Electronic supplementary information (ESI)

Metal–support interaction modulated catalytic activity of Ru nanoparticles on Sm₂O₃ for efficient ammonia decomposition

Xilun Zhang,^{a,b} Lin Liu,^a* Ji Feng, ^{a,b} Xiaohua Ju,^a Jiemin Wang,^{a,c} Teng He,^a Ping Chen^a* ^aDalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China ^bUniversity of Chinese Academy of Sciences, Beijing 100049, China ^cZhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China E-mail: liulin@dicp.ac.cn, pchen@dicp.ac.cn

Fig. S1 TEM images in different scales (a–b), particle size distribution (c) and Energy Dispersive X-Ray (EDX) Spectroscopy (d) of RuO₂ NPs.

Fig. S2 XRD pattern of RuO₂ NPs.

Fig. S3 TEM image of $Sm(OH)_3$ support.

Fig. S4 XRD patterns of $Sm(OH)_3$, 4% $Ru/Sm(OH)_3$ -m, 4% $Ru/Sm(OH)_3$ -i and 4% $Ru/Sm(OH)_3$ -p precursors.

Fig. S5 N₂ adsorption-desorption isotherms of Sm_2O_3 support, 4% Ru/Sm₂O₃-m, 4% Ru/Sm₂O₃-i and 4% Ru/Sm₂O₃-p catalysts.

Fig. S6 Temperature-dependent NH₃ conversion (a) and Arrhenius plots (b) of Ru/Sm₂O₃-p with different Ru mass loadings. WHSV= 30,000 mL $g_{cat}^{-1} h^{-1}$.