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Fig. S1. Schematic diagram of (a) a system for Pd-TiO, catalyst synthesis and (b) a

differential fixed-bed reactor system for O, removal test.



Synthesis of Pd-TiO, catalysts using a flame aerosol reactor (FLAR)

The experimental setup for synthesizing Pd-Ti0, catalysts is shown in Fig. 1a. The flame aerosol
reactor (FLAR) system includes a precursor feeding system (bubbler and nebulizer), a diffusion
burner, and a quenching and collection system. The bubbler was used for feeding titanium tetra-
isopropoxide (TTIP, 99.7%, Sigma-Aldrich) with an N, carrier gas (1 L min-1). The temperature
of the oil bath in which the bubbler was placed was maintained at 323 K. The precursor delivery
tubes were maintained at around 373 K. The saturated TTIP precursor vapor was introduced into
the central port of the burner. Palladium acetylacetonate (Pd(acac),, 97%, Sigma-Aldrich) was
used as a dopant precursor, and it was dissolved in xylene (reagent grade, Sigma-Aldrich) and
acetonitrile (99.8%, Sigma-Aldrich) mixture (2:1, v/v). In this study, five different Pd-TiO,
catalysts were synthesized by controlling the concentration of the Pd precursor solutions (0.5 mM
~3.0 mM). A three-jet Collison nebulizer was used to generate spray droplets, which were
introduced to the central port of the burner. CH4 and O, were introduced through the second and
the outer port of the burner, respectively, with flow rates of 0.35 L min-1 and 2.5 L min-1. The
distance between the quench ring and the top of the burner was fixed at 3.8 cm. The synthesized

catalysts were collected using an isopore membrane filter.



Table S1 Total Pd loadings of fresh and spent catalysts as determined from FESEM-EDS

analyses.
Total Pd loading of fresh catalysts | Total Pd loading of spent catalysts
(Wt%) (Wt%)
catalyst 1 0.21 £ 0.027 0.22 £ 0.038
catalyst 2 0.44 £ 0.041 0.42 £ 0.050
catalyst 3 0.75 £ 0.086 0.69 £ 0.098
catalyst 4 1.00 £ 0.072 0.99 * 0.084
catalyst 5 1.25 £ 0.058 1.14 £ 0.153




Fig. S2 EDS mapping of the fresh catalyst 4.
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Fig. S3 Bulk Pd-TiO; nano particle and Pd subnano cluster/nano particle size distributions, and
STEM images of a) catalyst 1, b) catalyst 2, ¢) catalyst 3, d) catalyst 4, and ¢) catalyst 5. Results
related to the fresh catalysts are denoted with red-color and results related to the treated catalysts

are shown with blue-color



Fig. S4 EDS mapping of the spent catalyst 5.
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Fig. S5 XPS spectra of fresh and treated Pd-TiO, catalysts: Pd metal (red, 335.7 eV), PdOy (gold,

336.42 eV), PdO (green, 337.4 eV).
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Fig. S6 XPS spectra of (a) fresh catalyst 3, (b) Pd metal powder, and (c) reduced catalyst 3: Pd

metal (red, 335.7 eV), PdOy (gold, 336.42 eV), PdO (green, 337.4 eV).

To validate the Pd species in the XPS data, the Pd species in Pd metal powder and the reduced

catalyst 3 were additionally characterized. Pd metal powder was purchased from Sigma Aldrich



(Palladium, 326666). The reduced catalyst 3 was prepared by reducing the fresh catalyst 3 with
hydrogen gas at 500 °C for 2 hrs. For a better comparison, original XPS data of fresh catalyst 3 is
shown together with the obtained results (Figure S3a). As can be seen in Figure S3b, the purchased
Pd metal powder contained three Pd species which are metallic Pd (3ds,=335.7 ¢V and 3d;,=340.9
eV), intermediate Pd (3ds,=336.42 eV and 3d;,=341.6 e¢V), and PdO (3ds,=337.4 eV and
3d3,=342.6 eV). These deconvoluted Pd species in the Pd metal powder are consistent with those
in the fresh catalyst 3 (Figure S3a). The existence of the oxidized Pd species (intermediate Pd and
PdO) could be created during the sample preparation for the XPS analysis. The reduced catalyst 3
(Figure S3c) contained mostly metallic Pd and a small amount of PdO with binding energies at
3ds,=335.7 eV and 337.4 eV and 3d;,=340.9 eV and 342.6 eV, respectively. This result could
indicate that the deconvoluted Pd species in the reduced catalyst 3 were consistent with those in
the fresh catalyst 3 (Figure S3a) and catalyst 3 was successfully reduced. Therefore, these obtained

XPS data could validate the Pd species in the prepared samples in the main paper.
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Table S2 Fractions of metallic Pd, intermediate PdOy, and PdO in the spent catalysts as

determined from XPS analysis, and total surface area of metallic Pd (TSAmetalliC pd),

TSA
intermediate PO, (" %%x), and PdO (T 34pdo).

1(Pd)
Metallic Pd TSApetatiic pa | TSApao | T54pdo Topent ( (Ti))
o) PdO (%) | PdO, (%) : ) NG D
(cm?) (cm?) (cm?) Fresh (——)
I1(T?)
catalyst 1 | 42.60 £ 1.12 | 24.07£0.55 | 33.33 £0.65 - - - 0.920
catalyst2 | 43.89+£0.16 | 21.27 £ 0.63 | 34.84 £ 0.47 85.68 68.49 86.16 0.422
catalyst3 | 4591 +£0.75 | 15.80£0.55 | 38.29+0.86 124.70 70.78 131.74 0.417
catalyst4 | 44.06 £0.65 | 16.38 £1.08 | 39.56 + 0.95 105.61 64.75 120.12 0.352
catalyst 5 | 55.61 £1.44 | 14.77£0.65 | 29.62 + 1.37 - - - 0.206
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Fig. S7 XPS spectra of fresh and spent Pd-TiO, catalysts: Ti** (2ps,,) (dark green, 456.7 eV), Ti*"

(2psp) (blue, 458.5 eV), Ti3" (2p,,) (orange, 460.3 V), Ti*" (2p.») (purple, 464.2 eV).
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Fig. S8 XPS spectra of fresh and spent Pd-TiO, catalysts: Opice (purple, 529.9 eV),

Odeﬂcient region (Pmk, 531.3 CV), Oadsorbed (gl'een, 532.2 eV)
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Table S3 Fractions of Ti3" (2psp), Ti*" (2ps), Ti** (2p1y), and Ti** (2py),) in fresh and spent

catalysts.
Fresh catalysts Spent catalysts
Ti** (2psn) | Ti*" (2psp) | T 2pin) | Ti** 2pin) | TP (2psp) | Ti*" (2psn) | TP (2pin) | Ti*" (2pin)
(%) (%) (%) (%) (%) (%) (%) (%)
catalyst 1 0.64+0.1 65.40+0.30 | 297+0.30 | 31.40+0.30 1.39 64.35+1.81 | 6.24+0.83 | 30.06+0.44
catalyst 3 0.65+0.14 65.42+0.20 | 2.82+0.23 | 31.43+0.52 1.01 64.86+0.75 | 5.23+0.56 | 29.66 +0.30
catalyst 5 0.43+0.24 65.84£0.45 | 2.82+0.30 | 31.13+0.40 0.66 64.34+1.08 | 497+0.46 | 30.49+£0.42
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Table S4 Fractions of Ojggices Odeficient regions aNd Oadsorbed 1N fresh and spent catalysts.

Fresh catalysts Spent catalysts
Oattice (%0) Odeﬁci,em N | Oygsorbed (%) | Olatice (%) Odeticint egion Oudsorbed (%0)
(%) (%)
catalyst 1 82.56 +0.52 10.48 £ 0.09 6.97 +0.06 81.85+1.43 13.48 +0.34 4.67 £1.23
catalyst3 | 80.92+1.50 | 12.10£0.65 6.98 +0.85 83.56+0.48 | 13.46+0.35 3.79+0.59
catalyst 5 | 82.96+0.80 | 10.79 £0.02 6.26 +0.81 82.98+0.20 | 12.33+1.40 4.70+1.19
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Table S5 O, and CH,4 conversion, and apparent reaction rate constant (kapp) with TiO,, catalyst 1,

catalyst 2, catalyst 3, catalyst 4 and catalyst 5 at 723 K.

O, conversion (%) | CH,4 conversion (%) K app (min'")
TiO, 30.9 50.7 7.71
catalyst 1 55.8 64.4 17.01
catalyst 2 67.0 81.9 23.10
catalyst 3 77.0 92.4 30.62
catalyst 4 75.3 93.8 29.13
catalyst 5 70.1 93.0 25.15
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Fig. S9 The change in the concentration of O,, CH4, CO, and Total C with catalyst 3 (Helium

was used instead of CO,.).
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Table S6 Reaction rates of CH4 and 1/20, with different catalysts.

R cH, ~ 1/ ZRO2
1/ ZROZ R X 100
(mmol/g,/hr) (mmol/g,/hr) CH,
(%)
723 K 773 K 723 K 773 K 723 K 773 K

catalyst 1 -7.16 -8.82 -7.50 -9.36 1.10 245
catalyst 2 -9.06 -9.87 -9.39 -10.01 0.47 2.61
catalyst 3 -10.63 -10.93 -10.35 -10.66 2.73 2.61
catalyst 4 -10.73 -11.18 -10.27 -10.71 5.00 4.84
catalyst 5 -10.41 -10.81 -9.69 -10.20 6.06 5.20
2 Via complete CH,4 oxidation reaction (CH 4+20,2C0, +2H 20):
RCH4_ RO2

1 -2
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Fig. S10 The natural log of C/C, versus residence time (a) with catalyst 1, (b) with catalyst 3,

and (c) with catalyst 5 at different temperatures.
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Fig. S11 Variation of the apparent reaction rate constant (kaPP) with (a) the fraction of the total surface area

of PdO ('8 fresh) and (b) the fraction of the total surface area of PdO, (yf resh) in the fresh catalysts at different

temperatures.
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Fig. S12 Variation of the apparent reaction rate constant (k app) with (a) the fraction of the total surface area
of metallic Pd in the treated catalysts (aspent), and (b) the average fraction of the total surface area of

metallic Pd (aavg) at different temperatures.
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Fig. S13 Variation of the apparent reaction rate constant (kaPP) with (a) the fraction of the total surface area

of PdOy in the treated catalysts (yspent) and (b) the average fraction of the total surface area of PdO, (yavg)

at different temperatures.
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Fig. S14 Variation of the apparent reaction rate constant (kaPP) with (a) the fraction of the total surface area

of PdO in the treated catalysts ('8 spent) and (b) the average fraction of the total surface area of PdO (ﬁ avg) at

different temperatures.
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Fig. S15 Variation of the apparent reaction rate constant (kaPP) with the sum of average fractions

of the total surface area of metallic Pd and PdO, (aavg + yavg) at different temperatures.
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Table S7 Reaction rates of CH4 and 1/20, with catalyst 3 under different CO, concentrations.

RCH4 - 1/2R02
RCH4 1/2R02 R x 100
(mmol/g,/hr) (mmol/g,/hr) CH,
(%)
723 K 773 K 723 K 773 K 723 K 773 K
0% CO, -7.97 -8.36 -7.87 -8.35 1.32 0.09
53% CO;, -9.21 -10.01 -9.35 -9.71 2.51 0.49
95% CO, -10.64 -10.95 -10.35 -10.66 2.73 2.61
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Fig. S16 Variation of O, conversion with CO, concentration at different temperatures.
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Fig. S17 (a)-(c) change in the concentration of O,, CH,4, and CO with catalyst 3 under different initial

compositions (O, rich composition: O,/CH4 = 2.4, stoichiometric composition: O,/CH4 = 2.0, O, lean

composition: O,/CH4 = 1.6).
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