# Isotopic ${ }^{18} \mathrm{O} /{ }^{16} \mathrm{O}$ Substitution Study on the Direct Partial Oxidation of $\mathrm{CH}_{4}$ to Dimethyl Ether over a $\mathrm{Pt} / \mathrm{Y}_{2} \mathrm{O}_{3}$ Catalyst Using $\mathrm{NO} / \mathrm{O}_{2}$ as an Oxidant 

I. Tyrone Ghampson ${ }^{\text {b,c }}$, Sean-Thomas B. Lundin ${ }^{\text {c }}$, Tetsuya Shishido ${ }^{\text {b }}$, S. Ted Oyama ${ }^{\text {a,c,d }}{ }^{\text {* }}$

${ }^{\text {a }}$ School of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
${ }^{\text {b }}$ Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
${ }^{\text {c}}$ Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
dDepartment of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, United States
*Corresponding author.
E-mail address: oyama@vt.edu (S. Ted Oyama)

## 1. Experimental

The $\mathrm{Pt} / \mathrm{Y}_{2} \mathrm{O}_{3}$ catalyst was prepared by incipient wetness impregnation of an aqueous solution of hexachloroplatinic acid hexahydrate $\left(\mathrm{H}_{2} \mathrm{PtCl}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right.$, Wako, $\left.98.5 \%\right)$ on yttrium (III) oxide $\left(\mathrm{Y}_{2} \mathrm{O}_{3}\right.$, Nippon Yttrium, $\left.99.9 \%\right)$. Quantities of reagents were used to give a loading of 2 $\mathrm{wt} \% \mathrm{Pt} / \mathrm{Y}_{2} \mathrm{O}_{3}$, corresponding to a Pt concentration of $0.10 \mathrm{mmol} \mathrm{g}^{-1} \mathrm{Y}_{2} \mathrm{O}_{3}$. The sample was dried at $110^{\circ} \mathrm{C}$ for 12 h and calcined at $400^{\circ} \mathrm{C}$ for 3 h in an open air furnace. The catalyst was reduced at $400{ }^{\circ} \mathrm{C}$ for 2 h in flowing $\mathrm{H}_{2}$ and passivated at room temperature for 2 h under $0.2 \% \mathrm{O}_{2} / \mathrm{He}$ before BET surface area analysis (using a Micromeritics ASAP 2020 micropore size analyzer at 77 K ) and TEM measurement (using a Topcon EM-002B high-resolution analytical electron microscope operated at 120 kV ). The sample was reduced in the same manner prior to total dynamic CO uptake measurement (performed by passing pulses of 3\% CO in He over the sample at $50^{\circ} \mathrm{C}$ using a TPD-1-AT BEL instrument and monitoring the mass signal $(\mathrm{m} / \mathrm{z}=28)$ by a quadrupole mass spectrometer).

Isotopic substitution pulse measurements were conducted on the $\mathrm{Pt} / \mathrm{Y}_{2} \mathrm{O}_{3}$ catalyst using a catalyst analyzer (BELCAT II, MicrotracBEL Corp) equipped with a quadrupole mass spectrometer (BELMASS). The gases used were methane (99.999\%), 5\% nitric oxide in helium (certified mixture), helium (99.998\%), hydrogen (99.999\%), oxygen ( $>99.99 \%$ ), and isotopically labeled oxygen-18 (>99 at\%). Gases were purchased from Tokyo Koatsu Yamazaki Co. Ltd, except ${ }^{18} \mathrm{O}_{2}$ which was obtained from Isotec ${ }^{\circledR}$ (Sigma Aldrich). Prior to the measurement, the catalyst $(100 \mathrm{mg})$ was treated at $400^{\circ} \mathrm{C}$ for 2 h in $\mathrm{H}_{2}$ flow $\left(100 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right.$ or $68 \mu \mathrm{~mol} \mathrm{~s}^{-1}$ ), cooled to $325^{\circ} \mathrm{C}$ in He flow ( $30 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$ or $20 \mu \mathrm{~mol} \mathrm{~s}^{-1}$ ), and then held at $325^{\circ} \mathrm{C}$ for 30 min . A reaction gas mixture $\left(20 \% \mathrm{CH}_{4}, 1 \% \mathrm{NO}, 1 \% \mathrm{O}_{2}\right.$ and $\left.78 \% \mathrm{He}\right)$, which was previously used for steady-state reactivity studies ${ }^{1}$, was then introduced at a total flow rate of 100
$\mathrm{cm}^{3} \mathrm{~min}^{-1}$ or $68 \mu \mathrm{~mol} \mathrm{~s}{ }^{-1}$. After 2 h of stabilization under this condition the $\mathrm{O}_{2}$ flow was replaced with He , and the system was maintained until the mass spectrometer (MS) signals of the effluent streams were stable. Then, ${ }^{16} \mathrm{O}_{2}$ was premixed with He and $36 \mu \mathrm{~mol}$ pulses of the mixture ( $5 \%$ ${ }^{16} \mathrm{O}_{2} / \mathrm{He}$ ) were injected at 6 min intervals until no changes in the effluent streams were observed. The sample loop was then purged by flushing with pulses of He for 20 min . This sequence was then repeated with pulses of ${ }^{18} \mathrm{O}_{2}$ premixed with $\mathrm{He}\left(5 \%{ }^{18} \mathrm{O}_{2} / \mathrm{He}\right)$ and then with the $5 \%{ }^{16} \mathrm{O}_{2} / \mathrm{He}$. The areas for the MS peaks of the observed products were compared with the areas from calibrated pulses of $\mathrm{CO}_{2}$ and DME.

## 2. Estimation of metal dispersion and particle size

The metal dispersion $(D)$ is defined as the fraction of total Pt atoms at the surface. It is calculated from CO chemisorption measurements by assuming an adsorption stoichiometry of $\mathrm{CO} / \mathrm{Pt}=1$ using eqn. $1:$

$$
\begin{equation*}
D=\frac{N_{C O} \times n}{\frac{M_{L}}{M W_{P t}}} \tag{1}
\end{equation*}
$$

In this equation, $N_{C O}$ is the CO uptake after accounting for CO uptake on bare $\mathrm{Y}_{2} \mathrm{O}_{3}\left(2 \mu \mathrm{~mol} \mathrm{~g}^{-1}\right)$, $n$ is the chemisorption stoichiometry (assumed to be 1 ), $M_{L}$ is the metal loading ( 2 g Pt per $\left.\mathrm{g}_{\text {catalyst }}\right)$, and $M W_{P t}$ is the atomic weight of $\operatorname{Pt}\left(195.08 \mathrm{~g} \mathrm{~mol}^{-1}\right)$.

$$
D=\frac{(96 \mu \mathrm{~mol} / \mathrm{g}) \times 1}{\frac{2}{(195.08 \mathrm{~g} / \mathrm{mol})}}=94 \%
$$

The particle size $\left(D_{p}\right)$ was also calculated from the CO uptake value by assuming uniform spherical particles using eqn. 2 :

$$
\begin{equation*}
D_{p}(n m)=\frac{6 \times 10^{23} \times n_{s} \times M_{L}}{\rho \times N_{A} \times n \times N_{C O}} \tag{2}
\end{equation*}
$$

In this equation, $n_{s}$ is the surface metal atom density $\left(\mathrm{Pt}=1.2 \times 10^{15}\right.$ atoms per $\left.\mathrm{cm}^{2}\right), \rho$ is the density of bulk metal $\left(\mathrm{Pt}=21.4 \mathrm{~g} \mathrm{~cm}^{-3}\right)$, and $N_{A}$ is Avogadro's number $\left(6.02 \times 10^{23}\right.$ atoms mol $\left.{ }^{-1}\right)$.

$$
\begin{aligned}
& D_{p}=\frac{6 \times 10^{23} \times\left(1.2 \times 10^{15}\right) \times 2}{21.4 \times 6.02 \times 10^{23} \times 1 \times 96} \\
& D_{p}=1.2 \mathrm{~nm}
\end{aligned}
$$

## 3. Steady-state DME productivity



Fig. S1. DME production rate as a function of temperature with and without NO during $\mathrm{CH}_{4}$ partial oxidation by $\mathrm{NO}+\mathrm{O}_{2}$. The y-axis is displaced to more clearly show zero DME formation with only $\mathrm{O}_{2}$. Conditions: 100 mg of catalyst with $\mathrm{NO} / \mathrm{O}_{2}\left(\mathrm{CH}_{4}: \mathrm{NO}: \mathrm{O}_{2}:\right.$ inert $\left.=20: 1: 1: 78\right)$ and $\mathrm{O}_{2}$ $\left(\mathrm{CH}_{4}: \mathrm{O}_{2}\right.$ :inert $\left.=20: 1: 79\right)$ as oxidants at 0.1 MPa .

Fig. S1 shows the DME production rate as a function of temperature with and without NO.
The measurements were conducted in a tubular quartz reactor at atmospheric pressure, a GHSV of $1200 \mathrm{~h}^{-1}$, and temperatures of $275^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$. The DME production rate went
through a maximum at $325^{\circ} \mathrm{C}$ and decreased at higher temperatures, which was attributed to overoxidation.

## 4. Gas phase oxidation of NO to $\mathrm{NO}_{\mathbf{2}}$

The oxidation of NO to $\mathrm{NO}_{2}$ in the gas phase has been reported to follow mainly two mechanisms. The first involves the formation of an NO dimer intermediate: ${ }^{2-4}$

$$
\begin{gather*}
2 \mathrm{NO} \leftrightarrows(\mathrm{NO})_{2}  \tag{3}\\
(\mathrm{NO})_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2} \tag{4}
\end{gather*}
$$

The second is with $\mathrm{NO}_{3}$ and $\mathrm{N}_{2} \mathrm{O}_{4}$ as intermediates:

$$
\begin{align*}
& \mathrm{NO}+\mathrm{O}_{2} \rightleftarrows \mathrm{NO}_{3}  \tag{5}\\
& \mathrm{NO}_{3}+\mathrm{NO} \rightleftarrows \mathrm{~N}_{2} \mathrm{O}_{4}  \tag{6}\\
& \mathrm{~N}_{2} \mathrm{O}_{4} \rightarrow 2 \mathrm{NO}_{2} \tag{7}
\end{align*}
$$

The video below demonstrates the rapid transformation of NO to $\mathrm{NO}_{2}$ upon exposure to air at room temperature.

-
Media1.mov

## 5. A single oxygen transfer system



Fig. S2. Schematic of DME formation during $\mathrm{CH}_{4}$ partial oxidation by $\mathrm{NO}+\mathrm{O}_{2}$

The steady-state DME productivity with $\mathrm{NO}+\mathrm{O}_{2}$ shown earlier (Fig. S1) was achieved without reduction of $\mathrm{NO} / \mathrm{NO}_{2}$ to $\mathrm{N}_{2}$. This means that $\mathrm{NO} / \mathrm{NO}_{2}$ acted as an oxygen atom shuttle to oxidize methane using a single atom of oxygen [O] derived from $\mathrm{O}_{2}$, as illustrated in Fig. S2. The single oxygen atom is subsequently transferred during the partial oxidation.

## 6. Thermodynamics



Figure S3. NO conversion as a function of temperature for different mixture ratios of NO and $\mathrm{O}_{2}$ at 0.1 MPa .


Figure S4. Expected contributions to each peak intensity in the MS signals $\left(\mathrm{N}_{2}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{HCHO}\right.$ and CO have been omitted).

## 7. Derivation of kinetic isotope effect

The relative rate for the reaction of isotopes was derived from the partition functions and statistical mechanics. The rate constants are given by eqn. 8:

$$
\begin{equation*}
k=\frac{k_{b} T Q^{\#}}{h Q} e^{-E / R T} \tag{8}
\end{equation*}
$$

Here, $k_{b} T / h$ is the universal frequency, $Q^{\#}$ is the partition function of the activated complex, $Q$ is the partition function of the reactant, and $E$ is the activation energy.

For oxygen isotopes the difference in the zero-point energies is very small, so the activation energies are nearly equal. This means that only the difference in the partition functions is
relevant. Assuming a simple representation of only the movement along the reaction coordinate, a one-dimensional translational partition function is used. This results in eqn. 9 expression:

$$
\begin{equation*}
\frac{Q^{\#}}{Q}=\frac{1}{\sqrt{2 \pi M k_{b} T}} \tag{9}
\end{equation*}
$$

where $M$ is the mass of the molecule. The only difference in the partition functions of oxygen isotopes is the mass, resulting in an inverse square root dependence on mass of the isotope:

$$
\begin{equation*}
\frac{k_{18}}{k_{16}}=\sqrt{\frac{M_{16}}{M_{18}}} \tag{10}
\end{equation*}
$$

1. V. Vargheese, J. Murakami, K. K. Bando, I. T. Ghampson, G.-N. Yun, Y. Kobayashi and S. T. Oyama, The direct molecular oxygen partial oxidation of $\mathrm{CH}_{4}$ to dimethyl ether without methanol formation over a $\mathrm{Pt} / \mathrm{Y}_{2} \mathrm{O}_{3}$ catalyst using an $\mathrm{NO} / \mathrm{NO}_{2}$ oxygen atom shuttle, J. Catal., 2020, 389, 352-365.
2. E. Neyrolles, J. Lara Cruz, G. Bassil, F. Contamine, P. Cezac and P. Arpentinier, Kinetic study of the nitric oxide oxidation between 288 and 323 K , under pressure, focus on the oxygen influence on the reaction rate constant, Int. J. Chem. Kinet., 2020, 52, 329-340.
3. N. Artioli, R. F. Lobo and E. Iglesia, Catalysis by confinement: Enthalpic stabilization of NO oxidation transition states by micropororous and mesoporous siliceous materials, $J$. Phys. Chem. C, 2013, 117, 20666-20674.
4. J. Olbregts, Termolecular reaction of nitrogen monoxide and oxygen: A still unsolved problem, Int. J. Chem. Kinet., 1985, 17, 835-848.
