 x 10 ⁻³	-	180
112	Crystallization	TPI • T7•1		5.4		191
113	Drop Cast	I hin Films	<u>р</u>	5.4	-	181
	Spin Coating	I hin Films	<u>р</u>	3.7	-	181
	Spray	<u>I hin Films</u>	p p	2.2	-	181
	Drop Cast	Thin Films	p	6.1 / x 10 ⁻³	-	182
	Spin Coating	Thin Films	p	0.3	-	185
114	Spin Coating	Thin Films	p	6.2±0.4	-	120
114	Spin Coating	Thin Films	p	10-0	-	184
115	Spin Coating	Thin Films	p	10-2	-	184
	Spin Coating	Thin Films	p	10-6	-	184
117	Vacuum Deposition	Thin Films	p	-	-	185
	Drop Cast	Thin Films	p	-	-	185
118	Vacuum Deposition	Thin Films	p	0.074	108	185
	Drop Cast	Thin Films	p	3.5 x 10 ⁻³	104	185
119	Vacuum Deposition	Thin Films	p	2.3 x 10 ⁻³	2×10^3	186
120	-	-	-	-	-	185
121	Vacuum Deposition	Thin Films	p	0.019	106	185
	Drop Cast	Thin Films	р	2.5 x 10 ⁻⁴	104	185
	Vacuum Deposition	Thin Films	р	0.012	-	187
122	-	-	-	-	-	188
123	-	-	-	-	-	187
124	Spin Coating	Thin Films	р	5.2 x 10 ⁻⁴	-	188
125	Spin Coating	Thin Films	p	-	-	188
126	Spin Coating	Thin Films	p	6.0 x 10 ⁻⁴	-	188
127	Vacuum Deposition	Thin Films	p	10-4	103	186
128	-	-	-	-	-	189
129	Vacuum Deposition	Thin Films	р	5.6	107	190
130	Vacuum Deposition	Thin Films	р	0.1	-	189
131	Vacuum Deposition	Thin Films	р	0.4	5 x 10 ⁵	191
132	Vacuum Deposition	Thin Films	р	0.6	7 x 10 ⁵	191
133	Vacuum Deposition	Thin Films	р	0.09	7 x 10 ⁴	191
134	Vacuum Deposition	Thin Films	р	1.1	4 x 10 ⁶	191
	Vacuum Deposition	Thin Films	р	1.86	-	190
135	Vacuum Deposition	Thin Films	р	0.24	2 x 10 ⁶	191
136	Vacuum Deposition	Thin Films	р	0.34	2 x 10 ⁶	191
137	-	-	-	-	-	192
138	-	-	-	-	-	192
139	-	-	-	-	-	192
140	-	-	_	-	-	192
141	-	-	-	-	-	192
142	Spin Coating	Thin Films	p	1.31 x 10 ⁻³	-	193

143	Spin Coating	Thin Films	р	1.06	3.01 x 10 ⁶	193
144	Spin Coating	Thin Films	р	1.02	2.06 x 10 ⁶	193
145	Spin Coating	Thin Films	р	9.47 x 10 ⁻²	1.21 x 10 ⁶	194
146	Spin Coating	Thin Films	р	0.683	4.83 x 10 ⁶	194
147	Spin Coating	Thin Films	р	3.6 x 10 ⁻⁴	3.45 x 10 ³	194
148	Physical Vapor	Single Crystal	р	0.2	$6.4 \ge 10^3$	195
	Transport					
149	Vacuum Deposition	Thin Films	р	0.002	104	196
150	Vacuum Deposition	Thin Films	р	0.001	104	196
151	Vacuum Deposition	Thin Films	р	-	-	196

Number	Method	Morphology	Туре	Mobility (cm ² V ⁻¹ s ⁻¹)	On/off	Reference
152	Vacuum Deposition	Thin Films	р	2.4 x 10 ⁻³	105	197
	Drop Cast	Thin Films	р	0.01	105	198
	-	-	р	4.5(KMC) ^a	-	199
			_	9.4(SCD) ^a		
153	Drop Cast	Thin Films	р	1 x 10 ⁻³	105	198
154	Vacuum Deposition	Thin Films	р	3 x 10 ⁻³	10 ⁵ -10 ⁶	200
155	Vacuum Deposition	Thin Films	р	3 x 10 ⁻³	10 ⁵ -10 ⁶	200
156	Vacuum Deposition	Thin Films	р	1.2 x 10 ⁻²	103	201
157	Vacuum Deposition	Thin Films	р	9 x 10 ⁻⁴	103	201
158	Vacuum Deposition	Thin Films	р	2 x 10 ⁻²	104	201
159	Vacuum Deposition	Thin Films	р	2.3 x 10 ⁻²	104	201
160	Vacuum Deposition	Thin Films	р	6.6 x 10 ⁻²	104	201
161	Vacuum Deposition	Thin Films	р	0.65	104	201
	Spin Coating	Thin Films	р	5 x 10 ⁻²	105	201
	Drop Cast	Thin Films	р	0.26	10 ²	201
162	Vacuum Deposition	Thin Films	р	1.9	105	201
	Spin Coating	Thin Films	р	4.3 x 10 ⁻²	105	201
	Drop Cast	Thin Films	р	0.24 (1.6)	105	201
163	Vacuum Deposition	Thin Films	р	0.47	105	201
	Spin Coating	Thin Films	р	2.3 x 10 ⁻²	104	201
	Drop Cast	Thin Films	р	0.11	10 ³	201
164	Vacuum Deposition	Thin Films	р	0.15	105	201
	Spin Coating	Thin Films	р	5.6 x 10 ⁻³	103	201
	Drop Cast	Thin Films	р	0.1	103	201
165	Spin Coating	Thin Films	р	-	-	202
166	Spin Coating	Thin Films	р	2.8	105	202
	Blade-Coating	Single-Crystalline Thin Films	р	6.3	107	202

Table S6. The performance statistics of five-ring-fused organic molecules listed in Fig. 10 of the main text.

Number	Method	Morphology	Туре	Mobility (cm ² V ⁻¹ s ⁻¹)	On/off	Reference
167	Vacuum Deposition	Thin Films	р	0.5	106	203
	Physical Vapor Transport	Single Crystals	p	1.8	>107	204
168	Vacuum Deposition	Thin Films	р	3.1	10 ³	205
	Drop Cast	Single Crystals	р	18.9	>107	206
169	Physical Vapor Transport	Single Crystals	р	0.6	105	207
170	Dip Coating	Thin Films	р	3.8	106	208
	Drop Cast	Single Crystals	р	1.7	104	208
171	Vacuum Deposition	Thin Films	р	0.011	4 x 10 ⁴	209
172	Drop Cast	Single Crystals	р	0.47	$10^{3}-10^{4}$	210
	Dip Coating	Thin Films	р	1.4 x 10 ⁻³	10 ³	210
173	Vacuum Deposition	Thin Films	р	0.120	1.6 x	209
					105	
174	Physical Vapor Transport	Single Crystals	р	0.014	10 ²	211
175	Physical Vapor Transport	Single Crystals	р	0.20	105	211
176	Physical Vapor Transport	Single Crystals	р	6.5	106	211
177	Drop Cast	Single Crystals	р	10.1	10 ⁵	210
	Dip Coating	Thin Films	р	7.4	106	210
178	Edge-Casting	Thin Films	р	6.2	106	212
179	Edge-Casting	Thin Films	р	0.55	105	212
180	Edge-Casting	Thin Films	р	2.3	106	212
181	Vacuum Deposition	Thin Films	р	4.9	10 ⁷ -10 ⁸	213
182	Vacuum Deposition	Thin Films	р	11.7	$10^{7}-10^{8}$	213
183	Drop Cast	Crystalline Films	р	12.8	>107	214

Table S7. The performance statistics of five-ring-fused organic molecules listed in Fig. 11 of the main text.

Number	Method	Morphology	Туре	Mobility	On/off	Reference
101						215
104	-	- T1 ' F'1	-	- (1.2+0.0) 10-2	-	215
185	Spin Coating	I hin Films	р	$(1.2\pm0.8) \times 10^{-2}$	105	215
	Dip Coating	Crystalline Films	р	1.7	107	215
	Drop Cast	Crystalline Films	р	3.2	106	216
	Dip Coating	Crystalline Films	р	-	-	217
	Dip Coating	Crystalline Films	р	2 x 10 ⁻³	-	218
	Printing	Thin Films	р	1.0	-	219
186	-	-	-	-	-	215
	Dip Coating	Crystalline Films	р	0.19	-	220
187	-	-	-	-	-	215
188	Slow Cooling	Crystalline Films	р	0.04	-	221
189	Slow Cooling	Crystalline Films	р	0.1	-	221
190	Slow Cooling	Crystalline Films	р	0.16	-	221
191	Spin Coating	Thin Films	n	0.57	-	222
192	Spin Coating	Thin Films	Ambipolar	3.4 x 10 ⁻² (p)	-	222
				0.22 (n)		
193	Spin Coating	Thin Films	Ambipolar	1.3 x 10 ⁻³ (p)	-	222
				0.17 (n)		
194	Vacuum	Thin Films	р	2.6	10 ⁷ -10 ⁸	223
	Deposition					
195	Vacuum Deposition	Thin Films	р	0.59	107-108	223
196	Vacuum Deposition	Thin Films	р	0.85	107-108	223
197	Vacuum Deposition	Thin Films	p	0.7	107-108	223
198	Vacuum Deposition	Thin Films	p	~0.1	~107	224
199	Vacuum Deposition	Thin Films	р	~0.1	~107	224

Table S8. The performance statistics of five-ring-fused organic molecules listed in Fig. 13 of the main text.

Table S9. The performance statistics of five-ring-fused organic molecules listed in Fig. 15 of the main text.

Number	Method	Morphology	Туре	Mobility (cm ² V ⁻¹ s ⁻¹)	On/off	Reference
200	Vacuum Deposition	Thin Films	р	0.045	103	225
201	-	-	n	0.63ª	-	226

Number	Method	Morphology	Туре	Mobility (cm ² V ⁻¹ s ⁻¹)	On/off	Reference
202	Drop Cast	Thin Films	р	9 x 10 ⁻³	4 x 10 ³	227
203	Drop Cast	Thin Films	р	1.24 x 10 ⁻³	3.1 x 10 ³	227
204	Drop Cast	Thin Films	р	1.45 x 10 ⁻³	3.3 x 10 ³	227
205	Drop Cast	Thin Films	р	1.5 x 10 ⁻³	1.7 x 10 ³	227
206	Spin Coating	Thin Films	р	0.073	1.6 x 10 ⁶	228
207	Spin Coating	Thin Films	р	0.079	1.1 x 10 ⁷	228
208	Spin Coating	Thin Films	-	-	-	229
209	Spin Coating	Thin Films	-	-	-	229
210	Spin Coating	Thin Films	р	1.69 x 10 ⁻⁴	-	229
211	Spin Coating	Thin Films	-	-	-	229
212	Spin Coating	Thin Films	р	0.12	-	230
213	Spin Coating	Thin Films	р	3.4 x 10 ⁻³	6.4 x 10 ⁴	231
214	Spin Coating	Thin Films	р	4.53 x 10 ⁻⁴	4.27 x 10 ⁵	231
215	Spin Coating	Thin Films	р	1.13 x 10 ⁻²	1.42 x 10 ⁴	231
216	Spin Cast	Thin Films	р	3 x 10 ⁻³	-	232
217	Spin Coating	Thin Films	р	0.0368	2 x 10 ³	233
218	Spin Coating	Thin Films	р	1.7 x 10 ⁻²	4.98 x 10 ⁴	231
219	Drop Cast	Thin Films	р	0.36	105	234
220	Spin Coating	Thin Films	р	2.3 x 10 ⁻³	10 ³ -10 ⁴	235

Table S10. The performance statistics of five-ring-fused organic molecules listed in Fig. 16 of the main text.

Table S11. The performance statistics of five-ring-fused organic molecules listed in Fig. 17 of the main text.

Number	Method	Morphology	Туре	Mobility	On/off	Reference
				$(cm^2 V^{-1} s^{-1})$		
221	Physical Vapor Transport	Single Crystals	р	1.5	-	236
222	Edge-Casting	Single Crystals	р	1.1	-	237
223	Edge-Casting	Single Crystals	р	1.3	-	237
224	Physical Vapor Transport	Single Crystals	р	0.02-0.04	10 ³	84
225	Physical Vapor Transport	Single Crystals	р	1	-	238
226	Vacuum Deposition	Thin Films	-	-	-	89
227	Vacuum Deposition	Thin Films	р	0.5-0.6	6.53 x 10 ⁵	89
228	Drop Cast	Single Crystals	р	0.11	8 x 10 ⁴	239
229	Drop Cast	Single Crystals	р	0.021	2×10^3	239

Number	Method	Morphology	Type	Mobility	On/off	Reference
		1 00	51	$(cm^2 V^{-1} s^{-1})$		
230	Lamination	Single Crystals	р	0.11	$\sim \! 10^4$	240
231	Vacuum Deposition	Polycrystalline	р	3.2	~107	240
	_	Thin Films	_			
	Drop Cast	Single-	р	11	~107	240
	-	Crystalline	-			
		Thin Films				
232	Physical Vapor Transport	Single Crystals	р	1.2-2.0	10 ⁵	84
233	Drop Cast	Single Crystals	р	4.5	10 ⁵	85
234	Vacuum Deposition	Thin Films	р	0.31-0.75	$1.7 \ge 10^{6}$	89
235	Vacuum Deposition	Thin Films	р	0.38-0.53	$1.2 \ge 10^6$	89
236	Vacuum Deposition	Thin Films	р	3.8 x 10 ⁻³	5 x 10 ⁷	197
237	Physical Vapor Transport	Single Crystals	р	6.9 x 10 ⁻³	-	241
238	Dip Coating	Thin Films	р	0.058	10 ³	242

Table S12. The performance statistics of five-ring-fused organic molecules listed in Fig. 19 of the main text.

Table S13. The performance statistics of five-ring-fused organic molecules listed in Fig. 20 of the main text.

Number	Method	Morphology	Туре	Mobility (cm ² V ⁻¹ s ⁻¹)	On/off	Reference
239	Drop Cast	Single Crystals	р	1.8	104	85

Number	Method	Morphology	Туре	Mobility ($cm^2 V^{-1} s^{-1}$)	On/off	Reference
240	Vacuum Deposition	Thin Films	n	$(\operatorname{cm} \mathbf{v} \mathbf{s})$		243
270	Vacuum Deposition	Thin Films	P	5.0×10^{-4}		244
	Physical Vanor Transport	Single Crystels	P	0.12-1.0	105_106	245
	Physical Vapor Transport	Single Crystals	p n	0.12-1.0	10 -10	246
241	Physical Vapor Transport	Single Crystals	p n	3.61	-	246
241	Physical Vapor Transport	Single Crystals	P	5 x 10 ⁻⁶	-	246
242	Physical Vapor Transport	Single Crystals	p	3×10^{-5}	-	246
243	Vacuum Deposition	Thin Films	p	2.3 X 10	- 2 x 104	247
244	Vacuum Deposition	Thin Films	p	0.00	3×10^{-10}	247
243	Vacuum Deposition		p	0.22	$\frac{5 \times 10^{5}}{103}$	247
240	Vacuum Deposition		p	0 X 10 °	105	248
247	Physical Varian Transport	Finala Crystala	р р	-	-	248
240	Vacuum Danagitian	Single Crystals	p 	-	-	244
248	Vacuum Deposition	Thin Films	p	9.1 X 10 ⁻⁵	-	247
249	Vacuum Deposition	Thin Films	p	0.02	3×10^{4}	247
250	Vacuum Deposition	Thin Films	p	0.05	3×10^{4}	247
251	Vacuum Deposition	I hin Films	p	4×10^{-4}	$2 \times 10^{\circ}$	100
252	-	-	р	0.09 (KMC) ^a 1.6 (SCD) ^a	-	199
253	Vacuum Deposition	Thin Films	-	-	-	244
254	Vacuum Deposition	Thin Films	р	4.1 x 10 ⁻³	-	244
255	Vacuum Deposition	Thin Films	р	0.12	1.2 x 10 ⁵	248
	Physical Vapor Transport	Single Crystals	р	0.5	-	248
	Physical Vapor Transport	Single Crystals	р	0.8	1.7 x 10 ⁷	249
256	Vacuum Deposition	Thin Films	р	1 x 10 ⁻⁵	-	250
257	Vacuum Deposition	Thin Films	р	(1.3-3.0) x 10 ⁻³	_	250
258	Vacuum Deposition	Thin Films	р	0.03	106	251
259	Vacuum Deposition	Thin Films	р	0.2	5 x 10 ⁶	251
260	Vacuum Deposition	Thin Films	р	0.015	106	251
261	Drop Cast	Single Crystals	р	0.084	-	252
262	Vacuum Deposition	Thin Films	р	0.04	106	251
263	Vacuum Deposition	Thin Films	p	10-3	105	253
264	Vacuum Deposition	Thin Films	p	-	-	251
265	Vacuum Deposition	Thin Films	p	0.11	5 x 10 ⁴	251
266	Vacuum Deposition	Thin Films	p	1.2 x 10 ⁻⁴	103	254
267	Vacuum Deposition	Thin Films	p	0.008-0.01	105	254
268	Vacuum Deposition	Thin Films	p	0.085-0.14	107	254
269	Vacuum Deposition	Thin Films	p	-	-	254
270	Vacuum Deposition	Thin Films	p	-	-	254
271	Vacuum Deposition	Thin Films	p	0.07-0.12	106-107	250
	Vacuum Deposition	Thin Films	p	0.12	107	251
272	-	-	-	-	-	255

Table S14. The performance statistics of five-ring-fused organic molecules listed in Fig. 21 of the main text.

273	-	-	-	-	-	255
274	_	-	-	-	_	255
275	-	-	-	-	_	255
276	-	-	р	10 ^{-3 b}	-	255
277	-	-	-	-	-	255
278	-	-	-	-	-	256
	Vacuum Deposition	Thin Films	р	7 x 10 ⁻³	104	257
	Vacuum Deposition	Thin Films	p	1 x 10 ⁻⁴	102	258
279	-	-	-	0.4	-	256
	Vacuum Deposition	Thin Films	p	3 x 10 ⁻³	103	257
	Vacuum Deposition	Thin Films	p	6 x 10 ⁻²	103	258
280	-	-	-	-	-	259
281	Vacuum Deposition	Thin Films	р	0.03	-	259
	Drop Cast	Thin Films	р	6.4 x 10 ⁻³	-	259
	Vacuum Deposition	Thin Films	р	0.1	106	258
282	Vacuum Deposition	Thin Films	р	7.4 x 10 ⁻⁴	6.4×10^3	260
	Shearing Deposition	Thin Films	р	7 x 10 ⁻⁴	3.7×10^3	260
283	Vacuum Deposition	Thin Films	р	-	-	260
	Shearing Deposition	Thin Films	р	7.6 x 10 ⁻⁴	104	260
284	Vacuum Deposition	Thin Films	р	7 x 10 ⁻³	2.4×10^3	260
	Shearing Deposition	Thin Films	p	5.9 x 10 ⁻⁴	$6.2 ext{ x10^3}$	260
285	Vacuum Deposition	Thin Films	р	-	-	260
	Shearing Deposition	Thin Films	p	4.7 x 10 ⁻⁴	2.3×10^2	260

b- Time-of-flight measurement

Table S15. The performance statistics of five-ring-fused organic molecules listed in Fig. 23 of the main text.

Number	Method	Morphology	Туре	Mobility (cm ² V ⁻¹ s ⁻¹)	On/off	Reference
286	Vacuum Deposition	Thin Films	р	-	-	261
287	Vacuum Deposition	Thin Films	р	0.25±0.09	~10 ⁵	261

Table S16. The performance statistics of five-ring-fused organic molecules listed in Fig. 24 of the main text.

Number	Method	Morphology	Type	Mobility	On/off	Reference
Number	Wiethou	Worphology	Type	$(am^2 V^{-1} a^{-1})$	011/011	Kelefellee
288	Vacuum Deposition	Thin Films	n	1 x 10 ⁻³	3 x 10 ⁴	262
289	Vacuum Deposition	Thin Films	n	0.01	5 x 10 ⁶	263
290	Vacuum Deposition	Thin Films	n	0.02	4 x 10 ⁷	263
	Vacuum Deposition	Thin Films	n	0.02	7 x 10 ⁶	262
291	Vacuum Deposition	Thin Films	n	0.01	2 x 10 ⁷	263
292	Vacuum Deposition	Thin Films	n	0.01	2 x 10 ⁶	262
293	Vacuum Deposition	Thin Films	n	0.01	2 x 10 ⁵	262
294	Vacuum Deposition	Thin Films	n	0.06	105	262
295	Vacuum Deposition	Thin Films	n	0.03	5 x 10 ⁶	262
	Spin Coating	Thin Films	n	1 x 10 ⁻³	>106	263
296	-	-	-	-	-	264
297	-	-	-	-	-	264
298	-	-	-	-	-	264
299		-	-	-	-	264

Table S17. The performance statistics of five-ring-fused organic molecules listed in Fig. 25 of the main text.

Number	Method	Morphology	Туре	Mobility (cm ² V ⁻¹ s ⁻¹)	On/off	Reference
300	Vacuum Deposition	Thin Films	р	~10-5	104-105	265

Table S18. The performance statistics of five-ring-fused organic molecules listed in Fig. 26 of the main text.

Number	Method	Morphology	Туре	Mobility	On/off	Reference
				$(cm^2 V^{-1} s^{-1})$		
301	Spin Coating	Thin Films	р	1.8 x 10 ⁻³	3 x 10 ⁴	266
302	Spin Coating	Thin Films	-	-	-	267
303	Spin Coating	Thin Films	-	-	-	267
304	Spin Coating	Thin Films	р	2.3 x 10 ⁻³	105	268
305	Spin Coating	Thin Films	р	0.02	105	267
306	Spin Coating	Thin Films	р	9.6 x 10 ⁻³	105	267
307	Spin Coating	Thin Films	р	1.8 x 10 ⁻³	103	267
308	Spin Coating	Thin Films	р	6 x 10 ⁻⁴	5 x 10 ⁴	268

Number	Method	Morphology	Туре	Mobility (cm ² V ⁻¹ s ⁻¹)	On/off	Reference
309	Vacuum Deposition	Thin Films	р	0.22	104	269
310	Vacuum Deposition	Thin Films	Ambipolar	0.08 (p)	104	269
	-		_	0.09 (n)		
311	Vacuum Deposition	Thin Films	Ambipolar	0.23 (p)	-	270
				0.21 (n)		
312	Vacuum Deposition	Thin Films	Ambipolar	0.11 (p)	104	269
				0.15 (n)		
	-	-	Ambipolar	0.5766 (p) ^a	-	271
				7.441 (n) ^a		
313	Vacuum Deposition	Thin Films	n	0.07	106	272
314	Vacuum Deposition	Thin Films	n	0.03	106	272
315	Vacuum Deposition	Thin Films	n	0.02	-	273
316	Vacuum Deposition	Thin Films	р	1.08 x 10 ⁻⁵	-	274
	Spin Coating	Thin Films	р	8.23 x 10 ⁻⁶	-	274
	Vacuum Deposition	Thin Films	р	$(1.5\pm0.2) \ge 10^{-3}$	-	275
	Vacuum Deposition	Thin Films	р	0.11	_	276
	Vacuum Deposition	Thin Films	Ambipolar	0.2 (p)	_	277
	-		-	0.01 (n)		
317	Vacuum Deposition	Thin Films	-	_	_	278
318	Vacuum Deposition	Thin Films	-	-	_	278
	Vacuum Deposition	Thin Films	-	-	-	279
319	Vacuum Deposition	Thin Films	р	2.4 x 10 ⁻³	10 ³	278
320	Vacuum Deposition	Thin Films	-	-	-	278
321	Vacuum Deposition	Thin Films	р	5 x 10 ⁻³	10 ²	278
322	Vacuum Deposition	Thin Films	_	-	-	278
	Vacuum Deposition	Thin Films	р	0.3	2 x 10 ⁶	279
323	Vacuum Deposition	Thin Films	p	0.16	104	278
324	Vacuum Deposition	Thin Films	p	0.03	104	279
325	Vacuum Deposition	Thin Films	p	2.1 x 10 ⁻⁴	102	278

Table S19. The performance statistics of five-ring-fused organic molecules listed in Fig. 27 of the main text.

NT 1			—	N C 1 '1'		D C
Number	Method	Morphology	Iype	Mobility	On/off	Reference
				$(cm^2 V^{-1} s^{-1})$		
326	Vacuum Deposition	Thin Films	р	5 x 10 ⁻⁵	103	280
	Vacuum Deposition	Thin Films	р	0.3-0.45	-	281
327	Vacuum Deposition	Thin Films	р	1.4	-	282
	-	-	Ambipolar	2.3 (p) ^a	-	283
			_	3.89 (n) ^a		
328	Vacuum Deposition	Thin Films	р	3.2 x 10 ⁻³	-	284
329	Vacuum Deposition	Thin Films	р	3 x 10 ⁻⁵	-	284
330	Vacuum Deposition	Thin Films	р	(3-6) x 10 ⁻³	$(2-5) \ge 10^3$	280
331	Vacuum Deposition	Thin Films	р	1 x 10 ⁻³	$(5-7) \ge 10^2$	280
332	Vacuum Deposition	Thin Films	р	0.02-0.07	-	285
	Drop Cast	Thin Films	n	3 x 10 ⁻⁴	-	285
	-	-	Ambipolar	0.71 (p) ^a	-	286
				0.03 (n) ^a		
	-	-	Ambipolar	3.119 (p) ^a	-	271
				0.1149 (n) ^a		

Table S20. The performance statistics of five-ring-fused organic molecules listed in Fig. 28 of the main text.

Morphology Number Method Type Mobility On/off Reference $(cm^2 V^{-1} s^{-1})$ 287 Thin Films 333 Vacuum Deposition _ _ р 287 334 Vacuum Deposition Thin Films (1-2) x 10⁻⁵ р 288 335 --10-5 289 Vacuum Deposition Thin Films р 0.55 (p)^a 283 336 Ambipolar -3.51 (n) ^a 282 Vacuum Deposition 337 Thin Films 0.13 р 283 0.45 (p) ^a Ambipolar _ 3.39 (n) ^a **Physical Vapor** 290 Single 3.39 1.08 x 10⁴ n Transport Crystals 286 338 Ambipolar 0.21 (p) ^a _ --5.01 (n) ^a 291 Vacuum Deposition **Thin Films** 0.3-1.2 р 271 Ambipolar 0.3446 (p) ^a _ -_ 7.145 (n) ^a Vacuum Deposition 285 Thin Films 0.02-0.05 (p) 339 Ambipolar - $(2-4) \ge 10^{-4} (n)$ 285 Drop Cast Thin Films -5 x 10⁻³ (p) ^a 286 Ambipolar _ _ 1.24 (n)^a 288 **1.92**^a -n -271 Ambipolar 1.153 x 10⁻² (p) ^a -5.565 (n)^a

Table S21. The performance statistics of five-ring-fused organic molecules listed in Fig. 29 of the main text.

Number	Method	Morphology	Туре	Mobility (cm ² V ⁻¹ s ⁻¹)	On/off	Reference
340	Vacuum Deposition	Thin Films	р	2 x 10 ⁻²	102	292
341	Vacuum Deposition	Thin Films	p	2 x 10 ⁻⁵	102	292
342	Vacuum Deposition	Thin Films	р	1 x 10 ⁻²	105	292
343	Physical Vapor Transport	Single Crystals	р	1 x 10 ⁻⁴	-	293
344	-	-	_	-	-	293
345	Physical Vapor Transport	Single Crystals	р	5 x 10 ⁻⁴	-	293
346	Spin Coating	Thin Films	р	0.03	104-105	294
347	Spin Coating	Thin Films	р	9.3 x 10 ⁻³	103-104	294
348	Spin Coating	Thin Films	р	0.11	$10^{3}-10^{4}$	294
349	-	-	Ambipolar	0.06 (p) ^a	-	286
				0.02 (n) ^a		
	-	-	Ambipolar	0.2162 (p) ^a	-	271
				0.0448 (n) ^a		
350	Vacuum Deposition	Thin Films	-	-	-	285
	-	-	-	-	-	286
351	Vacuum Deposition	Thin Films	р	(4-7) x 10 ⁻⁴	-	295
352	Vacuum Deposition	Thin Films	-	-	-	295
353	-	-	Ambipolar	0.01 (p) ^a	-	286
			_	0.07 (n) ^a		
	Vacuum Deposition	Thin Films	р	0.3-0.7	3 x 10 ⁵	295

Table S22. The performance statistics of five-ring-fused organic molecules listed in Fig. 31 of the main text.

Number	Method	Morphology	Туре	Mobility (cm ² V ⁻¹ s ⁻¹)	On/off	Reference
354	-	-	-	-	-	271
355	Vacuum Deposition	Thin Films	n	(2-6) x 10 ⁻⁵	-	287
-		-	-	2.49 ª	-	288
356	Vacuum Deposition	Thin Films	n	0.05-0.12	-	287
	Vacuum Deposition	Thin Films	n	0.04-0.12	-	296
	-	-	-	0.79	-	288
357	Vacuum Deposition	Thin Films	Ambipolar	0.05-0.22 (p)	-	291
	-		-	0.3-1.1 (n)		
358	Vacuum Deposition	Thin Films	n	1.0-3.3	-	285
	Drop Cast	Thin Films	n	3 x 10 ⁻³	-	285
	Spin Coating	Thin Films	n	5 x 10 ⁻³	103-104	297
	Drop Cast	Single Crystals	n	1.77	-	298
	Drop Cast	Single Crystals	n	1.2	-	299
	-	-	n	0.72	-	288
	-	-	Ambipolar	0.02 (p) ^a	-	286
			_	0.25 (n) ^a		
	Dip Coating	Thin Films	n	11.1	10⁶-10⁷	300
	Drop Cast	Thin Films	n	11.0	10⁶-10⁷	300
	Vacuum Deposition	Thin Films	n	6.8	106-107	300
	Dip Coating	Thin Films	n	0.013	104	301
359	Drop Cast	Thin Films	n	2.7	-	302
360	Drop Cast	Thin Films	n	2.3	-	302
361	Dip Coating	Thin Films	n	1.1	-	302
362	Dip Coating	Thin Films	n	2.7	-	302
363	Drop Cast	Thin Films	n	6.6	-	302
364	Dip Coating	Thin Films	n	27.8	-	302
365	Dip Coating	Thin Films	n	0.56	105	301
366	Spin Coating	Thin Films	n	3.5 x 10 ⁻⁴	$10^{3}-10^{4}$	297

Table S23. The performance statistics of five-ring-fused organic molecules listed in Fig. 32 of the main text.

Number	Method	Morphology	Туре	Mobility ($cm^2 V^{-1} s^{-1}$)	On/off	Reference
367	-	-	-	-	-	303
368	-	-	Ambipolar	2.74 (p) ^a 0.48 (n) ^a	-	304
369	-	-	Ambipolar	10.64 (p) ^a 2.02 (n) ^a	-	304
370	Slow Cooling	Thin Films	-	-	-	305
371	Slow Cooling	Thin Films	-	0.29	-	305
372	Slow Cooling	Thin Films	-	0.87	-	305
373	Slow Cooling	Thin Films	-	0.28	-	305
	Slow Cooling	Liquid Crystal	р	10 ^{-3 b}	-	306
	Slow Cooling	Liquid Crystal	р	1.7 x 10 ⁻³ c	-	306
374	Vacuum Deposition	Thin Films	n	10-6	-	307
	Spin Coating	Thin Films	-	-	-	303
375	-	-	-	-	-	308
376	Spin Coating	Thin Films	n	-	-	303
377	Spin Coating	Thin Films	n	-	-	303
378	Spin Coating	Thin Films	n	8.3 x 10 ⁻⁴	-	303
379	Spin Coating	Thin Films	n	1.58 x 10 ⁻³	-	303
380	Spin Coating	Thin Films	n	1.36 x 10 ⁻³	-	303
381	Spin Coating	Thin Films	n	1.45 x 10 ⁻³	-	303
382	Spin Coating	Thin Films	n	5.13 x 10 ⁻³	-	303
383	Spin Coating	Thin Films	n	2.34 x 10 ⁻³	-	303
384	Slow Cooling	Polycrystalline	n	-	-	309
385	Slow Cooling	Polycrystalline	n	0.071	-	309
386	Slow Cooling	Amorphous	n	0.021	-	309
387	-	-	-	-	-	310
388	-	-	-	-	-	310
389	-	-	-	-	-	310
390	-	-	-	-	-	310
391	-	-	-	-	-	310
392	-	-			-	310
393	-	-			-	310
394	-	-	-	10 ^{-3 d}	_	310
395	Vacuum Deposition	Thin Films	n	1.9 x 10 ⁻⁴	-	307

Table S24. The performance statistics of five-ring-fused organic molecules listed in Fig. 34 of the main text.

b- Means time-of-flight (TOF) measurement

c- Means space-charge-limited current (SCLC) measurement

d- Means pulse-radiolysis time-resolved microwave conductivity technique

Number	Method	Morphology	Туре	Mobility	On/off	Reference
				$(cm^2 V^{-1} s^{-1})$		
396	Spin Coating	Thin Films	р	0.3	106-107	311
	Spin Coating	Thin Films	р	0.16	-	312
397	Spin Coating	Thin Films	р	0.27	106	313
398	Spin Coating	Thin Films	р	0.17	106	313
399	Spin Coating	Thin Films	р	0.21	106	313
400	Spin Coating	Thin Films	р	0.15	-	312
401	Spin Coating	Thin Films	р	0.33	-	312
402	Spin Coating	Thin Films	р	0.22	-	312
403	Spin Coating	Thin Films	р	0.67	106-107	311
404	Spin Coating	Thin Films	р	0.24	106	313
405	Spin Coating	Thin Films	р	6.8 x 10 ⁻³	-	314
406	Spin Coating	Thin Films	р	5.3 x 10 ⁻⁴	-	314
407	Spin Coating	Thin Films	р	2.3 x 10 ⁻⁴	-	314
408	Spin Coating	Thin Films	-	-	-	314
409	Spin Coating	Thin Films	р	1.4 x 10 ⁻³	2.7 x 10 ⁵	315
410	Spin Coating	Thin Films	р	1.54 x 10 ⁻²	-	316
411	Spin Coating	Thin Films	р	5.62 x 10 ⁻³	-	316

Table S25. The performance statistics of five-ring-fused organic molecules listed in Fig. 35 of the main text.

Number	Method	Morphology	Туре	Mobility (cm ² V ⁻¹ s ⁻¹)	On/off	Reference
412	Vacuum Deposition	Thin Films	Ambipolar	$\begin{array}{c} (0.023 \text{ (p)} \\ 0.043 \text{ (n)} \end{array}$	$3 \times 10^{3} (p)$ $2 \times 10^{4} (n)$	317
413	Vacuum Deposition	Thin Films	р	0.05	4 x 10 ⁴	317
	Vacuum Deposition	Thin Films	p p	0.04±0.01	-	318
414	Vacuum Deposition	Thin Films	Ambipolar	0.02 (p) 0.22 (n)	$5 \times 10^{3} (p)$ $10^{4} (n)$	317
415	Vacuum Deposition	Thin Films	n	0.33	-	318
416	Spin Coating	Thin Films	n	0.33	10 ²	319
	Blade Coating	Thin Films	n	0.49	10 ² -10 ³	319
417	Blade Coating	Thin Films	n	0.13	104	320
418	Blade Coating	Thin Films	n	0.03	10 ³	320
419	Spin Coating	Thin Films	р	5.4 x 10 ⁻⁴	104	321
420	Spin Coating	Thin Films	p	1.1 x 10 ⁻⁴	103	321
421	Spin Coating	Thin Films	Ambipolar	5.04 x 10 ⁻⁴ (p)	-	322
			1	6.72 x 10 ⁻⁴ (n)		
422	Spin Cast	Thin Films	n	0.15	-	323
423	Spin Cast	Thin Films	Ambipolar	2.4 x 10 ⁻³ (p)	-	324
	-		-	$1.5 \ge 10^{-2}$ (n)		
424	Spin Cast	Thin Films	n	0.15	~5 x 10 ⁵	324
425	Spin Cast	Thin Films	n	4.4 x 10 ⁻⁴	-	325
426	Spin Coating	Thin Films	Ambipolar	8.3 x 10 ⁻⁵ (p) ^a	-	326
				6.6 x 10 ⁻⁵ (n) ^a		
427	Spin Coating	Thin Films	Ambipolar	1.8 x 10 ⁻⁵ (p) ^a	-	326
				$3 \times 10^{-6} (n)^{a}$		
428	Spin Coating	Thin Films	n	2.43 x 10 ⁻⁴	-	327
429	Spin Coating	Thin Films	n	6.02 x 10 ⁻⁴	-	327
430	Spin Coating	Thin Films	n	$1.6 \ge 10^{-5} (n)^{a}$	-	326
431	Spin Coating	Thin Films	Ambipolar	3.69 x 10 ⁻⁴ (p) ^a	-	328
				2.43 x10 ⁻⁴ (n) ^a		
432	Spin Coating	Thin Films	Ambipolar	5.32 x 10 ⁻⁴ (p) ^a	-	328
				4.92 x 10 ⁻⁴ (n) ^a		
433	Spin Coating	Thin Films	Ambipolar	$6.03 \times 10^{-4} (p)^{a}$	-	328
				$6.02 \times 10^{-4} (n)^{a}$		
434	Spin Coating	Thin Films	n	1.35 x 10 ^{-4 a}	-	329
435	Spin Coating	Thin Films	n	2.79 x 10 ^{-4 a}	-	329
436	Spin Coating	Thin Films	-	-	-	329

Table S26. The performance statistics of five-ring-fused organic molecules listed in Fig. 36 of the main text.

a- Means space-charge-limited current (SCLC) measurement

Table S27. The performance statistics of five-ring-fused organic molecules listed in Fig. 37 of the main text.

	I	I		1	I	1
Number	Method	Morphology	Туре	Mobility	On/off	Reference
			• •	$(cm^2 V^{-1} s^{-1})$		
437	Spin Coating	Thin Films	р	0.8-1.2	103	330
	Spin Coating	Thin Films	р	3.6	-	331
	Spin Coating	Thin Films	р	1.5-2.5	-	332
	Spin Coating	Thin Films	р	0.068	>10 ³	333
	Spin Coating	Thin Films	р	1.38±0.19	-	334
	In-Situ	Thin Films	р	1.66	-	335
	Rubber					
	Matrix					
438	Spin Coating	Thin Films	р	0.2	106	330
439	Spin Coating	Thin Films	р	5.01	2 x 10 ⁶	336
440	Spin Coating	Thin Films	р	0.012	4.98 x 10 ⁵	337
441	Spin Coating	Thin Films	р	5.26	1.57 x 10 ⁶	337
442	Spin Coating	Thin Films	р	1.04 x 10 ⁻³	3.85 x 10 ⁴	337

			1			
Number	Method	Morphology	Туре	Mobility	On/off	Reference
				$(cm^2 V^{-1} s^{-1})$		
443	Vacuum Deposition	Thin Films	n	2.7 x 10 ⁻⁴	2 x 10 ⁴	53
444	Vacuum Deposition	Thin Films	n	8.8 x 10 ⁻⁴	2 x 10 ⁵	53
	Vacuum Deposition	Thin Films	n	1.1 x 10 ⁻²	106	338
445	Vacuum Deposition	Thin Films	n	2.2 x 10 ⁻⁴	8 x 10 ⁵	338
446	Vacuum Deposition	Thin Films	n	1.4 x 10 ⁻⁶	$2 \ge 10^2$	338
447	Vacuum Deposition	Thin Films	n	7.4 x 10 ⁻⁸	90	338
448	Vacuum Deposition	Thin Films	n	9.2 x 10 ⁻³	2 x 10 ⁶	338
	Drop Cast	Thin Films	n	1.7 x 10 ⁻⁵	8 x 10 ²	338
449	Vacuum Deposition	Thin Films	n	1.6 x 10 ⁻⁵	2×10^3	338
450	Vacuum Deposition	Thin Films	n	1.2 x 10 ⁻⁴	104	338
	Drop Cast	Thin Films	n	5.3 x 10 ⁻⁵	10 ²	338
451	Vacuum Deposition	Thin Films	n	1.1 x 10 ⁻²	106	338
452	_	-		2.0 x 10 ⁻³ (p) ^a	_	46
				8.3 x 10 ⁻⁵ (n) ^a		

Table S28. The performance statistics of five-ring-fused organic molecules listed in Fig. 38 of the main text.

a- Means Time-of-Flight measurement

Table S29. The performance statistics of five-ring-fused organic molecules listed in Fig. 39 of the main text.

Number	Method	Morphology	Туре	Mobility	On/off	Reference
				$(cm^2 V^{-1} s^{-1})$		
453	Vacuum Deposition	Thin Films	р	-	-	339
454	Drop Cast	Single Crystals	р	0.75	4.2×10^4	340
	Vacuum Deposition	Thin Films	р	0.058	105	340
455	Vacuum Deposition	Thin Films	р	7.8 x 10 ⁻⁶	106	340
456	Spin Coating	Thin Films	р	-	-	341
457	Vacuum Deposition	Thin Films	р	0.012	105	339
458	Vacuum Deposition	Thin Films	р	1.3 x 10 ⁻⁶	104	340
459	Vacuum Deposition	Thin Films	р	-	_	339
	Vacuum Deposition	Thin Films	_	-	-	340

Table S30. The performance statistics of five-ring-fused organic molecules listed in Fig. 40 of the main text.

Number	Method	Morphology	Туре	Mobility	On/off	Reference
				$(cm^2 V^{-1} s^{-1})$		
460	Spin Coating	Thin Films	р	6.4 x 10 ⁻³	103	342
461	Spin Coating	Thin Films	р	0.022	104	342
462	Spin Coating	Thin Films	р	0.035	104	342
463	Spin Coating	Thin Films	р	0.02	-	343
464	Spin Coating	Thin Films	р	0.02	104	344
465	Spin Coating	Thin Films	р	0.07	104	344
466	Spin Coating	Thin Films	р	3 x 10 ⁻³	-	343
467	Spin Coating	Thin Films	р	0.01	103	344
468	Spin Coating	Thin Films	р	1 x 10 ⁻³	10 ³	344
469	Spin Coating	Thin Films	р	3 x 10 ⁻³	_	343

Table S31. The performance statistics of five-ring-fused organic molecules listed in Fig. 41 of the main text.

Number	Method	Morphology	Туре	Mobility	On/off	Reference
				$(cm^2 V^{-1} s^{-1})$		
470	-	-	-	0.05ª	-	345
471	Vacuum Deposition	Thin Films	р	2.9 x 10 ⁻⁶	105	345
472	-	-	-	0.76 ^a	-	345
473	Vacuum Deposition	Thin Films	р	6.2 x 10 ⁻⁶	104	345
	-	-	р	8.7 x 10 ^{-2 a}	-	345
474	-	-	р	0.5 a	-	345
475	Vacuum Deposition	Thin Films	р	2.5 x 10 ⁻⁶	104	345

a- Means calculated mobility

Number Method Morphology Type Mobility On/off Referenc $(cm^2 V^{-1} s^{-1})$ e 346 476 Thin Films **Dip** Coating 0.025 р 347 477 Drop Casting Thin Films 5 x 10⁻⁵ р 347 478 Drop Casting Thin Films 6 x 10⁻⁴ _ р 347 479 Drop Casting Thin Films 0.19-0.76 _ р 348 480 Vacuum Deposition Thin Films 0.34 $10^{6} - 10^{7}$ р 349 **Physical Vapor** Single 0.01-3.6 $10^{4}-8x10^{6}$ р **Transport** Crystals Vacuum Deposition 348 104-105 481 Thin Films 1.77 x 10⁻⁴ р 349 Physical Vapor Single Crystals 10-4-0.014 6 x 10²р 10^{4} Transport Vacuum Deposition 348 482 Thin Films 3.01x10⁻⁴ $(1-5) \ge 10^5$ р 349 Physical Vapor Single Crystals $3x10^{-4}-0.4$ 2 x 10³-9 x р Transport 10^{5} 350 Vacuum Deposition Thin Films 483 --_ Thin Films 350 484 Vacuum Deposition _ --350 485 Vacuum Deposition Thin Films ---350 486 Vacuum Deposition Thin Films 0.2 _ n 350 487 Vacuum Deposition Thin Films 0.42 n -Vacuum Deposition 350 Thin Films 488 ---351 489 Spin Coating Thin Films _ n 351 490 Spin Coating Thin Films 1.3 x 10⁻⁵ 10^{5} n Thin Films 351 491 Spin Coating 5.3 x 10⁻³ 10^{6} n 351 492 Spin Coating Thin Films n 351 493 Spin Coating Thin Films 4.8 x 10⁻⁴ 10^{2} n 352 10^{6} 494 Spin Coating Thin Films 0.05 р 352 Spin Coating Thin Films 10^{4} 495 0.012 р 353 496 Spin Coating Thin Films 0.05 р 353 497 Spin Coating Thin Films 0.4 р -354 2.77 x 10⁻⁴ (p)^a 498 Ambip _ 2.81 x 10⁻⁴ (n)^a olar 499 Vacuum Deposition Thin Films 0.39 10^{6} 355 n 356 500 Vacuum Deposition Thin Films 1.3 x 10⁻³ р 341 501 Spin Coating Thin Films 0.062 3 x 10³ р 341 502 Spin Coating Thin Films -_ 242 10⁵ 503 **Dip Coating** Thin Films 3.8 р **Dip Coating** Thin Films 106 242 504 3.0 р 242 Dip Coating Thin Films 0.64 10^{4} 505 р 357 2.4 x 10^{-6 a} Spin Coating Thin Films 506 n -357 9.88 x 10^{-6 a} 507 Spin Coating Thin Films n -357 3.88 x 10⁻⁷ a 508 Spin Coating Thin Films n _

Table S32. The performance statistics of five-ring-fused organic molecules listed in Fig. 42 of the main text.

a- Means SCLC measurement

Table S33. The performance statistics of five-ring-fused organic molecules listed in Fig. 43 of the main text.

Number	Method	Morphology	Туре	Mobility	On/off	Reference
				$(cm^2 V^{-1} s^{-1})$		
509	Spin Coating	Thin Films	р	8 x 10 ⁻³	-	358
510	Spin Coating	Thin Films	Ambipolar	0.65 (p); 0.1 (n)	-	358
511	Spin Coating	Thin Films	р	0.014	104	359
512	Spin Coating	Thin Films	р	4 x10 ⁻³	10 ³	359
513	Spin Coating	Thin Films	р	0.28	10 ³	359
514	Spin Coating	Thin Films	р	0.19	104	359
515	Spin Coating	Thin Films	n	0.11	104	360
516	Spin Coating	Thin Films	Ambipolar	0.015 (p)	10 ⁴ (p)	360
				0.15 (n)	10^{3} (n)	
517	Spin Coating	Thin Films	n	0.4	106	360
518	Spin Coating	Thin Films	n	4.5 x 10 ⁻³	~104	361
519	Spin Coating	Thin Films	n	0.013	~104	361

Number	Name	Molecular Structure	HOMO (eV)	LUMO (eV)	Bandgap (eV)	Reference
	Pentacene		-5.0	-3.2	1.8	362
056	-	Š	-5.17	-3.21	1.96	68
072	ABT		-5.35	-2.85	2.5	78
079	DNT-V		-5.68	-2.73	2.95	82
083	DNT-W	S	-5.87	-	-	84
085	anti-ADT	S S S S S S S S S S S S S S S S S S S	-5.1	-2.59	2.21	87
086	syn-ADT	STITS	-5.1	-2.59	2.21	87
128	PDT-2	s s	-5.49	-1.32	4.17	189
130	PDT-1		-5.63	-1.19	4.44	189
152	-		-5.8	-2.5	3.3	197
156	ATT	S S S S S S S S S S S S S S S S S S S	-5.3	-2.78	2.52	201
167	DBTDT	S S S	-5.6	-2.14	3.46	203
169	BBTT	S-S-S	-5.64	-1.87	3.77	207

Table S34. The performance statistics of five-ring-fused organic molecules listed in Fig. 44 of the main text.

171	anti-TBBT	S S S	-5.6	-2.5	3.1	209
173	syn-TBBT	S-C-S-S	-5.6	-2.3	3.3	209
200	PTA	S S S	-5.33	-2.04	3.29	225
221	DNF-V		-5.56	-	-	236
224	DNF-W		-5.85	-	-	84
225	DNF-U		-5.71	-	-	238
226	anti-ADF		-5.1	-2.5	2.6	89
232	DNS-W	Se	-5.81	-	-	84
234	anti-ADS	Sec. Se	-5	-2.6	2.4	89
236	-	Se Se	-5.6	-2.4	3.2	197
240	-		-5.12	-2.15	2.97	248
351	-		-5.354	-1.995	3.359	295

340	-		-5.21	-	-	292
354	-		-5.651	-3.318	2.333	271
453	-	S N H	-5.84	-2.13	3.71	339
457	-	H S S S S	-5.3	-1.79	3.51	339
480	-	S N N H	-5.44	-3.03	2.41	348
483	-		-6.59	-3.92	2.67	350
500	-	HZ ZZH	-5.5	-3	2.5	356

Reference

- 1. A. N. Aleshin, J. Y. Lee, S. W. Chu, J. S. Kim and Y. W. Park, Appl. Phys. Lett., 2004, 84, 5383-5385.
- 2. V. Y. Butko, X. Chi and A. P. Ramirez, Solid State Commun., 2003, 128, 431-434.
- 3. R. W. I. de Boer, T. M. Klapwijk and A. F. Morpurgo, Appl. Phys. Lett., 2003, 83, 4345-4347.
- 4. R. W. I. de Boer, M. Jochemsen, T. M. Klapwijk, A. F. Morpurgo, J. Niemax, A. K. Tripathi and J. Pflaum, J. Appl. Phys., 2004, **95**, 1196-1202.
- 5. C. Goldmann, S. Haas, C. Krellner, K. P. Pernstich, D. J. Gundlach and B. Batlogg, J. Appl. Phys., 2004, 96, 2080-2086.
- 6. H. E. Katz, C. Kloc, V. Sundar, J. Zaumseil, A. L. Briseno and Z. Bao, J. Mater. Res., 2004, 19, 1995-1998.
- 7. C. R. Newman, R. J. Chesterfield, J. A. Merlo and C. D. Frisbie, Appl. Phys. Lett., 2004, 85, 422-424.
- 8. T. Nisikawa, N. Moriguchi, T. Anezaki, A. Unno, M. Tachibana and K. Kojima, *Jpn. J. Appl. Phys.*, 2006, **45**, 5238-5240.
- 9. O. Ostroverkhova, D. G. Cooke, F. A. Hegmann, J. E. Anthony, V. Podzorov, M. E. Gershenson, O. D. Jurchescu and T. T. M. Palstra, *Appl. Phys. Lett.*, 2006, **88**, 162101.
- 10. T. H. Kim, J. H. Lee, J. H. Kim and C. Seoul, Mater. Res. Soc. Symp. Proc., 2006, 920, 39-42.
- 11. M. J. Panzer and C. D. Frisbie, Appl. Phys. Lett., 2006, 88, 203504.
- 12. C. Reese, W.-J. Chung, M.-m. Ling, M. Roberts and Z. Bao, Appl. Phys. Lett., 2006, 89, 202108.
- 13. T. Takahashi, T. Takenobu, J. Takeya and Y. Iwasa, Adv. Funct. Mater., 2007, 17, 1623-1628.
- 14. Y. Xia, V. Kalihari, C. D. Frisbie, N. K. Oh and J. A. Rogers, Appl. Phys. Lett., 2007, 90, 162106.
- 15. S. Terao, T. Hirai, N. Morita, H. Maeda, K. Kojima and M. Tachibana, J. Appl. Phys., 2010, 108, 124511-124514.
- 16. C.-T. Chien, C.-C. Lin, M. Watanabe, Y.-D. Lin, T.-H. Chao, T.-c. Chiang, X.-H. Huang, Y.-S. Wen, C.-H. Tu, C.-H. Sun and T. J. Chow, *J. Mater. Chem.*, 2012, **22**, 13070-13075.
- 17. T. P. I. Saragi and T. Reichert, Appl. Phys. Lett., 2012, 100, 073304.
- 18. L. A. Morrison, D. Stanfield, M. Jenkins, A. A. Baronov, D. L. Patrick and J. M. Leger, Org. Electron., 2016, 33, 269-273.
- 19. V. Y. Butko, X. Chi, D. V. Lang and A. P. Ramirez, Appl. Phys. Lett., 2003, 83, 4773-4775.
- 20. J. Takeya, C. Goldmann, S. Haas, K. P. Pernstich, B. Ketterer and B. Batlogg, J. Appl. Phys., 2003, 94, 5800-5804.
- 21. O. D. Jurchescu, J. Baas and T. T. M. Palstra, Appl. Phys. Lett., 2004, 84, 3061-3063.
- 22. J. Takeya, T. Nishikawa, T. Takenobu, S. Kobayashi, Y. Iwasa, T. Mitani, C. Goldmann, C. Krellner and B. Batlogg, *Appl. Phys. Lett.*, 2004, **85**, 5078-5080.
- 23. V. K. Thorsmølle, R. D. Averitt, X. Chi, D. J. Hilton, D. L. Smith, A. P. Ramirez and A. J. Taylor, *Appl. Phys. Lett.*, 2004, **84**, 891-893.
- 24. T. Minari, T. Nemoto and S. Isoda, J. Appl. Phys., 2004, 96, 769-772.
- 25. L. B. Roberson, J. Kowalik, L. M. Tolbert, C. Kloc, R. Zeis, X. Chi, R. Fleming and C. Wilkins, *J. Am. Chem. Soc.*, 2005, **127**, 3069-3075.
- 26. A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl and Z. Bao, *Nature*, 2006, **444**, 913-917.
- 27. J. Y. Lee, S. Roth and Y. W. Park, Appl. Phys. Lett., 2006, 88, 252106.
- 28. T. Minari, T. Nemoto and S. Isoda, J. Appl. Phys., 2006, 99, 034506.
- 29. O. D. Jurchescu, M. Popinciuc, B. J. van Wees and T. T. M. Palstra, Adv. Mater., 2007, 19, 688-692.
- 30. S. Liu, A. L. Briseno, S. C. B. Mannsfeld, W. You, J. Locklin, H. W. Lee, Y. Xia and Z. Bao, *Adv. Funct. Mater.*, 2007, **17**, 2891-2896.
- 31. T. Takenobu, K. Watanabe, Y. Yomogida, H. Shimotani and Y. Iwasa, Appl. Phys. Lett., 2008, 93, 073301-073303.
- 32. Y. Kimura, M. Niwano, N. Ikuma, K. Goushi and K. Itaya, Langmuir, 2009, 25, 4861-4863.
- 33. H. Yang, C. Yang, S. H. Kim, M. Jang and C. E. Park, ACS Appl. Mater. Interfaces, 2010, 2, 391-396.
- 34. R. Häusermann and B. Batlogg, Appl. Phys. Lett., 2011, 99, 083303.
- 35. T. Uemura, M. Yamagishi, J. Soeda, Y. Takatsuki, Y. Okada, Y. Nakazawa and J. Takeya, *Phys. Rev. B*, 2012, **85**, 035313.

- 36. Y. Takeyama, S. Ono and Y. Matsumoto, Appl. Phys. Lett., 2012, 101, 083303.
- 37. M. Watanabe, Y. J. Chang, S. W. Liu, T. H. Chao, K. Goto, M. M. Islam, C. H. Yuan, Y. T. Tao, T. Shinmyozu and T. J. Chow, *Nat. Chem.*, 2012, *4*, 574-578.
- 38. T. J. Sonnonstine and A. M. Hermann, J. Chem. Phys., 1974, 60, 1335-1340.
- 39. T. P. Nguyen and J. H. Shim, Phys. Chem. Chem. Phys., 2016, 18, 13888-13896.
- 40. N. Kawai, R. Eguchi, H. Goto, K. Akaike, Y. Kaji, T. Kambe, A. Fujiwara and Y. Kubozono, *J. Phys. Chem. C*, 2012, **116**, 7983-7988.
- 41. Q. Xin, S. Duhm, F. Bussolotti, K. Akaike, Y. Kubozono, H. Aoki, T. Kosugi, S. Kera and N. Ueno, *Phys. Rev. Lett.*, 2012, **108**, 226401.
- 42. X. He, R. Eguchi, H. Goto, E. Uesugi, S. Hamao, Y. Takabayashi and Y. Kubozono, Org. Electron., 2013, 14, 1673-1682.
- 43. C.-C. Hsiao, Y.-K. Lin, C.-J. Liu, T.-C. Wu and Y.-T. Wu, Adv. Synth. Catal., 2010, 352, 3267-3274.
- 44. C. Py, T. C. Gorjanc, T. Hadizad, J. Zhang and Z. Y. Wang, J. Vac. Sci. Technol. A, 2006, 24, 654-656.
- 45. J. P. M. Serbena, I. A. Hümmelgen, T. Hadizad and Z. Y. Wang, Small, 2006, 2, 372-374.
- 46. Y. Park, J. H. Lee, D. H. Jung, S. H. Liu, Y. H. Lin, L. Y. Chen, C. C. Wu and J. Park, *J. Mater. Chem.*, 2010, **20**, 5930-5936.
- 47. D. T. Chase, A. G. Fix, S. J. Kang, B. D. Rose, C. D. Weber, Y. Zhong, L. N. Zakharov, M. C. Lonergan, C. Nuckolls and M. M. Haley, *J. Am. Chem. Soc.*, 2012, **134**, 10349-10352.
- 48. L. L. Feng, H. L. Dong, Q. Y. Li, W. G. Zhu, G. G. Qiu, S. Ding, Y. Li, M. A. Christensen, C. R. Parker, Z. M. Wei, M. B. Nielsen and W. P. Hu, *Sci. China-Mater.*, 2017, **60**, 75-82.
- 49. H. Usta, A. Facchetti and T. J. Marks, J. Am. Chem. Soc., 2008, 130, 8580-8581.
- 50. S. A. DiBenedetto, D. L. Frattarelli, A. Facchetti, M. A. Ratner and T. J. Marks, *J. Am. Chem. Soc.*, 2009, **131**, 11080-11090.
- 51. H. Usta, C. Risko, Z. Wang, H. Huang, M. K. Deliomeroglu, A. Zhukhovitskiy, A. Facchetti and T. J. Marks, *J. Am. Chem. Soc.*, 2009, **131**, 5586-5608.
- 52. R. Ozdemir, D. Choi, M. Ozdemir, G. Kwon, H. Kim, U. Sen, C. Kim and H. Usta, *J. Mater. Chem. C*, 2017, **5**, 2368-2379.
- 53. T. Nakagawa, D. Kumaki, J.-i. Nishida, S. Tokito and Y. Yamashita, Chem. Mater., 2008, 20, 2615-2617.
- 54. H. Usta, A. Facchetti and T. J. Marks, Acc. Chem. Res., 2011, 44, 501-510.
- 55. Z.-P. Fan, X.-Y. Li, X.-E. Luo, X. Fei, B. Sun, L.-C. Chen, Z.-F. Shi, C.-L. Sun, X. Shao and H.-L. Zhang, *Adv. Funct. Mater.*, 2017, **27**, 1702318.
- 56. M. Ozdemir, D. Choi, G. Kwon, Y. Zorlu, H. Kim, M.-G. Kim, S. Seo, U. Sen, M. Citir, C. Kim and H. Usta, *RSC Adv.*, 2016, **6**, 212-226.
- 57. B. J. Kim, Y.-I. Park, H. J. Kim, K. Ahn, D. R. Lee, D. H. Kim, S.-Y. Oh, J.-W. Park and J. H. Cho, *J. Mater. Chem.*, 2012, **22**, 14617-14623.
- 58. Y. Miyata, T. Minari, T. Nemoto, S. Isoda and K. Komatsu, Org. Biomol. Chem., 2007, 5, 2592-2598.
- 59. X.-Y. Zhang, J.-D. Huang, J.-J. Yu, P. Li, W.-P. Zhang and T. Frauenheim, *Phys. Chem. Chem. Phys.*, 2015, **17**, 25463-25470.
- 60. M. Moral, A. J. Pérez-Jiménez and J. C. Sancho-García, J. Phys. Chem. C, 2017, 121, 3171-3181.
- 61. H. Lee, Y. Zhang, L. Zhang, T. Mirabito, E. K. Burnett, S. Trahan, A. R. Mohebbi, S. C. B. Mannsfeld, F. Wudl and A. L. Briseno, *J. Mater. Chem. C*, 2014, **2**, 3361-3366.
- 62. M. Romain, M. Chevrier, S. Bebiche, T. Mohammed-Brahim, J. Rault-Berthelot, E. Jacques and C. Poriel, *J. Mater. Chem. C*, 2015, **3**, 5742-5753.
- 63. P. Sonar, L. Oldridge, A. C. Grimsdale, K. Müllen, M. Surin, R. Lazzaroni, P. Leclère, J. Pinto, L.-L. Chua, H. Sirringhaus and R. H. Friend, *Synth. Met.*, 2010, **160**, 468-474.
- 64. T.-J. Ha, D. Sparrowe and A. Dodabalapur, Org. Electron., 2011, **12**, 1846-1851.
- 65. S. Georgakopoulos, D. Sparrowe, Y. Gu, M. M. Nielsen, F. Meyer and M. Shkunov, *Appl. Phys. Lett.*, 2012, **101**, 213305.
- 66. H. Kim, N. Schulte, G. Zhou, K. Müllen and F. Laquai, Adv. Mater., 2011, 23, 894-897.
- 67. W. M. Zhang, Y. Feng, K. S. Diao, L. Sun, F. Hong, Z. X. Su and Y. P. Hu, Chem. J. Chinese U., 2013, 34, 2233-2238.

- 68. M. L. Tang, T. Okamoto and Z. Bao, J. Am. Chem. Soc., 2006, 128, 16002-16003.
- 69. F. Valiyev, W. S. Hu, H. Y. Chen, M. Y. Kuo, I. Chao and Y. T. Tao, Chem. Mater., 2007, 19, 3018-3026.
- 70. Q. Yuan, S. C. B. Mannsfeld, M. L. Tang, M. F. Toney, J. Luening and Z. A. Bao, *J. Am. Chem. Soc.*, 2008, **130**, 3502-3508.
- 71. U. Kraft, J. E. Anthony, E. Ripaud, M. A. Loth, E. Weber and H. Klauk, Chem. Mater., 2015, 27, 998-1004.
- 72. M. L. Tang, A. D. Reichardt, P. Wei and Z. Bao, J. Am. Chem. Soc., 2009, 131, 5264-5273.
- 73. M. L. Tang, A. D. Reichardt, T. Okamoto, N. Miyaki and Z. Bao, Adv. Funct. Mater., 2008, 18, 1579-1585.
- 74. M. L. Tang, A. D. Reichardt, N. Miyaki, R. M. Stoltenberg and Z. Bao, J. Am. Chem. Soc., 2008, 130, 6064-6065.
- 75. M. L. Tang, A. D. Reichardt, T. Siegrist, S. C. B. Mannsfeld and Z. N. Bao, Chem. Mater., 2008, 20, 4669-4676.
- 76. M. L. Tang, J. H. Oh, A. D. Reichardt and Z. Bao, J. Am. Chem. Soc., 2009, 131, 3733-3740.
- 77. S. Chai, S. H. Wen, J. D. Huang and K. L. Han, J. Comput. Chem., 2011, **32**, 3218-3225.
- 78. C. Y. Du, Y. L. Guo, Y. Q. Liu, W. F. Qiu, H. J. Zhang, X. Gao, Y. Liu, T. Qi, K. Lu and G. Yu, *Chem. Mater.*, 2008, **20**, 4188-4190.
- 79. C. Du, Y. Guo, J. Chen, H. Liu, Y. Liu, S. Ye, K. Lu, J. Zheng, T. Wu, Y. Liu, Z. Shuai and G. Yu, J. Phys. Chem. C, 2010, 114, 10565-10571.
- Y. Guo, C. Du, G. Yu, C.-a. Di, S. Jiang, H. Xi, J. Zheng, S. Yan, C. Yu, W. Hu and Y. Liu, Adv. Funct. Mater., 2010, 20, 1019-1024.
- 81. W. Zhang, J. Zhang, X. Chen, Z. Mao, X. Xie, L. Wang, Y. Liao, G. Yu, Y. Liu and D. Zhu, *J. Mater. Chem. C*, 2013, **1**, 6403-6410.
- 82. T. Okamoto, C. Mitsui, M. Yamagishi, K. Nakahara, J. Soeda, Y. Hirose, K. Miwa, H. Sato, A. Yamano, T. Matsushita, T. Uemura and J. Takeya, *Adv. Mater.*, 2013, **25**, 6392-6397.
- 83. S. Safizan, N. Shigeki and O. Hiroyuki, Jpn. J. Appl. Phys., 2017, 56, 03BB04.
- 84. C. Mitsui, T. Okamoto, H. Matsui, M. Yamagishi, T. Matsushita, J. Soeda, K. Miwa, H. Sato, A. Yamano, T. Uemura and J. Takeya, *Chem. Mater.*, 2013, **25**, 3952-3956.
- 85. T. Oyama, Y. S. Yang, K. Matsuo and T. Yasuda, Chem. Commun., 2017, 53, 3814-3817.
- M. C. Chen, C. Kim, S. Y. Chen, Y. J. Chiang, M. C. Chung, A. Facchetti and T. J. Marks, J. Mater. Chem., 2008, 18, 1029-1036.
- 87. M. Mamada, H. Katagiri, M. Mizukami, K. Honda, T. Minamiki, R. Teraoka, T. Uemura and S. Tokito, ACS Appl. Mater. Interfaces, 2013, 5, 9670-9677.
- 88. M. Mamada, T. Minamiki, H. Katagiri and S. Tokito, Org. Lett., 2012, 14, 4062-4065.
- 89. M. Nakano, K. Niimi, E. Miyazaki, I. Osaka and K. Takimiya, J. Org. Chem., 2012, 77, 8099-8111.
- 90. J. G. Laquindanum, H. E. Katz and A. J. Lovinger, J. Am. Chem. Soc., 1998, 120, 664-672.
- 91. H. E. Katz, W. Li, A. J. Lovinger and J. Laquindanum, Synth. Met., 1999, 102, 897-899.
- 92. C. Wang, D. Hashizume, M. Nakano, T. Ogaki, H. Takenaka, K. Kawabata and K. Takimiya, *Chem. Sci.*, 2020, **11**, 1573-1580.
- 93. P. Y. Huang, C. Kim and M. C. Chen, Synlett, 2011, 2151-2156.
- 94. C. Kim, P.-Y. Huang, J.-W. Jhuang, M.-C. Chen, J.-C. Ho, T.-S. Hu, J.-Y. Yan, L.-H. Chen, G.-H. Lee, A. Facchetti and T. J. Marks, *Org. Electron.*, 2010, **11**, 1363-1375.
- 95. L.-H. Chen, T.-S. Hu, P.-Y. Huang, C. Kim, C.-H. Yang, J.-J. Wang, J.-Y. Yan, J.-C. Ho, C.-C. Lee and M.-C. Chen, *ChemPhysChem*, 2013, **14**, 2772-2776.
- 96. M. M. Payne, S. R. Parkin, J. E. Anthony, C. C. Kuo and T. N. Jackson, J. Am. Chem. Soc., 2005, 127, 4986-4987.
- 97. K. C. Dickey, J. E. Anthony and Y. L. Loo, Adv. Mater., 2006, 18, 1721-1726.
- 98. K. C. Dickey, T. J. Smith, K. J. Stevenson, S. Subramanian, J. E. Anthony and Y. L. Loo, *Chem. Mater.*, 2007, **19**, 5210-5215.
- 99. W. H. Lee, J. A. Lim, D. H. Kim, J. H. Cho, Y. Jang, Y. H. Kim, J. I. Han and K. Cho, *Adv. Funct. Mater.*, 2008, **18**, 560-565.
- S. Subramanian, S. K. Park, S. R. Parkin, V. Podzorov, T. N. Jackson and J. E. Anthony, *J. Am. Chem. Soc.*, 2008, 130, 2706-2707.
- 101. J. E. Anthony, S. Subramanian, S. R. Parkin, S. K. Park and T. N. Jackson, *J. Mater. Chem.*, 2009, **19**, 7984-7989.

- 102. W. H. Lee, J. A. Lim, D. Kwak, J. H. Cho, H. S. Lee, H. H. Choi and K. Cho, Adv. Mater., 2009, 21, 4243-4248.
- Y. S. Chung, N. Shin, J. Kang, Y. Jo, V. M. Prabhu, S. K. Satija, R. J. Kline, D. M. DeLongchamp, M. F. Toney, M. A. Loth, B. Purushothaman, J. E. Anthony and D. Y. Yoon, *J. Am. Chem. Soc.*, 2010, **133**, 412-415.
- 104. S. H. Kim, K. Hong, M. Jang, J. Jang, J. E. Anthony, H. Yang and C. E. Park, *Adv. Mater.*, 2010, **22**, 4809-4813.
- 105. K. Park, S. H. Park, E. Kim, J.-D. Kim, S.-Y. An, H. S. Lim, H. H. Lee, D. H. Kim, D. Y. Ryu, D. R. Lee and J. H. Cho, *Chem. Mater.*, 2010, **22**, 5377-5382.
- 106. S. H. Kim, M. Jang, H. Yang, J. E. Anthony and C. E. Park, *Adv. Funct. Mater.*, 2011, **21**, 2198-2207.
- 107. L. Yu, X. Li, E. Pavlica, M. A. Loth, J. E. Anthony, G. Bratina, C. Kjellander, G. Gelinck and N. Stingelin, *Appl. Phys. Lett.*, 2011, **99**, 263304.
- 108. S. S. Lee, M. A. Loth, J. E. Anthony and Y.-L. Loo, J. Am. Chem. Soc., 2012, 134, 5436-5439.
- 109. H. T. Yi, M. M. Payne, J. E. Anthony and V. Podzorov, *Nat. Commun.*, 2012, **3**, 1259.
- J. Jang, J. Park, S. Nam, J. E. Anthony, Y. Kim, K. S. Kim, K. S. Kim, B. H. Hong and C. E. Park, *Nanoscale*, 2013, 5, 11094-11101.
- 111. J. Kim, S. H. Kim, T. K. An, S. Park and C. E. Park, J. Mater. Chem. C, 2013, 1, 1272-1278.
- 112. S. Nam, J. Jang, J. E. Anthony, J.-J. Park, C. E. Park and K. Kim, ACS Appl. Mater. Interfaces, 2013, 5, 2146-2154.
- 113. J. Chen, M. Shao, K. Xiao, A. J. Rondinone, Y.-L. Loo, P. R. C. Kent, B. G. Sumpter, D. Li, J. K. Keum, P. J. Diemer, J. E. Anthony, O. D. Jurchescu and J. Huang, *Nanoscale*, 2014, **6**, 449-456.
- 114. M. Jang, J. H. Park, S. Im, S. H. Kim and H. Yang, Adv. Mater., 2014, 26, 288-292.
- 115. S. Lee, M. Jang and H. Yang, ACS Appl. Mater. Interfaces, 2014, 6, 20444-20451.
- 116. J. Kim, M. Jang, T. K. An, S. Kim, H. Kim, S. H. Kim, H. Yang and C. E. Park, Org. Electron., 2015, **17**, 87-93.
- 117. K. Kim, H. Kim, S. H. Kim and C. E. Park, *Phys. Chem. Chem. Phys.*, 2015, **17**, 16791-16797.
- 118. K. Kim, M. Jang, M. Lee, T. K. An, J. E. Anthony, S. H. Kim, H. Yang and C. E. Park, *J. Mater. Chem. C*, 2016, **4**, 6996-7003.
- 119. S. W. Button and J. M. Mativetsky, *Appl. Phys. Lett.*, 2017, **111**, 083302.
- 120. K. V. Nguyen, J. H. Lee, S. C. Lee, G. M. Ku and W. H. Lee, *Org. Electron.*, 2017, **41**, 107-113.
- 121. S. L. Stephanie, K. Chang Su, D. G. Enrique, P. Balaji, F. T. Michael, W. Cheng, H. Alexander, E. A. John and L. Yueh-Lin, *Adv. Mater.*, 2009, **21**, 3605-3609.
- 122. P. J. Diemer, C. R. Lyle, Y. Mei, C. Sutton, M. M. Payne, J. E. Anthony, V. Coropceanu, J.-L. Brédas and O. D. Jurchescu, *Adv. Mater.*, 2013, **25**, 6956-6962.
- 123. Y. Seo, J. H. Lee, J. E. Anthony, K. V. Nguyen, Y. H. Kim, H. W. Jang, S. Ko, Y. Cho and W. H. Lee, *Adv. Mater. Interfaces*, 2018, **5**, 1701399.
- 124. D. H. Kwak, H. H. Choi, J. E. Anthony, S. Kim, H. Chae, J. Hwang, S. Lee, H. J. Park, B.-G. Kim and W. H. Lee, *Org. Electron.*, 2020, **85**, 105878.
- 125. D. H. Kwak, Y. Seo, J. E. Anthony, S. Kim, J. Hur, H. Chae, H. J. Park, B.-G. Kim, E. Lee, S. Ko and W. H. Lee, *Adv. Mater. Interfaces*, 2020, **7**, 1901696.
- 126. R. K. Hallani, K. J. Thorley, Y. Mei, S. R. Parkin, O. D. Jurchescu and J. E. Anthony, *Adv. Funct. Mater.*, 2016, **26**, 2341-2348.
- D. J. Gundlach, J. E. Royer, S. K. Park, S. Subramanian, O. D. Jurchescu, B. H. Hamadani, A. J. Moad, R. J. Kline, L. C. Teague, O. Kirillov, C. A. Richter, J. G. Kushmerick, L. J. Richter, S. R. Parkin, T. N. Jackson and J. E. Anthony, *Nat. Mater.*, 2008, 7, 216-221.
- 128. O. D. Jurchescu, B. H. Hamadani, H. D. Xiong, S. K. Park, S. Subramanian, N. M. Zimmerman, J. E. Anthony, T. N. Jackson and D. J. Gundlach, *Appl. Phys. Lett.*, 2008, **92**, 132103.
- 129. O. D. Jurchescu, S. Subramanian, R. J. Kline, S. D. Hudson, J. E. Anthony, T. N. Jackson and D. J. Gundlach, *Chem. Mater.*, 2008, **20**, 6733-6737.
- 130. S. K. Park, D. A. Mourey, S. Subramanian, J. E. Anthony and T. N. Jackson, *Appl. Phys. Lett.*, 2008, **93**, 043301.
- 131. S. K. Park, D. A. Mourey, S. Subramanian, J. E. Anthony and T. N. Jackson, *IEEE Electron Device Lett.*, 2008, **29**, 1004-1006.
- 132. O. D. Jurchescu, D. A. Mourey, S. Subramanian, S. R. Parkin, B. M. Vogel, J. E. Anthony, T. N. Jackson and D. J. Gundlach, *Phys. Rev. B*, 2009, **80**, 085201.

- 133. D. A. Mourey, S. K. Park, D. A. Zhao, J. Sun, Y. V. Li, S. Subramanian, S. F. Nelson, D. H. Levy, J. E. Anthony and T. N. Jackson, *Org. Electron.*, 2009, **10**, 1632-1635.
- 134. A. D. Platt, J. Day, S. Subramanian, J. E. Anthony and O. Ostroverkhova, *J. Phys. Chem. C*, 2009, **113**, 14006-14014.
- 135. N. A. Azarova, J. W. Owen, C. A. McLellan, M. A. Grimminger, E. K. Chapman, J. E. Anthony and O. D. Jurchescu, *Org. Electron.*, 2010, **11**, 1960-1965.
- 136. D.-S. Leem, P. H. Wöbkenberg, J. Huang, T. D. Anthopoulos, D. D. C. Bradley and J. C. deMello, *Org. Electron.*, 2010, **11**, 1307-1312.
- 137. J. Smith, R. Hamilton, Y. Qi, A. Kahn, D. D. C. Bradley, M. Heeney, I. McCulloch and T. D. Anthopoulos, *Adv. Funct. Mater.*, 2010, **20**, 2330-2337.
- 138. A. K. Tripathi, E. C. P. Smits, M. Loth, J. E. Anthony and G. H. Gelinck, *Appl. Phys. Lett.*, 2011, 98, 202106.
- 139. J. Jang, S. Nam, K. Im, J. Hur, S. N. Cha, J. Kim, H. B. Son, H. Suh, M. A. Loth, J. E. Anthony, J.-J. Park, C. E. Park, J. M. Kim and K. Kim, *Adv. Funct. Mater.*, 2012, **22**, 1005-1014.
- 140. D. Lehnherr, A. R. Waterloo, K. P. Goetz, M. M. Payne, F. Hampel, J. E. Anthony, O. D. Jurchescu and R. R. Tykwinski, *Org. Lett.*, 2012, **14**, 3660-3663.
- 141. R. Li, J. W. Ward, D.-M. Smilgies, M. M. Payne, J. E. Anthony, O. D. Jurchescu and A. Amassian, *Adv. Mater.*, 2012, **24**, 5553-5558.
- J. W. Ward, M. A. Loth, R. J. Kline, M. Coll, C. Ocal, J. E. Anthony and O. D. Jurchescu, *J. Mater. Chem.*, 2012, 22, 19047-19053.
- 143. S. Hunter and T. D. Anthopoulos, *Adv. Mater.*, 2013, **25**, 4320-4326.
- 144. Y. V. Li, D. A. Mourey, M. A. Loth, D. A. Zhao, J. E. Anthony and T. N. Jackson, *Org. Electron.*, 2013, **14**, 2411-2417.
- 145. N. Shin, J. Kang, L. J. Richter, V. M. Prabhu, R. J. Kline, D. A. Fischer, D. M. DeLongchamp, M. F. Toney, S. K. Satija, D. J. Gundlach, B. Purushothaman, J. E. Anthony and D. Y. Yoon, *Adv. Funct. Mater.*, 2013, **23**, 366-376.
- 146. S. Hunter, J. Chen and T. D. Anthopoulos, *Adv. Funct. Mater.*, 2014, **24**, 5969-5976.
- 147. J. Kim, S. Cho, Y.-H. Kim and S. K. Park, Org. Electron., 2014, 15, 2099-2106.
- 148. A. B. Naden, J. Loos and D. A. MacLaren, J. Mater. Chem. C, 2014, 2, 245-255.
- 149. I. Nasrallah, K. K. Banger, Y. Vaynzof, M. M. Payne, P. Too, J. Jongman, J. E. Anthony and H. Sirringhaus, *Chem. Mater.*, 2014, **26**, 3914-3919.
- 150. A. Pierre, M. Sadeghi, M. M. Payne, A. Facchetti, J. E. Anthony and A. C. Arias, *Adv. Mater.*, 2014, **26**, 5722-5727.
- 151. J. W. Ward, K. P. Goetz, A. Obaid, M. M. Payne, P. J. Diemer, C. S. Day, J. E. Anthony and O. D. Jurchescu, *Appl. Phys. Lett.*, 2014, **105**, 083305.
- 152. P. J. Diemer, Z. A. Lamport, Y. Mei, J. W. Ward, K. P. Goetz, W. Li, M. M. Payne, M. Guthold, J. E. Anthony and O. D. Jurchescu, *Appl. Phys. Lett.*, 2015, **107**, 103303.
- 153. B. S. Hunter, J. W. Ward, M. M. Payne, J. E. Anthony, O. D. Jurchescu and T. D. Anthopoulos, *Appl. Phys. Lett.*, 2015, **106**, 223304.
- S. Jin Lee, Y.-J. Kim, S. Young Yeo, E. Lee, H. Sun Lim, M. Kim, Y.-W. Song, J. Cho and J. Ah Lim, *Sci. Rep.*, 2015, 5, 14010.
- 155. S. G. Lee, H. S. Lee, S. Lee, C. W. Kim and W. H. Lee, Org. Electron., 2015, 24, 113-119.
- 156. B. T. Lim, J. Cho, K. H. Cheon, K. Shin and D. S. Chung, Org. Electron., 2015, 18, 113-117.
- 157. S. Hunter, A. D. Mottram and T. D. Anthopoulos, J. Appl. Phys., 2016, **120**, 025502.
- 158. H. M. Kim, H. W. Kang, D. K. Hwang, H. S. Lim, B.-K. Ju and J. A. Lim, Adv. Funct. Mater., 2016, 26, 2706-2714.
- 159. A. Y. B. Meneau, Y. Olivier, T. Backlund, M. James, D. W. Breiby, J. W. Andreasen and H. Sirringhaus, *Adv. Funct. Mater.*, 2016, **26**, 2326-2333.
- 160. M. R. Niazi, R. Li, M. Abdelsamie, K. Zhao, D. H. Anjum, M. M. Payne, J. Anthony, D.-M. Smilgies and A. Amassian, *Adv. Funct. Mater.*, 2016, **26**, 2371-2378.
- 161. C. Pitsalidis, A. M. Pappa, S. Hunter, A. Laskarakis, T. Kaimakamis, M. M. Payne, J. E. Anthony, T. D. Anthopoulos and S. Logothetidis, *J. Mater. Chem. C*, 2016, **4**, 3499-3507.

- 162. K. Zhao, O. Wodo, D. Ren, H. U. Khan, M. R. Niazi, H. Hu, M. Abdelsamie, R. Li, E. Q. Li, L. Yu, B. Yan, M. M. Payne, J. Smith, J. E. Anthony, T. D. Anthopoulos, S. T. Thoroddsen, B. Ganapathysubramanian and A. Amassian, *Adv. Funct. Mater.*, 2016, **26**, 1737-1746.
- 163. P. J. Diemer, J. Hayes, E. Welchman, R. Hallani, S. J. Pookpanratana, C. A. Hacker, C. A. Richter, J. E. Anthony, T. Thonhauser and O. D. Jurchescu, *Adv. Electron. Mater.*, 2017, **3**, 1600294.
- 164. Q. Zhang, F. Leonardi, S. Casalini and M. Mas-Torrent, Adv. Funct. Mater., 2017, 27, 1703899.
- 165. J. Panidi, A. F. Paterson, D. Khim, Z. Fei, Y. Han, L. Tsetseris, G. Vourlias, P. A. Patsalas, M. Heeney and T. D. Anthopoulos, *Adv. Sci.*, 2018, **5**, 1700290.
- 166. Y. Takeda, Y. Yoshimura, R. Shiwaku, K. Hayasaka, T. Sekine, T. Okamoto, H. Matsui, D. Kumaki, Y. Katayama and S. Tokito, *Adv. Electron. Mater.*, 2018, **4**, 1700313.
- 167. S. Anand, K. P. Goetz, Z. A. Lamport, A. M. Zeidell and O. D. Jurchescu, *Appl. Phys. Lett.*, 2019, **115**, 073301.
- 168. C. P. L. Rubinger, H. F. Haneef, C. Hewitt, D. Carroll, J. E. Anthony and O. D. Jurchescu, *Org. Electron.*, 2019, **68**, 205-211.
- 169. Q. Zhang, F. Leonardi, R. Pfattner and M. Mas-Torrent, *Adv. Mater. Interfaces*, 2019, **6**, 1900719.
- 170. I. Nasrallah, M. K. Ravva, K. Broch, J. Novak, J. Armitage, G. Schweicher, A. Sadhanala, J. E. Anthony, J.-L. Bredas and H. Sirringhaus, *Adv. Electron. Mater.*, 2020, **6**, 2000250.
- 171. T. Salzillo, N. Montes, R. Pfattner and M. Mas-Torrent, J. Mater. Chem. C, 2020, 8, 15361-15367.
- 172. X. Zhang, W. Deng, B. Lu, X. Fang, X. Zhang and J. Jie, *Nanoscale Horiz.*, 2020, **5**, 1096-1105.
- 173. A. Kyndiah, M. Checa, F. Leonardi, R. Millan-Solsona, M. Di Muzio, S. Tanwar, L. Fumagalli, M. Mas-Torrent and G. Gomila, *Adv. Funct. Mater.*, 2021, **31**, 2008032.
- 174. Y. Chen, M. Wang, D. Zhang, H. Wang, W. Deng, J. Shi and J. Jie, *Appl. Phys. Lett.*, 2021, **119**, 183301.
- 175. X. Wu, R. Jia, J. Pan, J. Wang, W. Deng, P. Xiao, X. Zhang and J. Jie, *Adv. Funct. Mater.*, 2021, **31**, 2100202.
- 176. W. Deng, Y. Xiao, B. Lu, L. Zhang, Y. Xia, C. Zhu, X. Zhang, J. Guo, X. Zhang and J. Jie, *Adv. Mater.*, 2021, **33**, 2005915.
- 177. Z. Li, Y. F. Lim, J. B. Kim, S. R. Parkin, Y. L. Loo, G. G. Malliaras and J. E. Anthony, *Chem. Commun.*, 2011, **47**, 7617-7619.
- 178. K. Schulze, T. Bilkay and S. Janietz, *Appl. Phys. Lett.*, 2012, **101**, 043301.
- 179. B. R. Conrad, C. K. Chan, M. A. Loth, S. R. Parkin, X. Zhang, D. M. DeLongchamp, J. E. Anthony and D. J. Gundlach, *Appl. Phys. Lett.*, 2010, **97**, 133306.
- 180. K. P. Goetz, Z. Li, J. W. Ward, C. Bougher, J. Rivnay, J. Smith, B. R. Conrad, S. R. Parkin, T. D. Anthopoulos, A. Salleo, J. E. Anthony and O. D. Jurchescu, *Adv. Mater.*, 2011, **23**, 3698-3703.
- 181. Y. Mei, M. A. Loth, M. Payne, W. Zhang, J. Smith, C. S. Day, S. R. Parkin, M. Heeney, I. McCulloch, T. D. Anthopoulos, J. E. Anthony and O. D. Jurchescu, *Adv. Mater.*, 2013, **25**, 4352-4357.
- 182. W. Guo, Y. Liu, W. Huang, M. M. Payne, J. Anthony and H. E. Katz, Org. Electron., 2014, 15, 3061-3069.
- 183. C.-H. Kim, H. Hlaing, M. M. Payne, K. G. Yager, Y. Bonnassieux, G. Horowitz, J. E. Anthony and I. Kymissis, *ChemPhysChem*, 2014, **15**, 2913-2916.
- 184. R. K. Hallani, K. J. Thorley, A. K. Hailey, S. R. Parkin, Y.-L. Loo and J. E. Anthony, *J. Mater. Chem. C*, 2015, **3**, 8956-8962.
- 185. J. L. Brusso, O. D. Hirst, A. Dadvand, S. Ganesan, F. Cicoira, C. M. Robertson, R. T. Oakley, F. Rosei and D. F. Perepichkat, *Chem. Mater.*, 2008, **20**, 2484-2494.
- 186. R. Gutzler, C. Fu, A. Dadvand, Y. Hua, J. M. MacLeod, F. Rosei and D. F. Perepichka, *Nanoscale*, 2012, **4**, 5965-5971.
- 187. W. J. Liu, Y. Zhou, Y. G. Ma, Y. Cao, J. Wang and J. Pei, *Org. Lett.*, 2007, **9**, 4187-4190.
- 188. A. A. Leitch, K. A. Stobo, B. Hussain, M. Ghoussoub, S. Ebrahimi-Takalloo, P. Servati, I. Korobkov and J. L. Brusso, *Eur. J. Org. Chem.*, 2013, **2013**, 5854-5863.
- 189. Y. Nishihara, M. Kinoshita, K. Hyodo, Y. Okuda, R. Eguchi, H. Goto, S. Hamao, Y. Takabayashi and Y. Kubozono, *RSC Adv.*, 2013, **3**, 19341-19347.
- 190. Y. Kubozono, K. Hyodo, S. Hamao, Y. Shimo, H. Mori and Y. Nishihara, Sci. Rep., 2016, 6, 38535.
- 191. Y. Kubozono, K. Hyodo, H. Mori, S. Hamao, H. Goto and Y. Nishihara, J. Mater. Chem. C, 2015, 3, 2413-2421.
- 192. Y. Yi, L. Zhu and J.-L. Brédas, J. Phys. Chem. C, 2012, **116**, 5215-5224.

- 193. W.-C. Wang, T.-T. Yeh, W.-L. Liau, J.-T. Chen and C.-S. Hsu, Org. Electron., 2018, 57, 82-88.
- 194. W.-L. Liau, T.-H. Lee, J.-T. Chen and C.-S. Hsu, J. Mater. Chem. C, 2016, 4, 2284-2288.
- 195. K. E. Rodda, *Nat. Chem.*, 2021, **13**, 1156-1156.
- 196. L. Chen, S. R. Puniredd, Y.-Z. Tan, M. Baumgarten, U. Zschieschang, V. Enkelmann, W. Pisula, X. Feng, H. Klauk and K. Müllen, *J. Am. Chem. Soc.*, 2012, **134**, 17869-17872.
- 197. H. Ebata, E. Miyazaki, T. Yamamoto and K. Takimiya, Org. Lett., 2007, 9, 4499-4502.
- 198. P. Gao, D. Beckmann, H. N. Tsao, X. L. Feng, V. Enkelmann, W. Pisula and K. Müllen, *Chem. Commun.*, 2008, 1548-1550.
- 199. T. Vehoff, B. Baumeier, A. Troisi and D. Andrienko, J. Am. Chem. Soc., 2010, **132**, 11702-11708.
- 200. H. T. Black, S. Liu and V. Sheares Ashby, Org. Lett., 2011, 13, 6492-6495.
- 201. Y. Ogawa, K. Yamamoto, C. Miura, S. Tamura, M. Saito, M. Mamada, D. Kumaki, S. Tokito and H. Katagiri, *ACS Appl. Mater. Interfaces*, 2017, **9**, 9902-9909.
- 202. S. Inoue, S. Shinamura, Y. Sadamitsu, S. Arai, S. Horiuchi, M. Yoneya, K. Takimiya and T. Hasegawa, *Chem. Mater.*, 2018, **30**, 5050-5060.
- 203. J. Gao, R. Li, L. Li, Q. Meng, H. Jiang, H. Li and W. Hu, *Adv. Mater.*, 2007, **19**, 3008-3011.
- 204. R. Li, L. Jiang, Q. Meng, J. Gao, H. Li, Q. Tang, M. He, W. Hu, Y. Liu and D. Zhu, *Adv. Mater.*, 2009, **21**, 4492-4495.
- 205. Y. Miyata, E. Yoshikawa, T. Minari, K. Tsukagoshi and S. Yamaguchi, J. Mater. Chem., 2012, 22, 7715-7717.
- 206. P. He, Z. Tu, G. Zhao, Y. Zhen, H. Geng, Y. Yi, Z. Wang, H. Zhang, C. Xu, J. Liu, X. Lu, X. Fu, Q. Zhao, X. Zhang, D. Ji, L. Jiang, H. Dong and W. Hu, *Adv. Mater.*, 2015, **27**, 825-830.
- 207. R. Li, H. Dong, X. Zhan, Y. He, H. Li and W. Hu, J. Mater. Chem., 2010, 20, 6014-6018.
- 208. T. Mori, T. Oyama, H. Komiyama and T. Yasuda, J. Mater. Chem. C, 2017, 5, 5872-5876.
- 209. B. Wex, B. R. Kaafarani, R. Schroeder, L. A. Majewski, P. Burckel, M. Grell and D. C. Neckers, *J. Mater. Chem.*, 2006, **16**, 1121-1124.
- 210. T. Oyama, T. Mori, T. Hashimoto, M. Kamiya, T. Ichikawa, H. Komiyama, Y. S. Yang and T. Yasuda, *Adv. Electron. Mater.*, 2018, **4**, 1700390.
- 211. C. P. Yu, M. Mitani, H. Ishii, M. Yamagishi, H. Kitamura, M. Yano, J. Takeya and T. Okamoto, *J. Phys. Chem. C*, 2020, **124**, 17503-17511.
- 212. C. Mitsui, H. Tsuyama, R. Shikata, Y. Murata, H. Kuniyasu, M. Yamagishi, H. Ishii, A. Yamamoto, Y. Hirose, M. Yano, T. Takehara, T. Suzuki, H. Sato, A. Yamano, E. Fukuzaki, T. Watanabe, Y. Usami, J. Takeya and T. Okamoto, *J. Mater. Chem. C*, 2017, **5**, 1903-1909.
- 213. K. He, S. Zhou, W. Li, H. Tian, Q. Tang, J. Zhang, D. Yan, Y. Geng and F. Wang, *J. Mater. Chem. C*, 2019, **7**, 3656-3664.
- 214. T. Higashino, S. Inoue, S. Arai, H. Matsui, N. Toda, S. Horiuchi, R. Azumi and T. Hasegawa, *Chem. Mater.*, 2021, **33**, 7379-7385.
- 215. P. Gao, D. Beckmann, H. N. Tsao, X. Feng, V. Enkelmann, M. Baumgarten, W. Pisula and K. Müllen, *Adv. Mater.*, 2009, **21**, 213-216.
- S. Wang, P. Gao, I. Liebewirth, K. Kirchhoff, S. Pang, X. Feng, W. Pisula and K. Müllen, *Chem. Mater.*, 2011, 23, 4960-4964.
- 217. L. Li, P. Gao, W. Wang, K. Müllen, H. Fuchs and L. Chi, Angew. Chem. Int. Ed., 2013, 52, 12530-12535.
- 218. B. Wang, T. Zhu, L. Huang, T. L. D. Tam, Z. Cui, J. Ding and L. Chi, Org. Electron., 2015, 24, 170-175.
- 219. R. Shiwaku, Y. Takeda, T. Fukuda, K. Fukuda, H. Matsui, D. Kumaki and S. Tokito, Sci. Rep., 2016, 6, 34723.
- 220. L. Li, P. Gao, K. C. Schuermann, S. Ostendorp, W. Wang, C. Du, Y. Lei, H. Fuchs, L. D. Cola, K. Müllen and L. Chi, *J. Am. Chem. Soc.*, 2010, **132**, 8807-8809.
- 221. S. Minami, M. Ide, K. Hirano, T. Satoh, T. Sakurai, K. Kato, M. Takata, S. Seki and M. Miura, *Phys. Chem. Chem. Phys.*, 2014, **16**, 18805-18812.
- 222. J. Li, X. Qiao, Y. Xiong, H. Li and D. Zhu, Chem. Mater., 2014, 26, 5782-5788.
- 223. J. Zhang, K. Zhang, W. Zhang, Z. Mao, M. S. Wong and G. Yu, J. Mater. Chem. C, 2015, 3, 10892-10897.
- 224. C. Li, J. Zhang, Z. Li, W. Zhang, M. S. Wong and G. Yu, J. Mater. Chem. C, 2019, **7**, 297-301.

- 225. K. Xiao, Y. Q. Liu, T. Qi, W. Zhang, F. Wang, J. H. Gao, W. F. Qiu, Y. Q. Ma, G. L. Cui, S. Y. Chen, X. W. Zhan, G. Yu, J. G. Qin, W. P. Hu and D. B. Zhu, *J. Am. Chem. Soc.*, 2005, **127**, 13281-13286.
- 226. P. Li, Y. Cui, C. Song and H. Zhang, J. Phys. Chem. C, 2016, 120, 14484-14494.
- 227. Y. Jiang, T. Okamoto, H. A. Becerril, S. Hong, M. L. Tang, A. C. Mayer, J. E. Parmer, M. D. McGehee and Z. A. Bao, *Macromolecules*, 2010, **43**, 6361-6367.
- 228. J.-S. Wu, C.-T. Lin, C.-L. Wang, Y.-J. Cheng and C.-S. Hsu, *Chem. Mater.*, 2012, **24**, 2391-2399.
- 229. F. He, W. Wang, W. Chen, T. Xu, S. B. Darling, J. Strzalka, Y. Liu and L. P. Yu, *J. Am. Chem. Soc.*, 2011, **133**, 3284-3287.
- 230. Y. Jiang, J. Mei, A. L. Ayzner, M. F. Toney and Z. Bao, *Chem. Commun.*, 2012, 48, 7286-7288.
- 231. J. Kim, A. R. Han, J. H. Seo, J. H. Oh and C. Yang, *Chem. Mater.*, 2012, **24**, 3464-3472.
- Y. Cai, X. Xue, G. Han, Z. Bi, B. Fan, T. Liu, D. Xie, L. Huo, W. Ma, Y. Yi, C. Yang and Y. Sun, *Chem. Mater.*, 2018, 30, 319-323.
- J. Hong, C. Wang, H. Cha, H. N. Kim, Y. Kim, C. E. Park, T. K. An, S.-K. Kwon and Y.-H. Kim, *Chem.-Eur. J.*, 2019, 25, 649-656.
- 234. A. Keerthi, C. An, M. Li, T. Marszalek, A. G. Ricciardulli, B. Radha, F. D. Alsewailem, K. Müllen and M. Baumgarten, *Polym. Chem.*, 2016, **7**, 1545-1548.
- 235. M. Q. He, J. F. Li, M. L. Sorensen, F. X. Zhang, R. R. Hancock, H. H. Fong, V. A. Pozdin, D. M. Smilgies and G. G. Malliaras, *J. Am. Chem. Soc.*, 2009, **131**, 11930-11938.
- 236. C. Mitsui, M. Yamagishi, R. Shikata, H. Ishii, T. Matsushita, K. Nakahara, M. Yano, H. Sato, A. Yamano, J. Takeya and T. Okamoto, *Bull. Chem. Soc. Jpn.*, 2017, **90**, 931-938.
- 237. K. Nakahara, C. Mitsui, T. Okamoto, M. Yamagishi, H. Matsui, T. Ueno, Y. Tanaka, M. Yano, T. Matsushita, J. Soeda, Y. Hirose, H. Sato, A. Yamano and J. Takeya, *Chem. Commun.*, 2014, **50**, 5342-5344.
- 238. N. Katsumasa, M. Chikahiko, O. Toshihiro, Y. Masakazu, M. Kazumoto, S. Hiroyasu, Y. Akihito, U. Takafumi and T. Jun, *Chem. Lett.*, 2013, **42**, 654-656.
- 239. M. Watanabe, W.-T. Su, Y. J. Chang, T.-H. Chao, Y.-S. Wen and T. J. Chow, *Chem. Asian J.*, 2013, **8**, 60-64.
- T. Okamoto, M. Mitani, C. P. Yu, C. Mitsui, M. Yamagishi, H. Ishii, G. Watanabe, S. Kumagai, D. Hashizume, S. Tanaka, M. Yano, T. Kushida, H. Sato, K. Sugimoto, T. Kato and J. Takeya, *J. Am. Chem. Soc.*, 2020, **142**, 14974-14984.
- 241. Q. Shi, X. Shi, C. Feng, Y. Wu, N. Zheng, J. Liu, X. Wu, H. Chen, A. Peng, J. Li, L. Jiang, H. Fu, Z. Xie, S. R. Marder, S. B. Blakey and H. Huang, *Angew. Chem. Int. Ed.*, 2021, **60**, 2924-2928.
- 242. T. Mori and T. Yasuda, Adv. Electron. Mater., 2021, 7, 2001052.
- 243. H. P. Zhao, L. Jiang, H. L. Dong, H. X. Li, W. P. Hu and B. S. Ong, *ChemPhysChem*, 2009, **10**, 2345-2348.
- 244. J. Bintinger, S. Yang, P. Fruhmann, B. Holzer, B. Stöger, A. Svirkova, M. Marchetti-Deschmann, E. Horkel, C. Hametner, J. Fröhlich, I. Kymissis and H. Mikula, *Synth. Met.*, 2017, **228**, 9-17.
- 245. H. Jiang, H. Zhao, K. K. Zhang, X. Chen, C. Kloc and W. Hu, *Adv. Mater.*, 2011, **23**, 5075-5080.
- 246. H. Jiang, P. Hu, J. Ye, A. Chaturvedi, K. K. Zhang, Y. Li, Y. Long, D. Fichou, C. Kloc and W. Hu, *Angew. Chem. Int. Ed.*, 2018, **57**, 8875-8880.
- 247. P.-L. T. Boudreault, S. Wakim, M. L. Tang, Y. Tao, Z. Bao and M. Leclerc, *J. Mater. Chem.*, 2009, **19**, 2921-2928.
- 248. G. Zhao, H. Dong, H. Zhao, L. Jiang, X. Zhang, J. Tan, Q. Meng and W. Hu, *J. Mater. Chem.*, 2012, **22**, 4409-4417.
- 249. G. Zhao, H. Dong, L. Jiang, H. Zhao, X. Qin and W. Hu, *Appl. Phys. Lett.*, 2012, **101**, 103302.
- 250. Y. L. Wu, Y. N. Li, S. Gardner and B. S. Ong, J. Am. Chem. Soc., 2005, **127**, 614-618.
- 251. P. L. T. Boudreault, S. Wakim, N. Blouin, M. Simard, C. Tessier, Y. Tao and M. Leclerc, *J. Am. Chem. Soc.*, 2007, **129**, 9125-9136.
- 252. Y. Guo, H. Zhao, G. Yu, C.-a. Di, W. Liu, S. Jiang, S. Yan, C. Wang, H. Zhang, X. Sun, X. Tao and Y. Liu, *Adv. Mater.*, 2008, **20**, 4835-4839.
- 253. S. Wakim, J. Bouchard, M. Simard, N. Drolet, Y. Tao and M. Leclerc, *Chem. Mater.*, 2004, **16**, 4386-4388.
- 254. Y. N. Li, Y. L. Wu, S. Gardner and B. S. Ong, *Adv. Mater.*, 2005, **17**, 849-853.
- 255. M. Kirkus, J. Simokaitiene, J. V. Grazulevicius and V. Jankauskas, Synth. Met., 2010, 160, 750-755.

- 256. E. M. Garcia-Frutos, E. Gutierrez-Puebla, M. A. Monge, R. Ramirez, P. d. Andres, A. d. Andres and B. Goez-Lor, *Org. Electron.*, 2009, **10**, 643-652.
- 257. M. Reig, J. Puigdollers and D. Velasco, J. Mater. Chem. C, 2015, **3**, 506-513.
- 258. M. Reig, G. Bagdziunas, A. Ramanavicius, J. Puigdollers and D. Velasco, *Phys. Chem. Chem. Phys.*, 2018, **20**, 17889-17898.
- 259. C. Ruiz, I. Arrechea-Marcos, A. Benito-Hernandez, E. Gutierrez-Puebla, M. A. Monge, J. T. Lopez Navarrete, M. C. Ruiz Delgado, R. P. Ortiz and B. Gomez-Lor, *J. Mater. Chem. C*, 2018, **6**, 50-56.
- 260. P.-L. T. Boudreault, A. A. Virkar, Z. Bao and M. Leclerc, Org. Electron., 2010, **11**, 1649-1659.
- 261. M. Zhao, B. Zhang and Q. Miao, *Angew. Chem. Int. Ed.*, 2020, **59**, 9678-9683.
- 262. H. Usta, C. Kim, Z. Wang, S. Lu, H. Huang, A. Facchetti and T. J. Marks, J. Mater. Chem., 2012, 22, 4459-4472.
- 263. Z. Wang, C. Kim, A. Facchetti and T. J. Marks, J. Am. Chem. Soc., 2007, 129, 13362-13363.
- 264. X.-K. Chen, L.-Y. Zou, J.-F. Guo and A.-M. Ren, J. Mater. Chem., 2012, 22, 6471-6484.
- 265. N. Yee, A. Dadvand and D. F. Perepichka, J. Org. Chem., 2020, 85, 5073-5077.
- 266. R. S. Sprick, M. Hoyos, M. S. Wrackmeyer, A. V. Sheridan Parry, I. M. Grace, C. Lambert, O. Navarro and M. L. Turner, J. Mater. Chem. C, 2014, 2, 6520-6528.
- 267. Y. N. Li, Y. L. Wu and B. S. Ong, *Macromolecules*, 2006, **39**, 6521-6527.
- 268. S. Wakim, B. R. Aich, Y. Tao and M. Leclerc, Polym. Rev., 2008, 48, 432-462.
- 269. Y.-Y. Liu, C.-L. Song, W.-J. Zeng, K.-G. Zhou, Z.-F. Shi, C.-B. Ma, F. Yang, H.-L. Zhang and X. Gong, *J. Am. Chem. Soc.*, 2010, **132**, 16349-16351.
- 270. W.-J. Zeng, X.-Y. Zhou, X.-J. Pan, C.-L. Song and H.-L. Zhang, *AIP Adv.*, 2013, **3**, 012101-012106.
- 271. X.-D. Tang, Y. Liao, H. Geng and Z.-G. Shuai, J. Mater. Chem., 2012, 22, 18181-18191.
- 272. C. A. Di, J. Li, G. Yu, Y. Xiao, Y. L. Guo, Y. Q. Liu, X. H. Qian and D. B. Zhu, Org. Lett., 2008, 10, 3025-3028.
- 273. S. Jung, M. Albariqi, G. Gruntz, T. Al-Hathal, A. Peinado, E. Garcia-Caurel, Y. Nicolas, T. Toupance, Y. Bonnassieux and G. Horowitz, *ACS Appl. Mater. Interfaces*, 2016, **8**, 14701-14708.
- 274. H. Yanagisawa, J. Mizuguchi, S. Aramaki and Y. Sakai, Jpn. J. Appl. Phys., 2008, 47, 4728-4731.
- 275. D. Berg, C. Nielinger, W. Mader and M. Sokolowski, Synth. Met., 2009, 159, 2599-2602.
- 276. E. D. Glowacki, L. Leonat, M. Irimia-Vladu, R. Schwodiauer, M. Ullah, H. Sitter, S. Bauer and N. S. Sariciftci, *Appl. Phys. Lett.*, 2012, **101**, 023305.
- E. D. Głowacki, M. Irimia-Vladu, M. Kaltenbrunner, J. Gsiorowski, M. S. White, U. Monkowius, G. Romanazzi, G. P. Suranna, P. Mastrorilli, T. Sekitani, S. Bauer, T. Someya, L. Torsi and N. S. Sariciftci, *Adv. Mater.*, 2013, 25, 1563-1569.
- 278. Z.-X. Xu, H.-F. Xiang, V. A. L. Roy, S. S.-Y. Chui, Y. Wang, P. T. Lai and C.-M. Che, *Appl. Phys. Lett.*, 2009, **95**, 123305.
- 279. T. Marszalek, I. Krygier, A. Pron, Z. Wrobel, P. M. W. Blom, I. Kulszewicz-Bajer and W. Pisula, *Org. Electron.*, 2019, **65**, 127-134.
- Q. Miao, T. Q. Nguyen, T. Someya, G. B. Blanchet and C. Nuckolls, J. Am. Chem. Soc., 2003, 125, 10284-10287.
- 281. Q. Tang, D. Q. Zhang, S. L. Wang, N. Ke, J. B. Xu, J. C. Yu and Q. Miao, *Chem. Mater.*, 2009, **21**, 1400-1405.
- 282. S.-Z. Weng, P. Shukla, M.-Y. Kuo, Y.-C. Chang, H.-S. Sheu, I. Chao and Y.-T. Tao, *ACS Appl. Mater. Interfaces*, 2009, **1**, 2071-2079.
- 283. X. Wang and K.-C. Lau, J. Phys. Chem. C, 2012, 116, 22749-22758.
- 284. T. Itoh, S. Aomori, M. Oh-e, M. Koden and Y. Arakawa, Synth. Met., 2012, 162, 1264-1270.
- 285. Z. Liang, Q. Tang, J. Xu and Q. Miao, *Adv. Mater.*, 2011, **23**, 1535-1539.
- 286. X.-K. Chen, L.-Y. Zou, J.-X. Fan, S.-F. Zhang and A.-M. Ren, Org. Electron., 2012, 13, 2832-2842.
- 287. Z. Liang, Q. Tang, J. Liu, J. Li, F. Yan and Q. Miao, Chem. Mater., 2010, 22, 6438-6443.
- 288. X.-K. Chen, J.-F. Guo, L.-Y. Zou, A.-M. Ren and J.-X. Fan, J. Phys. Chem. C, 2011, 115, 21416-21428.
- 289. D. Liu, Z. Li, Z. He, J. Xu and Q. Miao, J. Mater. Chem., 2012, 22, 4396-4400.
- 290. M. M. Islam, S. Pola and Y. T. Tao, *Chem. Commun.*, 2011, **47**, 6356-6358.
- 291. Z. Liang, Q. Tang, R. Mao, D. Liu, J. Xu and Q. Miao, Adv. Mater., 2011, 23, 5514-5518.

- 292. Y. Q. Ma, Y. M. Sun, Y. Q. Liu, J. H. Gao, S. Y. Chen, X. B. Sun, W. F. Qiu, G. Yu, G. L. Cui, W. P. Hu and D. B. Zhu, *J. Mater. Chem.*, 2005, **15**, 4894-4898.
- 293. Q. Tang, J. Liu, H. S. Chan and Q. Miao, *Chem.-Eur. J.*, 2009, **15**, 3965-3969.
- 294. F. Paulus, B. D. Lindner, Rei, F. Rominger, A. Leineweber, Y. Vaynzof, H. Sirringhaus and U. H. F. Bunz, J. *Mater. Chem. C*, 2015, **3**, 1604-1609.
- 295. Z. K. He, D. Q. Liu, R. X. Mao, Q. Tang and Q. Miao, Org. Lett., 2012, 14, 1050-1053.
- 296. Q. Tang, Z. Liang, J. Liu, J. Xu and Q. Miao, *Chem. Commun.*, 2010, **46**, 2977-2979.
- 297. F. Paulus, M. Porz, M. Schaffroth, F. Rominger, A. Leineweber, Y. Vaynzof and U. H. F. Bunz, *Org. Electron.*, 2016, **33**, 102-109.
- 298. C. Wang, Z. Liang, Y. Liu, X. Wang, N. Zhao, Q. Miao, W. Hu and J. Xu, *J. Mater. Chem.*, 2011, **21**, 15201-15204.
- 299. D. Liu, X. Xu, Y. Su, Z. He, J. Xu and Q. Miao, Angew. Chem. Int. Ed., 2013, 52, 6222-6227.
- 300. X. Xu, Y. Yao, B. Shan, X. Gu, D. Liu, J. Liu, J. Xu, N. Zhao, W. Hu and Q. Miao, *Adv. Mater.*, 2016, **28**, 5276-5283.
- H. Reiss, L. Ji, J. Han, S. Koser, O. Tverskoy, J. Freudenberg, F. Hinkel, M. Moos, A. Friedrich, I. Krummenacher, C. Lambert, H. Braunschweig, A. Dreuw, T. B. Marder and U. H. F. Bunz, *Angew. Chem. Int. Ed.*, 2018, **57**, 9543-9547.
- 302. M. Chu, J.-X. Fan, S. Yang, D. Liu, C. F. Ng, H. Dong, A.-M. Ren and Q. Miao, Adv. Mater., 2018, 30, 1803467.
- 303. D. Zhao, Z. Zhu, M.-Y. Kuo, C.-C. Chueh and A. K. Y. Jen, *Angew. Chem. Int. Ed.*, 2016, **55**, 8999-9003.
- V. Lemaur, D. A. Da Silva Filho, V. Coropceanu, M. Lehmann, Y. Geerts, J. Piris, M. G. Debije, A. M. Van de Craats, K. Senthilkumar, L. D. A. Siebbeles, J. M. Warman, J. L. Bredas and J. Cornil, *J. Am. Chem. Soc.*, 2004, **126**, 3271-3279.
- M. Lehmann, G. Kestemont, R. Gómez Aspe, C. Buess-Herman, M. H. J. Koch, M. G. Debije, J. Piris, M. P. de Haas, J. M. Warman, M. D. Watson, V. Lemaur, J. Cornil, Y. H. Geerts, R. Gearba and D. A. Ivanov, *Chem.-Eur. J.*, 2005, **11**, 3349-3362.
- 306. B. Domercq, J. S. Yu, B. R. Kaafarani, T. Kondo, S. Yoo, J. N. Haddock, S. Barlow, S. R. Marder and B. Kippelen, *Mol. Cryst. Liq. Cryst.*, 2008, **481**, 80-93.
- F. Selzer, C. Falkenberg, M. Hamburger, M. Baumgarten, K. Müllen, K. Leo and M. Riede, J. Appl. Phys., 2014, 115, 054515.
- S. Barlow, Q. Zhang, B. R. Kaafarani, C. Risko, F. Amy, C. K. Chan, B. Domercq, Z. A. Starikova, M. Y. Antipin, T. V. Timofeeva, B. Kippelen, J. L. Bredas, A. Kahn and S. R. Marder, *Chem.-Eur. J.*, 2007, **13**, 3537-3547.
- 309. B. R. Kaafarani, T. Kondo, J. S. Yu, Q. Zhang, D. Dattilo, C. Risko, S. C. Jones, S. Barlow, B. Domercq, F. Amy, A. Kahn, J. L. Bredas, B. Kippelen and S. R. Marder, *J. Am. Chem. Soc.*, 2005, **127**, 16358-16359.
- 310. X. Y. Liu, T. Usui and J. Hanna, *Chem.-Eur. J.*, 2014, **20**, 14207-14212.
- 311. H. Li, X. Wang, F. Liu and H. Fu, *Polym. Chem.*, 2015, **6**, 3283-3289.
- 312. K. Kawabata, M. Saito, N. Takemura, I. Osaka and K. Takimiya, Polym. J., 2016, 49, 169-176.
- 313. I. Osaka, M. Akita, T. Koganezawa and K. Takimiya, *Chem. Mater.*, 2012, **24**, 1235-1243.
- 314. M. Akita, I. Osaka and K. Takimiya, *Materials*, 2013, **6**, 1061-1071.
- 315. J. Jeon, H. Jhon, M. Kang, H. J. Song and T. K. An, *Org. Electron.*, 2018, **56**, 1-4.
- 316. D. H. Kim, H. J. Song, E. J. Lee, E. J. Ko and D. K. Moon, *Synth. Met.*, 2015, **210**, 304-313.
- 317. H. Xu, Y.-C. Zhou, X.-Y. Zhou, K. Liu, L.-Y. Cao, Y. Ai, Z.-P. Fan and H.-L. Zhang, *Adv. Funct. Mater.*, 2014, **24**, 2907-2915.
- 318. H. Tian, Y. Deng, F. Pan, L. Huang, D. Yan, Y. Geng and F. Wang, J. Mater. Chem., 2010, 20, 7998-8004.
- 319. T. Hodsden, K. J. Thorley, J. Panidi, A. Basu, A. V. Marsh, H. Dai, A. J. P. White, C. Wang, W. Mitchell, F. Glöcklhofer, T. D. Anthopoulos and M. Heeney, *Adv. Funct. Mater.*, 2020, **30**, 2000325.
- 320. T. Hodsden, K. J. Thorley, A. Basu, A. J. P. White, C. Wang, W. Mitchell, F. Glöcklhofer, T. D. Anthopoulos and M. Heeney, *Mater. Adv.*, 2021, **2**, 1706-1714.
- 321. D. Liu, M. Xiao, Z. Du, Y. Yan, L. Han, V. A. L. Roy, M. Sun, W. Zhu, C. S. Lee and R. Yang, *J. Mater. Chem. C*, 2014, **2**, 7523-7530.
- 322. C. Sun, F. Pan, H. Bin, J. Zhang, L. Xue, B. Qiu, Z. Wei, Z.-G. Zhang and Y. Li, *Nat. Commun.*, 2018, **9**, 743.

- 323. X. Song, N. Gasparini, M. M. Nahid, H. Chen, S. M. Macphee, W. Zhang, V. Norman, C. Zhu, D. Bryant, H. Ade, I. McCulloch and D. Baran, *Adv. Funct. Mater.*, 2018, **28**, 1802895.
- 324. P. Kafourou, B. Park, J. Luke, L. Tan, J. Panidi, F. Glöcklhofer, J. Kim, T. D. Anthopoulos, J.-S. Kim, K. Lee, S. Kwon and M. Heeney, *Angew. Chem. Int. Ed.*, 2021, **60**, 5970-5977.
- 325. L. Ru-Ze, B. Maxime, S. Victoria, Z. Weimin, L. C. V. M., L. Sergei, K. Zhipeng, F. Yuliar, L. Shengjian, M. Iain, T. M. F. and B. P. M., *Adv. Energy Mater.*, 2018, **8**, 1800264.
- 326. P. Jiang, S. Ming, Q.-Q. Jia, Y. Liu, H. Lu, M. Li, X. Xu, H.-B. Li and Z. Bo, *J. Mater. Chem. A*, 2018, **6**, 21335-21340.
- 327. C. Yao, C. Peng, Y. Yang, L. Li, M. Bo and J. Wang, *J. Mater. Chem. C*, 2018, **6**, 4912-4918.
- 328. Y. Liu, C. e. Zhang, D. Hao, Z. Zhang, L. Wu, M. Li, S. Feng, X. Xu, F. Liu, X. Chen and Z. Bo, *Chem. Mater.*, 2018, **30**, 4307-4312.
- 329. R. Li, G. Liu, R. Xie, Z. Wang, X. Yang, K. An, W. Zhong, X.-F. Jiang, L. Ying, F. Huang and Y. Cao, *J. Mater. Chem. C*, 2018, **6**, 7046-7053.
- 330. W. Zhang, J. Smith, S. E. Watkins, R. Gysel, M. McGehee, A. Salleo, J. Kirkpatrick, S. Ashraf, T. Anthopoulos, M. Heeney and I. McCulloch, *J. Am. Chem. Soc.*, 2010, **132**, 11437-11439.
- 331. X. Zhang, H. Bronstein, A. J. Kronemeijer, J. Smith, Y. Kim, R. J. Kline, L. J. Richter, T. D. Anthopoulos, H. Sirringhaus, K. Song, M. Heeney, W. Zhang, I. McCulloch and D. M. DeLongchamp, *Nat. Commun.*, 2013, **4**, 2238.
- D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A. J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. McCulloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne and H. Sirringhaus, *Nature*, 2014, **515**, 384-388.
- 333. Z. Liu, Z. Yin, S.-C. Chen, S. Dai, J. Huang and Q. Zheng, Org. Electron., 2018, 53, 205-212.
- 334. E.-S. Shin and Y.-Y. Noh, Org. Electron., 2018, 53, 111-116.
- 335. Y. Zheng, Z. Yu, S. Zhang, X. Kong, W. Michaels, W. Wang, G. Chen, D. Liu, J.-C. Lai, N. Prine, W. Zhang, S. Nikzad, C. B. Cooper, D. Zhong, J. Mun, Z. Zhang, J. Kang, J. B. H. Tok, I. McCulloch, J. Qin, X. Gu and Z. Bao, *Nat. Commun.*, 2021, **12**, 5701.
- 336. W. Zhong, S. Sun, L. Ying, F. Liu, L. Lan, F. Huang and Y. Cao, ACS Appl. Mater. Interfaces, 2017, 9, 7315-7321.
- 337. C.-H. Lee, Y.-Y. Lai, J.-Y. Hsu, P.-K. Huang and Y.-J. Cheng, *Chem. Sci.*, 2017, **8**, 2942-2951.
- 338. J.-i. Nishida, H. Deno, S. Ichimura, T. Nakagawa and Y. Yamashita, J. Mater. Chem., 2012, 22, 4483-4490.
- 339. T. Qi, Y. L. Guo, Y. Q. Liu, H. X. Xi, H. J. Zhang, X. K. Gao, Y. Liu, K. Lu, C. Y. Du, G. Yu and D. B. Zhu, *Chem. Commun.*, 2008, 6227-6229.
- 340. W. Mu, S. Sun, J. Zhang, M. Jiao, W. Wang, Y. Liu, X. Sun, L. Jiang, B. Chen and T. Qi, *Org. Electron.*, 2018, **61**, 78-86.
- 341. W. Sun, C.-H. Wang, S.-F. Lv, J.-X. Jiang, X. Guo and F.-B. Zhang, Org. Electron., 2020, 77, 105548.
- 342. Y. G. Chen, H. K. Tian, D. H. Yan, Y. H. Geng and F. S. Wang, *Macromolecules*, 2011, 44, 5178-5185.
- 343. C.-A. Tseng, J.-S. Wu, T.-Y. Lin, W.-S. Kao, C.-E. Wu, S.-L. Hsu, Y.-Y. Liao, C.-S. Hsu, H.-Y. Huang, Y.-Z. Hsieh and Y.-J. Cheng, *Chem. Asian J.*, 2012, **7**, 2102-2110.
- 344. J. E. Donaghey, R. S. Ashraf, Y. Kim, Z. G. Huang, C. B. Nielsen, W. Zhang, B. Schroeder, C. R. G. Grenier, C. T. Brown, P. D'Angelo, J. Smith, S. Watkins, K. Song, T. D. Anthopoulos, J. R. Durrant, C. K. Williams and I. McCulloch, J. Mater. Chem., 2011, 21, 18744-18752.
- 345. Y. Xie, T. Fujimoto, S. Dalgleish, Y. Shuku, M. M. Matsushita and K. Awaga, *J. Mater. Chem. C*, 2013, **1**, 3467-3481.
- 346. X. J. Yang, X. L. Shi, N. Aratani, T. P. Goncalves, K. W. Huang, H. Yamada, C. Y. Chi and Q. Miao, *Chem. Sci.*, 2016, **7**, 6176-6181.
- 347. X. Yang, D. Liu and Q. Miao, Angew. Chem. Int. Ed., 2014, 53, 6786-6790.
- 348. W. Hong, Z. M. Wei, H. X. Xi, W. Xu, W. P. Hu, Q. R. Wang and D. B. Zhu, *J. Mater. Chem.*, 2008, **18**, 4814-4820.
- 349. Z. Wei, W. Hong, H. Geng, C. Wang, Y. Liu, R. Li, W. Xu, Z. Shuai, W. Hu, Q. Wang and D. Zhu, *Adv. Mater.*, 2010, **22**, 2458-2462.
- 350. S. Yang, D. Liu, X. Xu and Q. Miao, *Chem. Commun.*, 2015, **51**, 4275-4278.

- 351. K. Takagi, S.-y. Yamamoto, K. Tsukamoto, Y. Hirano, M. Hara, S. Nagano, Y. le and D. Takeuchi, *Chem.-Eur. J.*, 2018, **24**, 14137-14145.
- 352. P.-Y. Gu, J. Zhang, G. Long, Z. Wang and Q. Zhang, J. Mater. Chem. C, 2016, 4, 3809-3814.
- 353. T. Lei, Y. Zhou, C. Y. Cheng, Y. Cao, Y. Peng, J. Bian and J. Pei, Org. Lett., 2011, 13, 2642-2645.
- 354. F. Ding, D. Xia, C. Ge, Z. Kang, Y. Yang, R. Fan, K. Lin and X. Gao, J. Mater. Chem. C, 2019, 7, 14314-14319.
- 355. Y. le, M. Ueta, M. Nitani, N. Tohnai, M. Miyata, H. Tada and Y. Aso, *Chem. Mater.*, 2012, **24**, 3285-3293.
- 356. P. Gomez, S. Georgakopoulos, J. P. Ceron, I. da Silva, M. Mas-Montoya, J. Perez, A. Tarraga and D. Curiel, *J. Mater. Chem. C*, 2018, **6**, 3968-3975.
- 357. L. Yang, M. Li, J. Song, Y. Zhou, Z. Bo and H. Wang, *Adv. Funct. Mater.*, 2018, **28**, 1705927.
- 358. R. S. Ashraf, Z. Chen, D. S. Leem, H. Bronstein, W. Zhang, B. Schroeder, Y. Geerts, J. Smith, S. Watkins, T. D. Anthopoulos, H. Sirringhaus, J. C. de Mello, M. Heeney and I. McCulloch, *Chem. Mater.*, 2011, **23**, 768-770.
- 359. B. C. Schroeder, Z. Huang, R. S. Ashraf, J. Smith, P. D'Angelo, S. E. Watkins, T. D. Anthopoulos, J. R. Durrant and I. McCulloch, *Adv. Funct. Mater.*, 2012, **22**, 1663-1670.
- 360. J. Chen, X. Zhang, G. Wang, M. A. Uddin, Y. Tang, Y. Wang, Q. Liao, A. Facchetti, T. J. Marks and X. Guo, *J. Mater. Chem. C*, 2017, **5**, 9559-9569.
- 361. K. Feng, H. Guo, J. Wang, Y. Shi, Z. Wu, M. Su, X. Zhang, J. H. Son, H. Y. Woo and X. Guo, *J. Am. Chem. Soc.*, 2021, **143**, 1539-1552.
- 362. T. Yasuda, T. Goto, K. Fujita and T. Tsutsui, *Appl. Phys. Lett.*, 2004, **85**, 2098-2100.