Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Heterolytic alkene oxidation with H₂O₂ catalyzed by Nb-substituted Lindqvist

tungstate immobilized on carbon nanotubes

Vasiliy Yu. Evtushok,^a Irina D. Ivanchikova,^a Vladimir A. Lopatkin,^{a,b} Nataliya V. Maksimchuk,^a Olga Yu. Podyacheva,^a Arina N. Suboch,^a Olga A. Stonkus^a and Oxana A. Kholdeeva^{*a}

^a Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk 630090, Russia

^b Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russia

* Corresponding author: khold@catalysis.ru

Table of Contents

Tables	
Table S1. Textural and elemental analysis data for CNTs and N-CNTs supports	p. 2
and representative supported HNb(O ₂)W ₅ catalysts	
Figures	
Fig. S1. FT-IR spectra of $(Bu_4N)_3[Nb(O)W_5O_{18}]$, $(Bu_4N)_2[(CH_3O)NbW_5O_{18}]$,	p. 2
$(Bu_4N)_4[(NbW_5O_{18})_2O]$ and $(Bu_4N)_2[HNb(O_2)W_5O_{18}]$	
Fig. S2. Effect of HClO ₄ on adsorption of HNb(O ₂)W ₅ on N-CNTs (MeCN, 25 °C).	p. 3
Fig. S3. HAADF-STEM images (a-b) and EDX spectrum (c) of 15 wt%	p. 4
HNb(O ₂)W ₅ /CNTs	
Fig. S4. EDX spectrum of 15 wt% HNb(O ₂)W ₅ /CNTs.	p. 5

Catalyst/Support	Ν	POM	S _{BET}	V _{pore}
	(at%)	(wt%)	(m^{2}/g)	(cm^{3}/g)
CNTs	0	-	150	0.70
N-CNTs	0.9	-	161	0.64
N-CNTs	4.8	-	157	0.53
HNb(O ₂)W ₅ /CNTs	0	15	118	0.33
HNb(O ₂)W ₅ /N-CNTs	0.9	15	124	0.39

Table S1. Elemental analysis and textural data for CNTs and N-CNTs supports and representative supported HNb(O₂)W₅ catalysts

Fig. S1. FT-IR spectra of $(Bu_4N)_3[Nb(O)W_5O_{18}]$ $(Nb(O)W_5)$, $(Bu_4N)_2[(CH_3O)NbW_5O_{18}]$ $(Nb(OCH_3)W_5)$, $(Bu_4N)_4[(NbW_5O_{18})_2O]$ $((NbW_5)_2O)$, and $(Bu_4N)_2[HNb(O_2)W_5O_{18}]$ $(HNb(O)_2W_5)$.

Fig. S2. Effect of HClO₄ on adsorption of HNb(O₂)W₅ on N-CNTs (MeCN, 25 °C).

Fig. S3. HAADF-STEM images of 15 wt% HNb(O₂)W₅/CNTs.

Fig. S4. EDX spectrum of 15 wt% HNb(O₂)W₅/CNTs.