Supplementary Information for

Ethylene oligomerization into linear olefins over cobalt

oxide on carbon catalyst

Authors:

Alvin Jonathan¹, Nathaniel M. Eagan¹, David L. Bruns², Shannon S. Stahl², Michael P. Lanci³, James A. Dumesic¹, and George W. Huber^{*1}

¹Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.

²Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.

³ExxonMobil Research and Engineering, Annandale, NJ, 08801, USA.

*Corresponding author: gwhuber@wisc.edu

Table of contents:

Supplementary Method

Supplementary Discussion

Table S1

Figures S1-12

Supplementary Method: Calculating calibration constants for C_2 up to C_{10} olefins in GC-FID

A calibration constant $(^{k_i})$ with i carbon atoms is defined as the ratio of the olefin concentration (mol%) with i carbon atoms and the corresponding GC area (a.u.). A linear correlation of $1/^{k_i}$ as a function of i was observed for C₂ up to C₆ olefins from the Scotty gas standard (a mixture of 0.1 mol% of each C₂-C₆ LAO and 99.5 mol% of He). From the linear extrapolation of $1/^{k_i}$ as a function of i , the calibration constants for C₈ and C₁₀ olefins were calculated.

Supplementary Discussion: Obtaining the α parameter of a Schulz-Flory distribution

The equation defining the Schulz-Flory distribution is given as follows:

$$\frac{W_n}{n} = \alpha^{n-1} (1-\alpha)^2 \tag{1}$$

Where W_n is the product weight fraction (which in this case is the same as the carbon selectivity), *n* is the number of repeat units, and α is the chain growth probability. From rearrangement of the equation and taking the log₁₀, the equation becomes:

$$\log_{10}\left(\frac{W_n}{n}\right) = (n-1)\log_{10}(\alpha) + 2\log_{10}(1-\alpha)$$
(2)

$$\log_{10}\left(\frac{W_{n}}{n}\right) = n\log_{10}(\alpha) + \left[2\log_{10}(1-\alpha) - \log_{10}(\alpha)\right]$$
(3)

By making a plot of $\log_{10}\left(\frac{W_n}{n}\right)$ as a function of *n*, the chain growth probability (α) could be calculated from 10^{slope}.

First order deactivation rate constant

The equation for first order deactivation is defined as:

$$\frac{da}{dt} = -k_d a \tag{4}$$

$$a = \frac{rate(t)}{rate(t_0)} \tag{5}$$

Here k_d is the first order deactivation rate constant and *a* is the relative ethylene consumption rate at time *t* with respect to the initial ethylene consumption rate at t_0 . From rearrangement of the equation and integration from $t = t_0$ to t = t, the following equation is obtained:

$$\ln (rate(t)) = -k_d t + \ln (rate(t_0))$$
(6)

A plot of $\ln (rate(t))$ versus *t* (which in this case is time on stream) therefore has a slope equal to $-k_d$.

|--|

Sample	BET surface area (m ² g ⁻¹)
Fresh ^a	418
Spent 80 °Cb	70
Spent 200 °C ^b	105

^aFresh catalyst after pretreatment at 230 °C in argon. ^bSpent catalysts after 24 h reactions and Soxhlet extractions.

Fig. S1 Process flow diagram of ethylene oligomerization reaction.

Fig. S2 Representative 2D-GC-FID chromatograms from an ethylene oligomerization reaction at 200 °C, 16 bar ethylene, 16 bar argon, 12 wt% $CoO_x/HTTC$, and 0.72 h contact time. (a) Overall products. (b) C_8 olefin products.

Fig. S3 Ethylene conversion as a function of time on stream (TOS) at first 200 °C (black square), 140 °C (red circle), 180 °C (blue triangle), 160 °C (magenta upside-down triangle), and last 200 °C (green diamond). Reaction conditions: 16 bar ethylene, 16 bar argon, 12 wt% $CoO_x/HTTC$, and 1.45 h contact time.

Fig. S4 First order deactivation rate constant at different reaction temperatures during 24 h reactions. Reaction conditions: 16 bar ethylene, 16 bar argon, 12 wt% $CoO_x/HTTC$, and 0.18 -1.45 h contact time. Bounds represent standard errors from the slopes of ln(rate) versus time on stream (TOS) from the LINEST function in Excel. All conversions were below 20%.

Fig. S5 Ln(Rate) versus 1/T. Reactions with fresh catalysts at 180, 200, and 220 °C (black square) and sequential reactions at 200-140-180-160-200 °C (red triangle) with 24 h for each reaction temperature. Reaction conditions: 16 bar ethylene, 16 bar argon, 12 wt% $CoO_x/HTTC$, and 1.45 h contact time. Bounds represent standard deviations.

Fig. S6 Conversion versus contact time. Reaction conditions: 200 °C, 16 bar ethylene, 16 bar argon, 12 wt% $CoO_x/HTTC$. Bounds represent standard deviations.

Fig. S7 Product linearities versus conversion of C_4 (black square), C_6 (red circle), C_8 (blue triangle), C_{10} (magenta upside-down triangle), and C_{12} (green diamond) olefins. Reaction conditions: 200 °C, 16 bar ethylene, 16 bar argon, 12 wt% CoO_x/HTTC, and 0.18 - 9.45 h contact time. Bounds represent standard deviations.

Fig. S8 Chain growth probabilities from $C_4 - C_{10}$ olefins (black square) and C_{10+} olefins (red circle) versus conversion. Reaction conditions: 200 °C, 16 bar ethylene, 16 bar argon, 12 wt% CoO_x/HTTC, and 0.18 - 9.45 h contact time. Bounds represent standard errors from the slopes of ln(Carbon selectivity / *n*) versus *n* from the LINEST function in Excel.

Fig. S9 Mo-XRD patterns of fresh and spent catalysts with exposure to air. Characteristic peaks are carbon (graphite) - filled circle, polyethylene - filled square, Co_3O_4 - unfilled square, and CoO - unfilled diamond.

Fig. S10 N 1s XPS region of fresh catalyst after pretreatment in argon at 230 °C.

Fig. S11 TGA of spent catalysts in N₂ before and after Soxhlet extractions. (a) Spent catalyst after a 24 h reaction at 80 °C before the Soxhlet extraction. (b) Spent catalyst after a 24 h reaction at 200 °C before the Soxhlet extraction. (c) Spent catalyst after a 24 h reaction at 80 °C after the Soxhlet extraction. (d) Spent catalyst after a 24 h reaction at 200 °C after the Soxhlet extraction. (d) Spent catalyst after a 24 h reaction at 200 °C after the Soxhlet extraction. TGA conditions: 50 cm³ (STP) min⁻¹ of N₂, 10 °C min⁻¹ ramp rate, and ~10 mg sample.

Fig. S12 BJH pore size distributions of fresh catalyst after pretreatment in argon at 230 °C and spent catalysts after Soxhlet extractions.