Supporting Information

Catalytic transformations of citral in a continuous flow over bifunctional Ru-MCM-41 extrudates

Zuzana Vajglová¹, Päivi Mäki-Arvela¹, Kari Eränen¹, Narendra Kumar¹, Markus Peurla², Dmitry Yu. Murzin^{1*}

¹ Åbo Akademi University, Johan Gadolin Process Chemistry Centre, Biskopsgatan 8, Turku/Åbo, Finland, 20500

² University of Turku, Turku, Finland, 20500

*<u>dmurzin@abo.fi</u>, corresponding author

EXPERIMENTAL

Definitions

Normalized time is defined as follows:

$$t_N = t \cdot m_{cat} \cdot \frac{c_{Ru} \cdot D_{Ru}}{Mr_{Ru}} \left[h \cdot mol_{Ru(surface)} \right]$$
(1)

where t is reaction time, m_{cat} is mass of catalyst, c_{Ru} is the concentration of Ru in the entire catalyst volume, D_{Ru} is Ru distribution and Mr_{Ru} is the molecular weight of ruthenium.

The liquid phase mass balance closure is defined as a sum of the concentration of citronellal at a certain time and the concentrations of products visible in the GC chromatogram divided by the initial concentration of citronellal, denoted as MB:¹⁻³

$$MB(\%) = \frac{\Sigma m_i}{\Sigma m_0} * 100$$
 (2)

 $\sum m_i$ = sum of mass concentration of all components at different sampling times $\sum m_0$ = sum of mass concentration of all components at time = 0 The reaction rates (r) and turnover frequency (TOF) are calculated as follows:

$$r_{extrudates} = \frac{\Delta \dot{n}}{m_{cat}} \left[\frac{mol}{s.g} \right]$$
(3)

$$r_{powder \ catalyst} = \frac{\Delta n}{\Delta t.m_{cat}} \left[\frac{mol}{s.g} \right]$$
(4)

$$TOF_{extrudates} = \frac{\dot{n}_{in} - \dot{n}_{out}}{n_{metal}(surface)} \left[\frac{1}{s} \right]$$
(5)

$$TOF_{powder \ catalyst} = \frac{\Delta n \cdot V_l}{\Delta t.n_{metal}(surface)} \left[\frac{1}{s} \right]$$
(6)

where _{extrudates} is obtained over extrudates in trickle-bed reactor and _{powder catalyst} is obtained over powder catalyst in a batch reactor, Δn denotes the change in molar flow rate of the feed at time zero and time t in a trickle bed reactor, $\Delta n/\Delta t$ reacted moles per time interval Δt in a batch reactor, m_{cat} is catalyst mass, V_1 is liquid volume and $n_{metal(surface)}$ is moles of exposed measured metal.¹⁻⁴ Cumulative reaction rate and turn-over-frequency (r_{cum} , TOF_{cum}) at time t was calculated as differences to time zero, while the instantaneous reaction rate and turn-over-frequency (r_{inst} , TOF_{inst}) at time t were related to time t-1.

RESULTS AND DISCUSSION

Catalyst characterization results

Figure S1. TEM images of powder catalysts: a) Ru/(H-MCM-41+Bindzil) (P-B);³ *b) (Ru/Bindzil)+H-MCM-41 (P-C); c) (Ru/H-MCM-41)+Bindzil (P-D).*

Figure S2. Ru particle size distribution of powder catalysts: a) Ru/(H-MCM-41+Bindzil) (*P-B*);³ *b)* (*Ru/Bindzil)+H-MCM-41* (*P-C*); *c)* (*Ru/H-MCM-41)+Bindzil* (*P-D*).

Tumo	Br	ønsted aci	dity, µmo	ol/g	Ι	ewis acidi	Total acidity		
Type	weak	medium	strong	Σ	weak	medium	strong	Σ	µmol/g
P ³	41	19	24	84	20	14	21	56	140
Ζ	0	0	1	1	1	0	0	1	2
P*3	29 (29)	11 (13)	1 (17)	41 (59)	28 (14)	6 (10)	1 (15)	34 (40)	75 (99)
P-B ³	18	4	0	21	41	3	0	44	65
P-C	37	0	0	37	32	0	0	32	69
P-D	28	0	0	28	15	0	0	15	44
E-A ³	36	1	0	37	22	2	0	24	60
$E-B^3$	31	0	0	31	21	0	0	21	51
E-C ³	32	3	0	35	23	2	0	25	60

Table S1. Brønsted and Lewis acid sites. In parenthesis data for theoretical value calculated from the contribution of individual components.

D		4. E	1.4 D D	D//II	MOM 41	D:		(D:1_:1)	ILMON 41. D.D.
E-D ³	29	0	0	29	22	0	0	22	52

P – powder catalyst; E - extrudates; P-B – Ru/(H-MCM-41+Bindzil); P-C – (Ru/Bindzil)+H-MCM-41; P-D – (Ru/H-MCM-41)+Bindzil; E-A – Ru/(H-MCM-41+Bindzil) *post* synthesis; E-B – Ru/(H-MCM-41+Bindzil) *insitu* synthesis; E-C – (Ru/Bindzil)+H-MCM-41; E-D – (Ru/H-MCM-41)+Bindzil.

Catalytic results

Figure S3. Concentration profile as a function of reaction time: a) racemic mixture of citral, b) Z-citral, c) E-citral; d) Instantaneous turn-over-frequency as a function of reaction time. Legend: Ru/(H-MCM-41+Bindzil) (**P-B**, dark blue diamond), Ru/(Bindzil)+H-MCM-41 (**P-C**, red triangle), Ru/(H-MCM-41)+Bindzil (**P-D**, green circle). Conditions: 70 °C, 10 bar of H_2 , 0.086 M initial concentration of citral in cyclohexane, 0.2 g of catalyst.

Table S2. Citral transformation to menthol over Ru catalysts. Legend: t, TOS – reaction time, time-on-stream; X – conversion of citral; r – cumulative reaction rate; TOF – cumulative turnover frequency; η – effectiveness factor; PCU – percentage of catalyst utilization, ⁰ the initial time for powder catalyst and extrudates was 5 min and 30 min, respectively. Conditions for the batch experiment over the powder catalysts: 70 °C, 10 bar of H₂, 0.086 M initial concentration of citral in cyclohexane, 0.2 g of catalyst. Conditions for the continuous experiment aver the extrudates: 70 °C, 10 bar of H₂, 0.086 M initial concentration of citral in cyclohexane, 1 g of catalyst, 12.5 min of residence time.

Catalyst	t, TOS*	X	r ⁰ _{cum}	TOF ⁰ cum	η ⁰	r _{cum}	TOF _{cum}	η	PCU
-	h	%	mol/s/g	1/s	-	mol/s/g	1/s	-	%
P-B	3	59	2.53·10 ⁻⁵	1.449	-	1.81.10-6	0.104	-	-
P-C	5	58	1.52.10-5	2.329	-	1.61.10-6**	0.247**	-	-
P-D	5	40	2.10.10-5	2.445	-	1.09.10-6**	0.127**	-	-
E-A	0.2, 3*	70	4.36·10 ⁻⁷	0.025	0.02	3.62.10-7	0.021	0.20	19.8
E-B	0.2, 3*	66	4.93·10 ⁻⁷	0.056	0.02	3.26.10-7	0.037	0.18	35.8
E-C	0.2, 3*	66	4.65.10-7	0.056	0.03	3.08.10-7	0.037	0.19	15.0
E-D	0.2, 3*	64	4.38·10 ⁻⁷	0.037	0.02	3.15.10-7	0.027	0.29	21.1

**at 3 h of reaction time, P – powder catalyst; E - extrudates; P-B – Ru/(H-MCM-41+Bindzil); P-C – (Ru/Bindzil)+H-MCM-41; P-D – (Ru/H-MCM-41)+Bindzil; E-A – Ru/(H-MCM-41+Bindzil) *post* synthesis; E-B – Ru/(H-MCM-41+Bindzil) *in-situ* synthesis; E-C – (Ru/Bindzil)+H-MCM-41; E-D – (Ru/H-MCM-41)+Bindzil.

Figure S4. a) Citral conversion as a function of total acidity, b) total yield as a function of Brønsted to Lewis acid sites ratio, c) stereoselectivity of isopulegol as a function of Lewis acidity, d) Selectivity of neoisopulegol as a function of Brønsted to Lewis acid sites ratio. Legend: Ru/(H-MCM-41+Bindzil) (**P-B**, dark blue diamond), Ru/(Bindzil)+H-MCM-41 (**P-C**, red triangle), Ru/(H-MCM-41)+Bindzil (**P-D**, green circle); at normalized time

of $1.5 \cdot 10^{-6} \text{ h} \cdot \text{mol}_{Ru(surface)}$ (black open symbols), $3.5 \cdot 10^{-6} \text{ h} \cdot \text{mol}_{Ru(surface)}$ (open symbols), $7 \cdot 10^{-6} \text{ h} \cdot \text{mol}_{Ru(surface)}$ (filled symbols). Conditions: 70 °C, 10 bar of H_2 , 0.086 M initial concentration of citral in cyclohexane, 0.2 g of catalyst.

Figure S5. A schematic picture of the catalysts employed in this study, showing different distances between the metal and acid sites: a) A - Ru/(H-MCM-41+bindzil-50/80), post synthesis; b) C - (Ru/bindzil-50/80)+H-MCM-41, in-situ synthesis; c) B - Ru/(H-MCM-41+bindzil-50/80), in-situ synthesis; d) D - (Ru/H-MCM-41)+bindzil-50/80, in-situ synthesis. Legend: H-MCM-41 (grey circle), bindzil-50/80 (white circle), Ru (black dots) ^{3,5}.

Figure S6. Product distribution in citral transformation to menthol over powder catalyst in a batch reactor: a) geraniol, b) citronellal, c) citronellol, d) 3,7-dimethyloctan-1-ol, e) 2,6-dimethyloctane, f) α -terpinolene, g) metha-2,8-diene, h) p-menth-4(8)-ene, i) p-menthane, j) p-mentha-1,3,8-triene, k) p-mentha-1,5,8-triene, l) o-isopropenyltoluene. Legend: Ru/(H-MCM-41+Bindzil) (**P-B**, dark blue diamond), Ru/(Bindzil)+H-MCM-41 (**P-C**, red triangle), Ru/(H-MCM-41)+Bindzil (**P-D**, green circle). Conditions: 70 °C, 10 bar of H₂, 0.086 M initial concentration of citral in cyclohexane, 0.2 g of catalyst.

Table S3. Stereoselectivity to isopulegol isomers in menthol synthesis from citral. Legend: isopulegol (IP), neoisopulegol (NIP), isoisopulegol (IIP), neoisopulegol (NIP). Conditions for the batch experiment over the powder catalysts: 70 °C, 10 bar of H_2 , 0.086 M initial concentration of citral in cyclohexane, 0.2 g of catalyst. Conditions for the continuous experiment aver the extrudates: 70 °C, 10 bar of H_2 , 0.086 M initial concentration of H_2 , 0.086 M initial concentration of citral in cyclohexane, 1 g of catalyst, 12.5 min of residence time.

	t, TOS*	Y _{IPs}	Y _{IP} /Y _{IPs}	Y _{NIP} /Y _{IPs}	Y _{IIP} /Y _{IPs}	Y _{NIIP} /Y _{IPs}
	h			%		
P-B	3	13.0	54	33	14	0
P-C	5	5.4	15	67	19	0
P-D	5	3.9	15	46	21	18

E-A	0.2, 3*	6.7	55	36	9	0
E-B	0.2, 3*	4.4	45	39	14	0
E-C	0.2, 3*	3.6	33	47	19	0
E-D	0.2, 3*	4.5	42	42	16	0

P – powder catalyst; E - extrudates; P-B – Ru/(H-MCM-41+Bindzil); P-C – (Ru/Bindzil)+H-MCM-41; P-D – (Ru/H-MCM-41)+Bindzil; E-A – Ru/(H-MCM-41+Bindzil) *post* synthesis; E-B – Ru/(H-MCM-41+Bindzil) *in-situ* synthesis; E-C – (Ru/Bindzil)+H-MCM-41; E-D – (Ru/H-MCM-41)+Bindzil.

Table S4. Stereoselectivity to menthol isomers in menthol synthesis from citral. Legend: menthol (ME), neomenthol (NME), isomenthol (IME), neoisomenthol (NIME). Conditions for the batch experiment over the powder catalysts: 70 °C, 10 bar of H_2 , 0.086 M initial concentration of citral in cyclohexane, 0.2 g of catalyst. Conditions for the continuous experiment aver the extrudates: 70 °C, 10 bar of H_2 , 0.086 M initial concentration of citral in cyclohexane, 0.1 g of catalyst, 12.5 min of residence time.

	t, TOS* Y _{MEs}		Y _{ME} /Y _{MEs}	Y _{NME} /Y _{MEs}	Y _{IME} /Y _{MEs}	Y _{NIME} /Y _{MEs}
	h			%		
P-B	3	1.8	22	0	44	33
P-C	5	2.8	21	0	61	21
P-D	5	1.0	0	0	100	0
E-A	0.2, 3*	9.1	66	23	0	12
E-B	0.2, 3*	2.9	66	14	0	21
E-C	0.2, 3*	1.3	62	0	38	0
E-D	0.2, 3*	2.3	52	0	22	26

P – powder catalyst; E - extrudates; P-B – Ru/(H-MCM-41+Bindzil); P-C – (Ru/Bindzil)+H-MCM-41; P-D – (Ru/H-MCM-41)+Bindzil; E-A – Ru/(H-MCM-41+Bindzil) *post* synthesis; E-B – Ru/(H-MCM-41+Bindzil) *in-situ* synthesis; E-C – (Ru/Bindzil)+H-MCM-41; E-D – (Ru/H-MCM-41)+Bindzil.

Figure S7. Product distribution in citral transformation to menthol over extrudates in a trickle-bed reactor: a) geraniol, b) citronellal, c) 3,7-dimethyloctanal, d) 3,7-dimethyloctan-1-ol, e) 2,6-dimethyloctane, f) a-terpinolene, g) mentha-2,8-diene, h) p-menth-4(8)-ene, i) p-menthane, j) p-mentha-1,3,8-triene, k) p-mentha-1,5,8-triene, l) o-isopropenyltoluene. Legend: Ru/(H-MCM-41+Bindzil), post synthesis (**E-A**, light blue square), Ru/(H-MCM-41+Bindzil), in-situ synthesis (**E-B**, dark blue diamond), Ru/(Bindzil)+H-MCM-41 (**E-C**, red triangle), Ru/(H-MCM-41+Bindzil)

MCM-41)+*Bindzil* (*E-D*, green circle). Conditions: 70 °C, 10 bar of H_2 , 0.086 *M* initial concentration of citral in cyclohexane, 1 g of catalyst, 12.5 min of residence time.

Tables 5 and 6 present the collected catalytic results of citral transformation from both the batch and trickle-bed reactor over Ru-powder catalysts (0.2 g) and extrudates (1 g) with controlled metal location, respectively, under 70 °C, 10 bar with 0.086 M of the initial citral (Z-/E-CRAL = 1) concentration in cyclohexane.

Table S5. Citral transformation to menthol over Ru catalysts. Legend: $t - reaction time, TOS - time-on-stream, X - conversion, MB - liquid phase mass balance closure, Y - total yield, <math>Y_{ACP}$ - yield of acyclic hydrogenation products, Y_{DFP} - yield of defunctionalization products, Y_{CP} - yield of cyclic products (MEs+IPs+DFP), Y_{DM} - yield of dimeric ethers and heavy components, Y_{MEs} - yield of menthols, Y_{IPs} - yield of isopulegols. Conditions for the batch experiment over the powder catalysts: 70 °C, 10 bar of H₂, 0.086 M initial concentration of citral in cyclohexane, 0.2 g of catalyst. Conditions for the continuous experiment aver the extrudates: 70 °C, 10 bar of H₂, 0.086 M initial concentration of citral in cyclohexane, 1 g of catalyst, 12.5 min of residence time.

Cat.	t, TOS*	X	MB	Y	Y _{ACP}	Y _{DFP}	Y _{CP}	Y _{DM}	Y _{MEs}	Y _{IPs}	CP/ACP	Z-/E-CRAL					
-	h					%											
P-B	3.0	59	81	40	3.3	22.3	37.1	0.0	1.8	13.0	11	7.2	0.34				
P-C	5.0	58	76	34	3.8	21.5	29.7	0.0	2.8	5.4	8	1.9	0.22				
P-D	5.0	40	74	14	0.9	8.4	13.3	0.0	1.0	3.9	15	3.9	0.60				
E-A	0.2, 3*	70	79	49	5.9	27.2	43.0	0.0	9.1	6.7	7	0.7	0.64				
E-B	0.2, 3*	66	82	48	0.0	31.6	38.9	9.4	2.9	4.4	-	1.5	0.35				
E-C	0.2, 3*	66	65	32	0.9	25.7	30.6	0.0	1.3	3.6	34	2.8	0.28				
E-D	0.2, 3*	64	78	42	0.0	31.3	38.1	4.4	2.3	4.5	-	2.0	0.31				

P - powder catalyst; E - extrudates; P-B - Ru/(H-MCM-41+Bindzil); P-C - (Ru/Bindzil)+H-MCM-41; P-D - (Ru/H-MCM-41)+Bindzil; E-A - Ru/(H-MCM-41+Bindzil)*post*synthesis; E-B - Ru/(H-MCM-41+Bindzil)*in-situ*synthesis; E-C - (Ru/Bindzil)+H-MCM-41; E-D - (Ru/H-MCM-41)+Bindzil).

Table S6. Citral transformation to menthol over Ru catalysts. Legend: t – reaction time, TOS – time-on-stream, ACP – acyclic hydrogenation products, DFP – defunctionalization products, Y_{GRL} – yield of geraniol, Y_{CLAL} – yield of citronellal, Y_{DMAL} – yield of 3,7-dimethyloctanal, Y_{CLOL} – yield of citronellol, Y_{DMOL} – yield of 3,7-dimethyloctan-1-ol, Y_{DME} – 2,6-dimethyloctane, Y_{aTRPE} – α -terpiolene, Y_{LMN} – yield of limonene, Y_{M28E} – yield of mentha-2,8-diene, Y_{pM48E} – yield of p-menth-4(8)-ene, Y_{pMA} – yield of p-menthane, Y_{pM138E} – yield of p-mentha-1,3,8-triene, Y_{pM158E} – yield of o-cymene, Y_{oIPT} – yield of o-isopropenyltoluene. Conditions for the batch experiment over the powder catalysts: 70 °C, 10 bar of H₂, 0.086 M initial concentration of citral in cyclohexane, 0.2 g of catalyst. Conditions for the continuous experiment aver the extrudates: 70 °C, 10 bar of H₂, 0.086 M initial concentration of citral in cyclohexane, 1 g of catalyst, 12.5 min of residence time.

Cat	4 TOS*	ACP						DFP								
Cat.	t, 105 [*]	Y _{GRL}	Y _{CLAL}	YDMAL	Y _{CLOL}	Y _{DMOL}	YDME	Yatrpe	Y _{LMN}	Y _{M28E}	Y _{pM48E}	Y _{pMA}	Y _{pM138E}	Y _{pM158E}	Y _{oC}	YoIPT
-	h								%							
P-B	3.0	0.7	1.7	0.0	0.3	0.6	0.0	1.1	0.0	1.0	1.9	0.5	8.3	4.5	2.4	0.9
P-C	5.0	0.3	0.9	0.0	0.2	0.6	0.4	1.5	0.0	1.4	1.2	0.0	11.0	4.1	0.0	0.5

P-D	5.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.4	0.0	5.0	1.5	0.0	0.0
E-A	0.2, 3*	0.3	0.6	0.8	0.0	3.1	1.2	1.9	1.9	0.3	1.6	10.4	5.3	2.9	1.8	0.7
E-B	0.2, 3*	0.0	0.0	0.0	0.0	0.0	0.0	2.1	0.0	1.7	2.5	0.6	11.9	8.2	2.2	1.8
E-C	0.2, 3*	0.0	0.0	0.0	0.0	0.9	0.0	1.9	0.0	0.9	1.2	0.4	10.8	7.0	1.3	1.7
E-D	0.2, 3*	0.0	0.0	0.0	0.0	0.0	0.0	2.2	0.0	1.5	2.3	0.4	12.3	7.9	2.1	1.9

P - powder catalyst; E - extrudates; P-B - Ru/(H-MCM-41+Bindzil); P-C - (Ru/Bindzil)+H-MCM-41; P-D - (Ru/H-MCM-41)+Bindzil; E-A - Ru/(H-MCM-41+Bindzil)*post*synthesis; E-B - Ru/(H-MCM-41+Bindzil)*in-situ*synthesis; E-C - (Ru/Bindzil)+H-MCM-41; E-D - (Ru/H-MCM-41)+Bindzil.

Figure S8. Ratio of Z-citral to E-citral as a function of the time for: a) powder catalysts, c) extrudates. Yield of menthols as a function of the ratio of Z-citral to E-citral: b) powder catalysts at normalized time of 7·10-6 h·molRu_(surface), d) extrudates at 3 h of TOS. Legend of powder catalyst: Ru/(H-MCM-41+Bindzil) (**P-B**, dark blue diamond), Ru/(Bindzil)+H-MCM-41 (**P-C**, red triangle), Ru/(H-MCM-41)+Bindzil (**P-D**, green circle). Legend of extrudates: Ru/(H-MCM-41+Bindzil), post synthesis (**E-A**, light blue square), Ru/(H-MCM-41+Bindzil), in-situ synthesis (**E-B**, dark blue diamond), Ru/(Bindzil)+H-MCM-41 (**E-C**, red triangle), Ru/(H-MCM-41)+Bindzil (**E-D**, green circle). Conditions for the batch experiment over the powder catalysts: 70 °C, 10 bar of H₂, 0.086 M initial concentration of citral in cyclohexane, 0.2 g of catalyst. Conditions for the continuous experiment aver the extrudates: 70 °C, 10 bar of H₂, 0.086 M initial concentration of citral in cyclohexane, 1 g of catalyst, 12.5 min of residence time.

Figure S9. Selectivity of citronellal as a function of a) Ru dispersion, b) ratio of Ru concentration to acidity. Legend: Ru/(H-MCM-41+Bindzil) (**P-B**, dark blue diamond), Ru/(Bindzil)+H-MCM-41 (**P-C**, red triangle), Ru/(H-MCM-41)+Bindzil (**P-D**, green circle); at normalized time of $3.5 \cdot 10^{-6} \text{ h} \cdot \text{mol}_{Ru(surface)}$ (open symbols), $7 \cdot 10^{-6}$ $h \cdot \text{mol}_{Ru(surface)}$ (filled symbols). Conditions: 70 °C, 10 bar of H₂, 0.086 M initial concentration of citral in cyclohexane, 0.2 g of catalyst.

Figure S10. a) Yield of isopulegols as a function of Brønsted to Lewis acid sites ratio, b, c) Selectivity of pmenthatrienes, o-cymene and o-isopropenyltoluene as a function of ratio of Ru concentration to acidity and Brønsted acidity, d) Selectivity of p-mentha-2,8-diene as a function of Brønsted to Lewis acid sites ratio. Legend: Ru/(H-MCM-41+Bindzil) (**P-B**, dark blue diamond), Ru/(Bindzil)+H-MCM-41 (**P-C**, red triangle), Ru/(H-MCM-41)+Bindzil (**P-D**, green circle); at normalized time of $3.5 \cdot 10^{-6} \text{ h} \cdot \text{mol}_{Ru(surface)}$ (open symbols), $7 \cdot 10^{-6} \text{ h} \cdot \text{mol}_{Ru(surface)}$ (filled symbols). Conditions: 70 °C, 10 bar of H₂, 0.086 M initial concentration of citral in cyclohexane, 0.2 g of catalyst.

References

- M. Azkaar, P. Mäki-Arvela, Z. Vajglová, V. Fedorov, N. Kumar, L. Hupa, J. Hemming, M. Peurla, A. Aho and D. Y. Murzin, *React. Chem. Eng.*, 2019, 4, 2156-2169.
- 2. Z. Vajglová, N. Kumar, P. Mäki-Arvela, K. Eranen, M. Peurla, L. Hupa and D. Y. Murzin, *Org. Process. Res. Dev.*, 2019, **23**, 2456-2463.
- 3. Z. Vajglová, N. Kumar, M. Peurla, K. Eränen, P. Mäki-Arvela and D. Y. Murzin, *Catal. Sci. Technol.*, 2020, **10**, 8108-8119.
- 4. D. Yu. Murzin, *Engineering Catalysis*, Walter de Gruyter, Berlin, 2013.

5. Z. Vajglová, N. Kumar, M. Peurla, L. Hupa, K. Semikin, D. A. Sladkovskiy and D. Y. Murzin, *Ind. Eng. Chem. Res.*, 2019, **58**, 10.