Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Selective Hydrogenolysis of Aryl Ethers over Nitrogen-Doped Porous Carbon Supported Ni-

CeO₂ Catalyst at Low Temperature

Ming Jiang,^a Xiaopeng Chen,^{*,a,b} Linlin Wang,^{a,b} Jiezhen Liang,^{a,b} Xiaojie Wei,^{a,b}

*Corresponding author.

E-mail addresses: <u>lilm@gxu.edu.cn (X</u>iaopeng Chen)

^a School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China

^b Guangxi Key Laboratory of Petrochemical Resources Processing and Process Intensification

Technology, Guangxi University, Nanning 53004, PR China.

Fig. S1 The Raman spectra (a) C, (b) CN

Fig. S2 SEM/TEM images and Particle size distribution of catalysts (a, d, g) Ni/C, (b, e, h) Ni/CN, (c, f, i) Ni-CeO₂/CN.

Fig. S3 XPS spectra of Ni-CeO₂/CN catalyst (a) C1 spectra and (b) N1 spectra.

Fig. S4 Contrast images of Ni-CeO₂/CN catalyst before and after magnetic separation.

Fig. S5 XRD patterns of (a) fresh and (b) recycled Ni-CeO₂/CN catalyst.

Fig. S6 XPS Ni $2p_{3/2}$ spectra (a) fresh and (b) recycled Ni-CeO₂/CN catalyst.

sample	$S_{BET}\left(m^2~g^{\text{-}1}\right)$	pore volume (cm ³ g ⁻¹)	average pore diameter (nm)
С	238.05	0.25	6.67
CN	872.57	0.38	5.18
CeO	88.99	0.26	8.91
CeO ₂ /CN	668.52	0.29	4.85

Table S1 Textural properties of supporters

Table S2 Quantitative analyses of the fitted Ce 3d core level XPS peaks.

sample	Ce ⁴⁺ 3d						
	Peak BE (eV)	916.7	907.3	901.3	898.2	887.5	882.2
Ni-CeO ₂ /CN	Attribution	3d _{3/2}	$3d_{3/2}$	$3d_{3/2}$	3d _{5/2}	3d _{5/2}	3d _{5/2}
	area	27257	37328	15431	30650	31268	32970
Ni/CeO ₂	Peak BE (eV)	916.7	907.3	901.3	898.2	887.5	882.2
	Attribution	3d _{3/2}	$3d_{3/2}$	$3d_{3/2}$	3d _{5/2}	3d _{5/2}	3d _{5/2}
	area	255814	220084	90169	254131	148657	197322
sample	Ce ³⁺ 3d				Ce ³⁺ / (Ce ³⁺ +Ce ⁴⁺)		
	Peak BE (eV)	903.7	900.7	885.2	881.6		
Ni-CeO ₂ /CN	Attribution	$3d_{3/2}$	$3d_{3/2}$	3d _{5/2}	3d _{5/2}	0.42	
	area	27535	27670	46043	23724		
	Peak BE (eV)	903.7	900.7	885.2	881.6		
Ni/CeO ₂	Attribution	$3d_{3/2}$	$3d_{3/2}$	3d _{5/2}	3d _{5/2}	0.31	
	area	81029	155463	244465	53924		

Table S3 The analysis of Ni speciation and content of fresh and recycled Ni-CeO₂/CN catalyst.

	Atom co	ontent (%) ^a	
Catalysts	Ni ⁰	Ni ²⁺	Total Ni (%) ^b
Fresh Ni-CeO2/CN	7.6	92.4	20.45
recycled Ni-CeO ₂ /CN	7.4	92.6	18.36

^a Determined by XPS analysis.

^b Determined by ICP-OES.