Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Pt₁-O₄ as active sites boosting CO oxidation via a non-classical MvK

mechanism

Yang Lou^{1,2,*}, Yongping Zheng^{3,*}, Wenyi Guo¹, Jingyue Liu^{2*}

¹Department of Physics, Arizona State University, Tempe, Arizona 85287, United States

²International Joint Research Center for Photoresponsive Molecules and Materials, Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China

³Functional Thin Films Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shen-zhen, 518055, China

*Corresponding author: yang.lou@jiangnan.edu.cn; yp.zheng@siat.ac.cn; jingyue.liu@asu.edu.

Contents:

Figure S1 Low-magnification and high-magnification aberration-corrected HAADF-STEM images of fresh Pt₁/Fe₂O₃ SAC.

Figure S2 Low-magnification and high-magnification aberration-corrected HAADF-STEM images of used Pt₁/Fe₂O₃ SAC.

Figure S3 Low-magnification and high-magnification aberration-corrected HAADF-STEM images of fresh Pt₁/CeO₂ SAC.

Figure S4 Low-magnification and high-magnification aberration-corrected HAADF-STEM images of used Pt₁/CeO₂ SAC.

Figure S5 Aberration-corrected HAADF-STEM images of nano-Pt/Fe₂O₃ synthesized by the colloid method.

Figure S6 Aberration-corrected HAADF-STEM images of nano-Pt/CeO₂ synthesized by the colloid method.

Figure S7 Low-magnification and high-magnification aberration-corrected HAADF-STEM images of fresh Pt₁/γ-Al₂O₃ SAC.

Figure S8 Low-magnification and high-magnification aberration-corrected HAADF-STEM images of used Pt₁/γ-Al₂O₃ SAC.

Figure S9 The total catalyst specific rate of Pt₁/Fe₂O₃ SAC and nano-Pt/Fe₂O₃ catalysts for CO oxidation over at 350 °C under the reaction conditions of different O₂/CO ratios.

Figure S10 Apparent activation energy (E_a) of CO oxidation over Pt₁/Fe₂O₃ (square symbols), Pt₁/CeO₂ (triangle up symbols), nano-Pt/CeO₂ (triangle down symbols) and nano-Pt/Fe₂O₃ (circle symbols) samples.

Figure S11 Low-magnification and high-magnification aberration-corrected HAADF-STEM images of used Pd₁/Fe₂O₃ SAC.

Figure S12 The TOF of Pd₁/Fe₂O₃ for CO oxidation in the temperature range of 200 °C to 350 °C.

Figure S13 The TOF of Pd₁/Fe₂O₃ and Pt₁/Fe₂O₃ SACs for CO oxidation from 40 °C to 140 °C (a), 140-300 °C (b), and 300-350 °C (c).

Figure S14 The k²-weighted Fourier transform spectra derived from the EXAFS on Pt SAC, nano-Pt catalysts and Pt foil.

Figure S15 The Bader charge plotted as a function of Pt oxidation state.

Figure S16 The side-view images of O₂ adsorption configurations.

Table S1 Specific Reaction Rate of Pt at 350 °C (mmolCO/(g_{Pt}*s)).

Table S2 EXAFS parameters of Pt SACs, nano-Pt catalysts and Pt foil.

Table S3 Free energy changes (ΔG) of elementary steps during CO oxidation by non-classic MvK mechanism.

Figure S1 Low-magnification and high-magnification aberration-corrected HAADF-STEM images of fresh Pt₁/Fe₂O₃ SAC.

As shown in the low-magnification images (a-c), there are no Pt particles present in the fresh Pt_1/Fe_2O_3 SAC. Any Pt particles or clusters should appear as bright dots in HAADF images due to the strong Z-contract. High-magnification images (d-f) confirm the presence of single Pt species distributed on the surfaces of the Fe₂O₃ crystallites. Based on the HAADF-STEM images, we concluded that the fresh Pt_1/Fe_2O_3 SAC contains only isolated single Pt_1 atoms without the presence of any Pt clusters or particles.

Figure S2 Low-magnification and high-magnification aberration-corrected HAADF-STEM images of used Pt₁/Fe₂O₃ SAC.

As shown in the low-magnification images (a-d), there are no Pt particles present in the used Pt_1/Fe_2O_3 SAC. High-magnification images (e-l), however, confirmed the presence of single Pt species on the Fe_2O_3 crystallites after the catalytic reaction. Based on the HAADF-STEM images, we concluded that the Pt₁ atoms did not sinter into clusters or particles during the catalytic evaluations. Such data assures that the measured catalytic activity originated from the Pt₁ atoms rather than the Pt clusters or particles.

Figure S3 Low-magnification and high-magnification aberration-corrected HAADF-STEM images of fresh Pt₁/CeO₂ SAC.

As shown in the low-magnification images (a-c), there are no Pt particles present in the fresh Pt_1/CeO_2 SAC. High-magnification images (d-f) confirmed the presence of single Pt species in the fresh Pt_1/CeO_2 SAC. Based on the HAADF-STEM images, we concluded that the as-synthesized Pt_1/CeO_2 SAC contains only Pt_1 atoms without the presence of any Pt clusters or particles.

Figure S4 Low-magnification and high-magnification aberration-corrected HAADF-STEM images of used Pt₁/CeO₂ SAC.

As shown in the low-magnification images (a-d), there are no Pt particles or clusters present in the used Pt_1/CeO_2 SAC. High-magnification images (e-j) from different regions of the sample confirmed the presence of single Pt species after the catalytic reaction. Based on the HAADF-STEM images, we concluded that under the reaction condition, the Pt_1/CeO_2 SAC contained only Pt_1 atoms, which assures that the measured catalytic activity originated from the Pt_1 atoms rather than the Pt clusters or particles.

Figure S5 Aberration-corrected HAADF-STEM images of nano-Pt/Fe₂O₃ synthesized by the colloid method.

The HAADF images show that the colloidal Pt particles are uniformly distributed in the as-prepared nano-Pt/Fe₂O₃ catalyst. We did not detect any agglomeration of the colloidal Pt nanoparticles (Figure S5a). High-magnification images (Figure S5b-d) reveals that most of the colloidal Pt particles are single crystals. Some Pt atoms are also observable (indicated by the yellow arrows). As shown in the size distribution plots (Figure S5e-g), the average size of the colloidal Pt particles was estimated to be 1.3 ± 0.1 nm with most of the Pt particles in the size range of 1-2 nm. The number of perimeter Pt atoms were calculated based on the semi-sphere model of the Pt particles without considering the specific shapes and other factors that may affect the estimation. The Pt-Pt bond length is 0.277 nm obtained from the EXAFS data.[1]

Figure S6 Aberration-corrected HAADF-STEM images of nano-Pt/CeO₂ synthesized by the colloid method.

The HAADF images show that the colloidal Pt particles are uniformly distributed in the as-prepared nano-Pt/CeO₂ catalyst. We did not detect agglomeration of the colloidal Pt nanoparticles. The Pt particle size distribution seems to be wide with the presence of larger Pt particles. Pt₁ atoms were also observed (indicated by the green arrows). The average size of the Pt colloidal particles was estimated to be 4.0 ± 0.1 nm with particle sizes ranging from 1 nm to 7 nm. The number of perimeter Pt atoms were calculated based on the semi-sphere model of the Pt particles without considering the specific shapes and other factors that may affect the estimation. The Pt-Pt bond length is 0.277 nm obtained from the EXAFS data.[1]

Figure S7 Low-magnification and high-magnification aberration-corrected HAADF-STEM images of fresh Pt₁/γ-Al₂O₃ SAC.

As shown in the low-magnification image (a), there are no Pt particles present in the Pt_1/γ -Al₂O₃ SAC. High-magnification images (b-d) confirmed the presence of single Pt species. Based on the HAADF-STEM images, we concluded that the as-synthesized Pt_1/γ -Al₂O₃ SAC contains only Pt_1 atoms without the presence of any Pt clusters or particles.

Figure S8 Low-magnification and high-magnification aberration-corrected HAADF-STEM images of used Pt₁/γ-Al₂O₃ SAC.

The low-magnification images (a-b) show that most of the regions do not contain any observable Pt clusters or particles. By examining numerous regions of the catalyst few Pt clusters/particles occasionally appear (c), suggesting that sintering of Pt₁ atoms may have occurred during the catalytic reaction. High-magnification images (b-d), however, confirmed that the majority of the Pt species are in the form of single atoms. Based on the HAADF-STEM images, we concluded that the used Pt₁/ γ -Al₂O₃ SAC mainly contains Pt₁ atoms plus very few Pt clusters.

Figure S9 The TOF of Pt₁ atoms and Pt particles of Pt₁/Fe₂O₃ SAC and nano-Pt/Fe₂O₃ (a); Pt₁/CeO₂ SAC and nano-Pt/CeO₂ (b). The TOF was measured in the feed gas of different O₂/CO ratios at 350 °C with the space velocity of 17, 400 l/g•h to 52, 000 l/g•h and pressure = 0.1M Pa: 1) 1.0 vol.% CO, 4.0 vol.% O₂ and He balance (O₂/CO = 4); 2) 2.5 vol.% CO, 2.5 vol.% O₂ and He balance (O₂/CO = 1); 3) 2.5 vol.% CO, 1.25 vol.% O₂ and He balance (O₂/CO = 0.5).

The TOFs of Pt₁ atoms on Pt₁/Fe₂O₃ SAC and Pt₁/CeO₂ SAC are as high as 1542.7/s and 1389.3/s at 350 °C when the O₂/CO volume ratio is adjusted to ~1 (feed gas of 2.5 vol.% CO, 2.5 vol.% O₂ and He balance). When the O₂/CO ratio is increased to 4 (1.0 vol.% CO, 4.0 vol.% O₂ and He balance) or decreased to 0.5 (2.5 vol.% CO, 1.25 vol.% O₂ and He balance), the TOF values change to 1432.7/s and 554.8/s (over Pt₁/Fe₂O₃ SAC), and 852.5/s and 762.1/s (over Pt₁/CeO₂ SAC), respectively. These results clearly demonstrate that the super activity of CO oxidation on the Pt₁ atoms is affected by the gas composition and that the nature of the support plays a major role as well.

Figure S10 Apparent activation energy (E_a) of CO oxidation over Pt₁/Fe₂O₃ (square symbols), Pt₁/CeO₂ (triangle up symbols), nano-Pt/CeO₂ (triangle down symbols) and nano-Pt/Fe₂O₃ (circle symbols) samples. Arrhenius plots for the reaction rate on these samples in the temperature (T) range of 280 to 320 °C. Feed gas composition: 1 vol.% CO, 4 vol.% O₂ and He balance; space velocity: 9,000 l/g•h ~ 45,000 l/g•h; and Pressure: 0.1 MPa.

Figure S11 Low-magnification and high-magnification aberration-corrected HAADF-STEM images of used Pd₁/Fe₂O₃.

As shown in the low-magnification images (a-c), there are no Pd particles/clusters present in the used Pd_1/Fe_2O_3 SAC. High-magnification images (d-f) from different regions of the catalyst confirmed the presence of single Pd species after the catalytic reaction. Based on the HAADF-STEM images, we concluded that the Pd₁ atoms did not sinter during the catalytic reaction, which assures that the measured catalytic activity originated from the Pd₁ atoms rather than the Pd clusters or particles.

Figure S12 The TOF over Pd_1/Fe_2O_3 SAC for CO oxidation in the temperature range of 200°C to 350°C.

Reaction conditions: 1.0 vol.% CO, 4.0 vol.% O_2 and He balance with the space velocity of 4, 200 l/g • h to 9, 000 l/g • h, pressure = 0.1M Pa.

Figure S13 The TOF of Pd_1/Fe_2O_3 and Pt_1/Fe_2O_3 SACs for CO oxidation from 40°C to 140°C (a), 140-300°C (b), and 300-350°C (c). Reaction conditions: 1.0 vol.% CO, 4.0 vol.% O₂ and He balance with the space velocity of 10 l/g • h to 9,000 l/g • h, pressure = 0.1M Pa.

For CO oxidation at low reaction temperatures (40°C to 120°C), the Pd₁/Fe₂O₃ SAC shows much higher activity than that of the Pt₁/Fe₂O₃ SAC as shown in Figure S13a. When the reaction temperature increases to 140 °C or higher (Figure 13 b-c), the TOF of the Pt₁/Fe₂O₃ SAC overtakes that of the Pd₁/Fe₂O₃ SAC and significantly increases at reaction temperatures > 260 °C. It is also interesting to note that the TOF of the Pd₁/Fe₂O₃ SAC reaches a maximum at around 340°C and then decreases with further increase in reaction temperature. The Pt₁/Fe₂O₃ SAC may exhibit a similar behavior at a higher reaction temperature. Such a behavior may be related to the structural changes between the Pt₁ atom and the support surfaces. Further experiments are needed to understand this phenomenon.

Figure S14 The k²-weighted Fourier transform spectra derived from the EXAFS on Pt SAC, nano-Pt catalysts and Pt foil; k ranges from 3.0 to 13.9 Å⁻¹.

Figure S15 The Bader charge plotted as a function of Pt oxidation state.

Figure S16 The side-view images of O_2 adsorption configurations corresponding to (ii) and (iii) in Figure 6 in the main manuscript.

	Ratio of O ₂ to CO ^a	
4.0	1.0	0.5
7344.2	7908.3	2844.2
39.3	193.2	85.6
3906.6	7121.5	4370.0
79.3	35.7	25.0
/	0.2 ^b	/
/	1.0 ^b	/
-	4.0 7344.2 39.3 3906.6 79.3 /	Ratio of O2 to CO ^a 4.0 1.0 7344.2 7908.3 39.3 193.2 3906.6 7121.5 79.3 35.7 / 0.2 ^b / 1.0 ^b

Table S1 Specific Reaction Rate of Pt at 350 °C (mmolCO/(g_{Pt} *s))

a: The specific reaction rates of Pt₁ atoms and Pt particles are measured in the feed gas of 1.0 vol.% CO, 4.0 vol.% O₂ and He balance (O₂/CO=4.0); 2.5 vol.% CO, 2.5 vol.% O₂ and He balance (O₂/CO=1.0); 2.5 vol.% CO, 1.25 vol.% O₂ and He balance (O₂/CO=0.5).

b: The specific reaction rate ratio of Pt is calculated based on the original data shown in Ref. [2] The O_2/CO ratio was 1.1.

Sample	Shell	C. N. ^a	R (Å)	$(h_J)_{t,s}^{b}$	σ^2
Pt ₁ /Fe ₂ O ₃	Pt-O	4.4	2.01	0.393	0.00092
	Pt-Pt	/	/		/
Nano-Pt/Fe ₂ O ₃	Pt-O	2.8	2.01	0.365	0.00517
	Pt-Pt	1.9	2.75		0.00528
Pt_1/CeO_2	Pt-O	4.3	2.00	0.389	0.0006
	Pt-Pt	/	/		/
Nano-Pt/CeO ₂	Pt-O	3.0	2.01	0.357	0.00867
	Pt-Pt	3.4	2.75		0.00617

Table S2 EXAFS parameters of Pt SACs, nano-Pt catalysts and Pt foil

a) C. N.: Coordination number.

b) $(h_J)_{t,s}$ is Pt *d*-orbital vacancies per atom. The $(h_J)_{t,s}$ is based on the simplified equation formula.[3-4] The total amount of *d*-band vacancies of Pt in the sample can be evaluated as: $(h_J)_{total, sample} = (1.0 + f_d) * (h_J)_{total, reference}$; $f_d = (A_{sample}-A_{reference})/(A_{sample}*A_{reference})$, A_{sample} is the Pt L₃ peak area of samples and $A_{reference}$ is the Pt L₃ peak area of Pt foil; The total amount of unoccupied *d*-states for pure Pt has been evaluated from band structure calculation is 0.3.[5-6]

Steps	$\Delta G (eV)$		
i → ii	-0.03		
ii → iii	-0.07		
$iii \rightarrow iv$	-2.12		
$iv \rightarrow iv$	-1.14		
$v \rightarrow i$	-2.68		

Table S3 Free energy changes (ΔG) of elementary steps during CO oxidation by non-classic MvK mechanism.

Reference

1 S. Mukerjee, S. Srinivasan, M. P. Soriaga, J. Mcbreen, Role of structural and electronic-properties of Pt and Pt alloys on electrocatalysis of oxygen reduction - an in-situ XANES and EXAFS investigation. *J Electrochem Soc.* **1995**, 142 (5),1409-1422.

2 M. Ozawa, T. Okouchi, M. Haneda, Three way catalytic activity of thermally degenerated Pt/Al₂O₃ and Pt/CeO₂-ZrO₂ modified Al₂O₃ model catalysts, *Catal Today*. **2015**, 242, 329-337.

3 S. Mukerjee, S. Srinivasan, M. P. Soriaga, J. McBreen, Effect of Preparation Conditions of Pt Alloys on Their Electronic, Structural, and Electrocatalytic Activities for Oxygen Reduction - XRD, XAS, and Electrochemical Studies. *J. Phys. Chem.* **1995**, 99, 4577-4589.

4 A. N. Mansour, J. W. Cook, D. E. Sayers, Quantitative technique for the determination of the number of unoccupied d-electron states in a platinum catalyst using the $L_{2,3}$ X-ray absorption edge spectra. J. *Phys. Chem.* **1984**; 88, 2330-2334.

5 M. Brown, R. E. Peierls, E. A. Stern, White lines in x-ray absorption. *Phys. Rev. B.* **1977**, 15 (2): 738-744.

6 L. F. Mattheiss, R. E. Dietz, Relativistic tight-binding calculation of core-valence transitions in Pt and Au. *Phys. Rev. B.* **1980**, 22 (4), 1663-1676.