Probe 8 ref. 112

Probe 9 ref. 116

Near-infrared fluorescent probe for hydrogen sulfide: high-fidelity ferroptosis evaluation in vivo during stroke

DOI: 10.1039/D1SC05930K

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.
Probes 10 and 11 ref. 124

Probes 12 ref. 125
Probe 13 ref. 126

Unique assembly of carbonylpyridinium and chromene reveals mitochondrial thiol starvation under ferroptosis and novel ferroptosis inducer

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Probe 14 ref. 132

Unique assembly of carbonylpyridinium and chromene reveals mitochondrial thiol starvation under ferroptosis and novel ferroptosis inducer

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Unique assembly of carbonylpyridinium and chromene reveals mitochondrial thiol starvation under ferroptosis and novel ferroptosis inducer

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.
Probe 19 ref. 135

Probe 21 ref. 139

Probe 22 ref. 148

Probe 23 ref. 150
Probes 24-27 ref. 151

A Near-infrared Probe for Specific Imaging of Lipid Droplets in Living Cells

Probes 29-32 ref. 155
Probe 33 ref. 156

Multifunctional Fluorescent Probe for Simultaneously Detecting Microviscosity, Micropolarity, and Carboxylesterases and Its Application in Bioimaging

Author: Ta Li Q, Hai Rong Wang, Li U Chen, et al.
Publication: Analytical Chemistry
Date: Mar 1, 2022

Copyright © 2022, American Chemical Society

Permission/License is Granted for Your Order at No Charge

- This type of permission/license, instead of the standard Terms and Conditions, is sent to you because no fee is being charged for your order. Please note the following:
 - Figure(s) and/or tables were requested, they may be adopted or used in part.
 - Please print this page for your records and keep a copy of it for your informa/graduate school.
 - Appropriate credit for the requested material should be given as follows: "Reprinted/adapted with permission from COMPLETE REFERENCE CITATION. Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the *capitalized* words.
 - One-time permission is granted only for the use specified in your RightsLink request. Additional uses are granted (such as derivative works or other editions). For any use, please submit a new request.

If credit is given to another source for the material you requested from RightsLink, permission must be obtained from that source.

Probe 35 ref. 158
Probes 37-40 ref. 165