Electronic Supplementary Information

Single-atom metal-N₄ sites molecular electrocatalysts for ambient

nitrogen reduction

Sai Sun,‡ Xiaoxuan Yang,‡ Siqi Li,‡ Xinyu Chen, Ke Li, Jiaqi Lv, Wenwen Wang, Dongming Cheng,

Yong-Hui Wang and Hong-Ying Zang*

Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry,

Northeast Normal University, Changchun 130024, China.

E mail: <u>zanghy100@nenu.edu.cn</u>.

[‡] These authors contributed equally to this work.

Fig. S1. FT-IR spectra of H₂TPP, CoTPP, CuTPP and MnTPP, respectively.

Fig. S2 XPS of CoTPP in the Co 2p regions.

Fig. S3. The H-shape electrolytic cell for nitrogen reduction reaction.

Fig. S4. Calibration curve in 0.1 M HCl using NH_4Cl solution of known concentration as standards for three times. (a) UV-Vis absorption spectra of of various NH_4^+ concentrations after incubated for 2 h at room temperature. (b) Calibration curve used for estimation NH_3 concentration.

Fig. S5. Calibration curve in 0.1 M HCl using hydrazine solution of known concentration as standards for three times. (a) UV-Vis absorption spectra of various N_2H_4 concentrations after incubated for 20 min at room temperature. (b) Calibration curve used for estimation of N_2H_4 concentrations.

Fig. S6. (a) ¹H NMR spectra for standard ¹⁵NH₄⁺ solution with concentrations of 2.5, 5.0, 10, 25 and 50 μ g mL⁻¹ in 0.1 M HCl. (b) Calibration curve of ¹H NMR signal for standard NH₄⁺ solutions with various concentrations of 2.5, 5.0, 10, 25 and 50 μ g mL⁻¹ in 0.1 M HCl. The black line is the linear fitting of NMR signal integration value with a R² value of 0.996.

Fig. S7. NH₃ yields and FEs of CoTPP measured for three times at -0.3 V vs. RHE in 0.1 M HCl.

Fig. S8. The ammonia yields of CoTPP electrocatalyst during 10 h electrolysis.

Fig. S9. The FEs of CoTPP electrocatalyst during 10 h electrolysis.

Fig. S10. XPS spectra for CoTPP before (a) and after (b) 2 h electrolysis.

Fig. S11. SEM images of CoTPP after 2 h electrolysis.

Fig. S12. NH₃ yields and FEs of CuTPP measured for three times at -0.3 V vs. RHE in 0.1 M HCl.

Fig. S13. NH₃ yields and FEs of MnTPP measured for three times at -0.4 V vs. RHE in 0.1 M HCl.

Fig. S14. Time-dependent current density curve of CuTPP for 10 h at the electrolysis of -0.3 V vs. RHE.

Fig. S15. Time-dependent current density curve of MnTPP for 10 h at the electrolysis of -0.4 V vs. RHE.

Fig. S16. Nyquist plots of H₂TPP and MTPP.

Catalyst	Electrolyte	NH ₃ Yield rate	FE	Potential	Reference
		$(\mu g h^{-1} m g^{-1}_{cat.})$	(%)	(V)	
СоТРР	0.1 M HCl	15.18	11.43	-0.3	This work
FePc/C	0.1 M	10.25	10.5	-0.3	ACS Catal. 2019, 9 7311-
	Na_2SO_4				7317
СоР	1 M KOH	10.78	7.36	-0.4	Small Methods, 2018, 2 , 1800204
V ₂ O ₃ /C	0.1 M Na ₂ SO ₄	12.3	7.28	-0.6	Inorg. Chem. Front., 2019, 6 , 391-395
Nb ₂ O ₅ /CC	0.1 M	17.63	2.26	-0.6	Inorg. Chem. Front., 2019,
	Na_2SO_4				6 , 423-427
CoS ₂ /NS-G	0.05 M	25.0	25.9	-0.2	Proc. Natl. Acad. Sci.,
	H_2SO_4				2019, 116 , 6635-6640
MoN	0.1 M HCl	18.42	1.15	-0.3	ACS Sustainable Chem.
					Eng., 2018, 6, 9550-9554
WO ₃	0.1 M HCl	4.2	12.8	-0.12	Nano Energy, 2019, 62 , 869-875
γ-Fe ₂ O ₃	0.1 M KOH	0.212	1.9	0.0	ACS Sustainable Chem.
					Eng., 2017, 5 , 10986- 10995
TiO ₂	0.1 M HCl	3.0	6.5	-0.12	Appl. Catal. B: Environ.,
					2019, 257 , 117896
Bi nanoplates	0.2 M	5.453	11.68	-0.6	Angew. Chem. Int. Ed.,
	Na_2SO_4				2019, 58 , 9464-9469
Mo ₃ Fe ₃ C	$0.1 \text{ M Li}_2 \text{SO}_4$	1.23	27	-0.05	Nano Energy, 2020, 68
					104374
Mo ₂ C/C	$0.5 \text{ M Li}_2 \text{SO}_4$	11.3	7.8	-0.3	Adv. Mater., 2018, 30,
					1803694
MoO ₃	0.1 M HCl	29.43	1.9	-0.5	J. Mater. Chem. A, 2018,
nanosheets					6 , 12974-12977

Table S1. Comparison of electrocatalytic NRR performance for CoTPP with noble-metal-free electrocatalysts under ambient conditions.